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Abstract. In this paper, a two-echelon newsvendor problem is considered. Many real-life
spheres including fashion, food industries, and healthcare services run into problems similar
to newsvendor problem. Our problem is determining inventory levels in order to optimize
the pro�t and service level in selling a product. This product is made up of several raw
materials. Only the distribution of demand is known and the hot season of selling the
product is just a short period; after that, the price of the product drops dramatically.
The storage space and initial budget are limited. The problem is modeled and solved
as an unconstrained nonlinear optimization problem using two nonlinear techniques: the
Sequential Unconstrained Minimization Technique (SUMT) and Steepest Descent (SD).
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

The newsvendor model (NVM) is a well-known tech-
nique of inventory management in operations research
that has been initially developed for encountering
uncertain demand for perishable products when the
period of selling is short. Various NVM extensions and
applications exist in the literature [1].

Although the application of the problem in man-
ufacturing is usual, in recent years, some authors have
employed the NVM for healthcare services. Sariyer [2]
used the NVM for determining capacities at the call
center of emergency medical services. Olivares et al. [3]
employed maximum likelihood estimations for cost
parameters and applied the NVM. They then presented
an econometric model for reserving cardiac surgeries
in operating rooms. Wachtel and Dexter [4] applied
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the NVM to the case of uncertainty in demands and
utilized the model for admitting patients in operating
rooms according to medical specialties. Abedini et al.
[5] used the NVM for planning events in the operating
room.

Many extensions of the classic model have been
developed to adapt NVM to real-world problems.
Khouja [6] presented a taxonomy of these extensions.
Sundar et al. [7] considered the NVM when the dis-
tribution of demand was unknown and only its mean
and variance were known. Subrata [8] investigated
a special NVM in which the price of inventory after
the selling period was a decision variable. Sainathan
and Groenevelt [9] managed to analyze a supply chain
with various assumptions like buyback and discount
using the NVM. Tekin and �Ozekici [10] dealt with
a case in which there was risk in both demand and
supply by using the mean variance framework in the
NVM. Pal et al. [11] studied a special NVM with an
unknown distribution function of demand, where only
the mean and variance of the distribution of demand
were known. They assumed that the holding cost
was a nonlinear function of ordering quantity and any
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increase or decrease in the holding cost was in line
with the order quantity. Shi et al. [12] presented a
dynamic risk-averse NVM in order to overcome time
inconsistency of formal risk measurements. Wang
et al. [13] compared multi ordering versus single
ordering in a dynamic NVM, when the newsvendor
updated the forecast of demand dynamically. Abrudan
et al. [14] studied the role of NVM in drop-shipping
activities. Bieniek introduced a special NVM with
the aim of maximizing customer satisfaction. This
objective function is interpreted as the probability of
exceeding a pre-speci�ed target pro�t [15]. Kim et
al. [16] studied multi-period NVM and formulated it as
a multi-stage stochastic programming. An NVM with
correlated demand in which period-to-period demand is
dependent was given in [17,18]. Xu et al. [19] extended
an NVM with the criterion of minimizing opportunity
loss. Khouja et al. [20] examined an NVM in case
that some customers only buy products at a discount.
Dai and Meng [21] studied NVM when a risk-averse
newsvendor makes decisions on pricing, marketing,
and ordering under conditional-value-at-risk measures.
Pasandideh et al. [22] developed an NVM in the case
of two-echelon and a limited budget. Guler et al. [23]
considered a special case in which two competitors use
NVM for their �rms and keep their cost private and
then, calculated the equilibrium of the system based
on some game theory concepts. Mohammadivojdan
and Geunes [24] considered a special NVM in which
a seller could obtain a product from various suppliers;
each supplier has its own price and proposes quantity-
based discounts because of the limited storage. Zhang
et al. [25] focused on NVM in a multi-period problem
when the distribution of demand is unknown. Adhikary
et al. [26] considered the distribution-free version of the
NVM when the demand is supposed as fuzzy-random
variable. Watt and Vazquez [27] investigated the NVM
when salvage could be sold back to the wholesaler.

This study extended the work of Pasandideh et
al. [22] and considered a two-echelon NVM in a single
period with two criteria. In this system, a product
is produced and sold at a regular price during an
interval and after that interval, all the stock is sold
at a discount. Therefore, the producer encounters
two phases for inventory cycle. In the �rst phase,
production is performed; in the second phase, when
there is not any production, only stocks can be sold.
This system �ts with two-echelon inventory systems
[28]. Our main contribution is twofold: utilizing
nonlinear techniques and mixing the exact methods,
the Sequential Unconstrained Minimization Technique
(SUMT), and Steepest Descent (SD) from non-linear
programming techniques in solving NVM. To our
knowledge, this solution method has rarely been used in
previous NVM literature. Table 1 depicts some recent
literature on the newsvendor problem. Our second

contribution is considering pro�t of sale as the objective
of producers with the service level as the objective of
customers. In this way, we consider the bene�t of both
producer and customer as two di�erent stockholders of
the problem in our objective function.

Our problem is modeled under stochastic de-
mand with the assumption that demand has a speci�c
distribution. Because the objective functions and
constraints are di�erentiable, we are able to employ
the SUMT and SD techniques for presenting a solution
method. In our method, each objective function is sep-
arately optimized considering the constraints. Finally,
these two objective functions are combined with each
other using the global criterion method by assigning
weights to the initial objective functions. The resulting
objective function is solved under the constraints of the
model using SUMT and SD techniques.

This paper is organized as follows: Section 2 pro-
vides an overview of the problem de�nitions. Section 3
discusses the solution approach. Section 4 presents
some computational results. Finally, Section 5 presents
conclusions and some outlines for future works.

2. Problem description

A producer wants to produce a fashionable product
that is made up of several raw materials. The hot
season of selling the product is limited and after that,
the demand declines dramatically. All raw materials
and products that remain after the hot season will be
sold with discounts. The producer has a limited budget
and encounters limitation on space of saving materials.
Only the distribution of the demand is known. The
producer prepares some products before the selling
season, but only some fraction of excess demand can
be produced during the selling season. The production
process has wastage. There are costs for lost sales and
saving materials. The amount of buying raw materials
and producing products before the season of selling
should be determined.

The objective of the problem is maximizing the
pro�t of sale and service level. Other details of the
problem are described in the following.

2.1. Assumptions
� There is only one opportunity or a single period

to sell the �nal product at a normal price, and
when this period is over, all that remains (i.e., raw
materials and the �nished products) will be sold at
discounted prices;

� The raw materials can only be purchased before the
beginning of the selling period. In addition, some
quantities of the �nal products can be produced
before this period. These values are unknown and
should be determined;

� The demand for the �nished product during the
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Table 1. A summary of current newsvendor model (NVM) literature.

Refs. Problem de�nition Solution method

Sundar et al. (2018) [7]
The NVM when only the

mean and variance of demand is known.
Queuing theory.

Subrata (2018) [8]
An NVM when the price of

unsold inventory is a decision variable.
Stochastic programming.

Tekin and �Ozekici (2015) [10]
An NVM with con
icting objectives

(high return and low risk).
Mean-variance approach, simulation.

Pal et al. (2015) [11]
A distribution-free NVM with customers balking

and a nonlinear holding cost.

Customer bulking,

mathematical programming.

Shi et al. (2019) [12]
An NVM with auto correlated demands

in periods and risk-averse newsvendor.

Heuristic approach,

dynamic programming.

Wang et al. (2012) [13]
An NVM in which newsvendor

dynamically updates the forecast of the market.
Dynamic programming.

Abrudan et al. (2018) [14]
An NVM with drop shipping and existence

of many intermediaries in supply chain.
Mathematical programming.

Bieniek (2018) [15]
An NVM in which the satisfying

level is part of objective function.
Survival probability approach.

Kim et al. (2015) [16] A multi-echelon, multi-retailer NVM.
Multistage stochastic programming,

progressive hedging method.

Alwan et al. (2016) [17] A multi period NVM with auto correlated demand. Mean square error optimal forecast.

Alwan and WeiB (2017) [18]
A multi period NVM with period to period

correlated demand.
Integer-valued autoregressive models.

Xu et al. (2016) [19] An NVM with the opportunity loss minimization criterion. Conditional value-at-risk.

Khouja et al. (2018) [20]
An NVM in which the retailer can sell some seasonal.

inventories to an o�-price retailer.
Mathematical programming

Dai and Meng (2015) [21] An NVM with risk measure criterion. Mathematical programming.

Guler et al. (2018) [23]
The newsvendor duopoly game with

asymmetric information.
Game theory.

Mohammadivojdan and

Geunes (2018) [24

An NVM with multi supplier and

quantity-based discounts.
Heuristic approach.

Zhang et al. (2017) [25] A multi-period NVM with unknown distribution of demand. Heuristic algorithms.

Adhikary et al. (2018) [26] An NVM with fuzzy random demand. Fuzzy optimization and decision making.

Watt and Vazquez (2017) [27]
An NVM when salvage can be sold back

to the wholesaler.
Simulation.

Pasandideh et al. (2011) [22] A two-echelon NVM with limited budget. Lagrangian method.

The current research A multi-objective two-echelon NVM.
Nonlinear programming

methods (SUMT, SD).

selling period is a random variable with a speci�c
distribution. If the demand is higher than the initial
inventory of the �nal product, a speci�c fraction of
unsatis�ed demands will be backordered and pro-
duced during this period using the initial inventory
of raw materials. The backordered demand would
be sold at a normal price. However, the remaining
unsatis�ed demand will go to the eager competitors,
resulting in a speci�c cost of lost sales;

� The production process has a speci�c wastage rate
and this wastage is immediately sold out for a
speci�c price per unit;

� The cost of transforming raw materials to the �nal

product is a multiplier of the amount of the �nal
product per unit;

� There is a limited predetermined budget;
� The amount of storage space is limited and each

unit of raw materials and the �nal product occupies
a speci�c amount of space;

� The holding costs of the �nished product and raw
materials for the entire period are speci�c amounts,
and the holding costs of the �nished products
and raw materials for a fraction of the period are
negligible;

� The service level is considered as the percentage of
demand that is satis�ed during the period.
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2.2. De�nition of parameters
QRi The quantity of the ith raw material

purchased before the selling period
QR The minimum amount

of various raw materials:
QR = min(QR1; QR2; :::; QRn)

QS The quantity of the �nal products
produced before the selling period

R The normal selling price of each unit of
the �nished product during the period

lw The selling price of each unit of the
wastage

Ci The purchasing price of each unit of
the ith raw material

C 0 The cost of transforming raw materials
into one unit of the �nished product

V S The space occupied by each unit of the
�nished product

V Ri The space occupied by each unit of the
ith raw material

� Wastage rate of the production process
hi The cost of holding each unit of the ith

raw material for the entire period
H The cost of holding each unit of the

�nished product for the entire period
Li The selling price of each unit of the

ith raw material after the end of the
period

L0 The selling price of each unit of the
�nished product after the end of the
period

� A fraction of customers who can wait
for their demands to be ful�lled by
production during the period

� The cost of lost sales for each unit of
the �nal product

D A random variable that determines the
amount of demand during the period

fd(d) The probability density function of the
demand during the period

FD(d) The cumulative distribution function
of the demand during the period

B Total available budget
I Total available storage space
U Total pro�t
U The expected total pro�t
SL The service level
SL The expected service level

2.3. Possible scenarios in problem modeling
Without loss of generality, the relationships between
raw materials and the �nished product are considered

one by one. This means that to produce each unit of
the �nished product, one unit of each kind of the raw
materials is consumed. For this reason, QR replaces all
values of QRi [22].

The production process has � percent of wastage.
Therefore, production QS units of the �nished product
consume (1 + �)QS units of raw materials and give
��QS units of wastage. Because the amount of
demand is a random variable, three scenarios may be
encountered during the period.

2.3.1. The �rst scenario
The �rst scenario takes place when the amount of
demand is less than the initial inventory level of the
�nished product, i.e., D � QS. In this case, no
further production is required during the period, and
it is possible that some amounts of the initial �nished
product will remain unsold. Obviously, all demands
will be satis�ed and the service level will be one
hundred Eq. (1):

SL1 = 100: (1)

For calculating the total pro�t U1, all the costs should
be subtracted from all the revenues.

The revenues are of three types: (1) The income
from selling the �nished product at a normal price
during the period of demand rD; (2) The income from
selling wastage derived from the production of the QS
units of the �nished product before the beginning of the
period lw(�QS); and (3) The income from selling the
remaining raw materials

Pn
i LiQR and the remaining

�nished product L0(QS �D) at a discounted price.
Costs are of three types: (1) The purchasing cost

of raw materials (i.e., the initial inventory of raw mate-
rials QR and the raw materials used for the initial pro-
duction of (1+�)QS units of the �nished product); (2)
The cost of the initial production of the �nished prod-
uct; and (3) The holding costs of all the raw materials
and the unsold �nished products during the period.

U1 = rD +
Xn

i=1
LiQR+ L0(QS �D)

�
�Xn

i=1
CiQR+ (C 0 +

Xn

i=1
Ci)(1 + �)QS

�lw(�QS)+
Xn

i=1
hiQR+ h0(QS�D)

�
: (2)

2.3.2. The second scenario
The second scenario takes place when the amount of
demand is greater than the initial inventory level of
the �nished product, i.e., D � QS. In this scenario,
by using the initial inventory of raw materials and
producing the �nished product during the period, we
can satisfy all demands of loyal customers. These
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customers prefer waiting for the production to buying
from the competitors.

If we consider the wastage derived from the
production of �(1 + �)(D � QS) units of the �nished
product during the period, the initial inventory of raw
materials is as follows:

a(1 + �)(D �QS) � QR:
After simpli�cations, the demand value in this scenario
is given as follows:

QS � D � QS +
QR

�(1 + �)
:

The service level in this scenario is the percentage of
demand which is satis�ed as follows:

SL2 = 100
(QS + �(D �QS)

D
: (3)

Here, the total pro�t U2 is calculated as in the previous
scenario. Revenues are of three types: (1) The income
from selling (QS + �(D � QS)) units of the �nished
product at a normal price during the period; (2) The
income from selling the wastage associated with the
initial production and with the production during the
selling period, i.e., lw(�QS)+ lw(��(D�QS)); and (3)
The income from selling the remaining raw materials
QR� �(1 + �)(D �QS) at a discounted price.

Costs are of four types: (1) The purchasing cost
of raw materials before the beginning of the period
(i.e., the initial inventory of raw materials QR and the
raw materials used for initial production of (1 + �)QS
units of the �nished product); (2) The cost of the initial
production of the �nished product and the cost of the
production during the period; (3) The cost of lost sales
(1 + �)(D �QS); and �nally, (4) The holding costs of
the remaining raw materials to the end of the period
QR� �(1 + �)(D �QS).

U2 = r(QS + �(D �QS)) +
Xn

i=1
Li(QR

��(1 + �)(D �QS)) + lw��(D �QS)

+lw(�QS)�
�Xn

i=1
CiQR

+(C 0 +
Xn

i=1
Ci)(1 + �)QS + C 0�(1 + �)

(D �QS) + (1� �)(D �QS)�

+
Xn

i=1
hi(QR� �(1 + �)(D �QS)

�
: (4)

2.3.3. The third scenario
The third scenario is somewhat similar to the second
one in that the amount of demand is greater than the
initial inventory of the �nished product (D � QS).
However, the di�erence is that the initial inventory
of raw materials is not su�cient to satisfy all loyal
customers. In other words, the initial inventory of
raw materials is less than �(1 + �)(D � QS) or D �
QS + QR

�(1+�) .
The service level in this case or the percentage of

the satis�ed demand is given below:

SL3 = 100
QS + QR

(1+�)

D
: (5)

For the total pro�t U3, revenues are of two types: (1)
The income from selling the QS+ QR

(1+�) amount of the
�nished product at a normal price during the period;
(2) The income from selling the wastages of the initial
production and of the production during the period
lw(�QS) + lw(�QR).

Costs are of three parts: (1) The purchasing
cost of raw materials before the beginning of the
period (consisting of raw materials used for the initial
production (1 + �)QS and the initial inventory of
raw materials QR); (2) The cost of production of the
initial number of the �nished products and the cost of
production during the period; and (3) The cost of the
amount D �QS � QR

(1+�) of lost demand.

U3 = r
�
QS +

QR
(1 + �)

�
+ lw(�QS) + lw(�QR)

�
�Xn

i=1
CiQR+ (C 0 +

Xn

i=1
Ci)(1 + �)QS

+C 0QR+
�
D �QS � QR

(1 + �)

�
�
�
: (6)

2.4. The mathematical model
The pro�t and the service level are dependent on the
value of the random variable demand. In order to
model the problem, the expected value of this function
should be considered.

The expected service level (SL) is as follows:

SL =
Z 1

0
SL(QR;QS;D)fD(d)d(D); (7)

SL =
Z QS

0
SL1fD(d)d(D)+

Z QS+ QR
�(1+�)

QS

SL2fD(d)d(D) +
Z 1
QS+ QR

�(1+�)

SL3fD(d)d(D):
(8)

The expected pro�t (U) is:
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U =
Z 1

0
U(QR;QS;D)fD(d)d(D); (9)

U =
Z QS

0
U1fD(d)d(D)+

Z QS+ QR
�(1+�)

QS
U2fD(d)d(D)

+
Z 1
QS+ QR

�(1+�)

U3fD(d)d(D): (10)

We assume that the demand is a continuous random
variable with a uniform distribution function at the
interval [dmin; dmax], where dmin and dmax are nonzero
and positive real numbers.

The objective function with this assumption
changes as follows:

SL=
Z QS

dmin

SL1

�
1

(dmax�dmin)

�
d(D) +

Z QS+ QR
�(1+�)

QS

SL2

�
1

(dmax � dmin)

�
d(D) +

Z dmax

QS+ QR
�(1+�)

SL3

�
1

(dmax � dmin)

�
d(D): (11)

After substituting SL1, SL2, and SL3 in Eq. (11) for
SL and through integration, the expected service level
or the �rst objective function is simpli�ed as follows:

SL=
�

100
(dmax�dmin)

��
QS�dmin+

QR
(1 + �)

�
�
�QS +

QR
(1 + �)

�
ln
�
QS +

QR
(1+ j!�)

�
�(1� �)QSln(QS) +

�
QS +

QR
(1 + �)

�
ln(dmax)

�
: (12)

In a similar way, the expected pro�t (U) after consid-
ering the demand distribution changes as follows:

U =
Z QS

dmin

U1

�
1

(dmax � dmin)

�
d(D)+

Z QS+ QR
�(1+�)

QS

U2

�
1

(dmax � dmin)

�
d(D) +

Z dmax

QS+ QR
�(1+�)

U3

�
1

(dmax � dmin)

�
d(D): (13)

With the assumption of these objective functions, the
mathematical model of the problem is as follows:

Max SL; (14)

Max U; (15)

s.t.:Xn

i=1
Ci+

�
C 0 +

Xn

i=1
Ci
�

(1+�)QS � B; (16)Xn

i=1
V RiQR+ V SQS � I; (17)

QR;QS � dmax; (18)

QS � dmin; (19)

QR � 0: (20)

Eq. (16) refers to the budget constraint before the
beginning of the period. The total budget used for
purchasing raw materials and producing the initial
inventory of the �nished product is limited. Eq. (17)
is the storage space constraint. The space assigned to
the initial inventory of raw materials and the �nished
product is limited.

3. Solution approach

In the previous section, the problem and its mathe-
matical model are discussed. Since our problem has
two objective functions, by ignoring each of the objec-
tive functions, two single-objective function problems
can be obtained: Presenting the way of solving the
problem in the case of the single-objective function
and discussing the way of solving the problem with the
integrated objective functions are as follow.

In the �rst step for solving two single-objective
problems, we have two nonlinear objective functions
that should be maximized in a feasible region created
by some constraints. Upon reviewing the feasible
region of these problems, we obtain that the variable
QS takes limited positive and nonzero values, and the
variable QR takes limited positive values. Therefore,
in the �rst problem, the function SL that is de�ned
in Eq. (12) is continuous and has the �rst partial
derivatives in this feasible region. In the second
problem, the objective function (U) that is expressed in
Eq. (13) consists of variables U1, U2, and U3. Variables
U1, U2, and U3 de�ned in Eqs. (2), (4), and (6) are
polynomial functions of variables QS, QR, and D. In
this respect, the expected pro�t (U) in Eq. (13) is
a polynomial function. Consequently, the objective
function in the second problem is also continuous
and has �rst partial derivatives in the feasible region.
In this respect, in both of the problems, objective
functions are continuous and have the �rst partial
derivatives.

In order to solve these two nonlinear problems,
the SUMT technique that is known as one of the
best methods for constrained nonlinear problems is
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employed. This method uses some penalty functions for
transforming the constrained nonlinear problem into
a sequence of unconstrained problems [29]. In this
technique, instead of each constraint, a term is added to
the objective function as a function of that constraint.
In doing so, the constrained nonlinear problem is trans-
formed into a non-constrained nonlinear problem. In
fact, by these changes, the resulting objective function
is penalized whenever these constraints are violated.
The only necessary condition for applying this method
is the continuity of the objective functions and con-
straints [29{31]; this necessary condition �ts well with
our two single-objective problems. The transformed
problems are then solved using a suitable technique for
manipulating the unconstrained nonlinear problem.

Boukari and Fiacco [29] discussed various penalty
functions. In this paper, we used the inverse penalty
function as one of the most popular penalty functions
to transform our constrained model to an uncon-
strained one. This function works as follows:

Original problem:

Min f(x);

Inverted problem:

Min Inv(x; rk) = f(x) + rk
Xm

i=1

1
gi(x)

;

s.t.:

gi(x) � 0; i = 1; 2; :::;m:

In the inverted model, rk > 0 is a real number whose
value decreases sequentially depending on the number
of iterations of using the SUMT technique.

In order to use the SUMT technique, the objective
functions are written in a minimum form and the con-
straints are expressed in nonnegative forms as follows:

Min� SL; (21)

Min� U; (22)

s.t.:

g1(QR;QS) : B �Xn

i=1
Ci�

�
C 0+

Xn

i=1
Ci
�

(1 + �)QS � 0; (23)

g2(QR;QS) : I�Xn

i=1
V RiQR�V SQS � 0; (24)

g3(QR;QS) : dmax �QR � 0; (25)

g4(QR;QS) : dmax �QS � 0; (26)

g5(QR;QS) : QS � dmin � 0; (27)

g6(QR;QS) : QR � 0: (28)

Using the inverse penalty function, we obtain the
following unconstrained problems:

Problem 1:

Min F1 = �SL+ penaltyk
X6

i=1

1
gi(QR;QS)

; (29)

Problem 2:

Min F2 = �U + penaltyk
X6

i=1

1
gi(QR;QS)

: (30)

We suppose that penaltyk > 0 is a real number, which
takes the value one in the �rst iteration (penaltyk =
1; k = 1) and decreases sequentially by being multi-
plied by the value of 0.1 in each iteration.

As already mentioned, SL and U are both contin-
uous and have the �rst partial derivatives in the feasible
region. In addition, all gi(QR;QS); i = 1; 2; :::; 6 are
linear functions. As a result, F1 and F2 have continuous
�rst partial derivatives except in the boundary of the
feasible region. In this respect, the SD technique can
be selected among various methods of unconstrained
nonlinear optimization to solve our two single-objective
problems.

The SD technique is based on the �rst derivatives
and is one of the fundamental techniques for minimiz-
ing a di�erentiable function with multiple variables.
The main idea behind SD is that if f(x) is a function of
x with a nonzero gradient at x, then by moving from x
in the direction �rf(x)

jjrf(x)jj , we will �nd the next point at
which the function is of the highest decreasing value.
This iterative improvement technique is repeated until
no signi�cant improvement in the objective function is
observed [30,32].

To determine the minimum value of the objective
function F (QR;QS) using the SD method, we start
from X as an arbitrary point in the feasible region and
proceed through some sequential iterations using the
following formula:

Xk+1 = Xk � t:gr(Xk); (31)

where parameter k is the number of iterations. Func-
tion gr(Xk) is the gradient of F (QR;QS) at the point
Xk and parameter t is a scalar value determined by
solving the equation d

dtXk+1 = 0 at each iteration.
After that, the next point Xk+1 is calculated using
Eq. (30) and in this way, the improvement of the
objective function is made at each iteration. This
procedure is repeated until the values of the objective
function do not signi�cantly improve between two
sequential iterations.

Up to now, the initial problem is considered as
two various single-objective nonlinear problems. Both
of these problems are optimized separately by mixing
SUMT and SD techniques. In the following, we discuss
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how to consider a new single-objective function instead
of our initial two objective functions. Moreover, this
new problem can again be solved by mixing SUMT
and SD techniques.

In order to optimize our initial problem with
two objective functions, we utilize the Multi-Objective
Optimization (MOO) techniques. Pareto and scalar-
ization are two methods of the MOO techniques.
Pareto method uses a continuously updated algorithm
to determine dominated and non-dominated solutions.
Meanwhile, the scalarization method uses some weights
for objective functions and �nally, converts the MOO
problem into a single-objective optimization problem
[33]. This study employs the global criterion method,
which is one of the most common scalarization meth-
ods. The global criterion is a scalar function ob-
tained by a mathematical combination of initial multi-
objective functions [34]. This scalar function is used
to minimize the distance between multiple reference
points (ideal solutions) and viable destination areas
[33].

By utilizing the global criterion method with the
following illustration, we actually work with a single-
objective optimization problem instead of our initial
MOO:

Multi-objective form:

Max fjj(x); jj = 1; :::; k:

The equivalent single-objective form:

Min lp =
�Xk

jj=1
wjj(

(fjj(x�)� fjj(x))
fjj(x�)

)p
� 1
p

;

where fjj(x�) represents the maximum value of the
function fjj(x�) and wjj is a non-negative weight
that points to the importance of the corresponding
objective function. The value p is a distance metric.
Then, each of the terms of the objective functions is
divided by fjj(x�), resulting in the removal of the e�ect
of di�erent measurement scales from the objective
functions [34,35].

Eq. (32) illustrates the result of using the global
criterion method for integrating our objective func-
tions:

Min lp =
�
w1

�
(f1(xmax

1 )� f1(x))
f1(xmax

1 )

�p
+w2

�
(f2 (xmax

2 )� f2(x))
f2(xmax

2 )

�p� 1
p

; (32)

where f1(x) is the �rst objective function (i.e., the
expected service level SL in Eq. (12)), and f1(xmax

1 ) is
the maximum amount of SL determined by assuming
that it is the only objective function of the study. In a
similar way, f2(x) corresponds to the expected total
pro�t, U , in Eq. (13), and f2(xmax

2 ) represents the
maximum amount of U by assuming that it is the
only objective function. The multipliers w1 and w2
are scalar values that point to the importance of each
objective function. Parameter p denotes the metric.
We consider the Manhattan metric (p = 1). In Eq.
(13), SL is the expected service level and takes its value
at the interval (0,100), but U is a monetary value (i.e.,
the earned pro�t). The divisions in Eq. (31) are meant
to eliminate the e�ect of these two di�erent scales.

In our initial model, the objective function min lp
replaces the two objective functions SL; U , and the
constraints are gi(QR;QS) i = 1; 2; :::; 6, which are
formulated in Eqs. (23) to (27). Again, because
the necessary conditions of the SUMT and SD tech-
niques remained unchanged in this new problem, these
techniques are applied for solving the new problem.
The next section illustrates a sample problem and its
solution results follow this approach.

4. Computational results

4.1. The sample problem
The sample problem considered in this section has
the following descriptions: A limited budget, B =
15; 000; 000 units of money, is available before the
beginning of the period, and the total available storage
space is I = 100; 000 units. The �nished product is
made of four di�erent raw materials whose speci�ca-
tions are given in Table 2. The demand value D during

Table 2. Speci�cations of raw materials.

Raw
materials

Purchasing price
per unit

Selling price
per unit after

the period

Holding cost
per unit

Volume per
unit

I Ci Li hi V Ri
1 500 450 125 21
2 420 400 210 26
3 810 800 170 23
4 750 700 195 24
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Table 3. Speci�cations of the �nished product.
The selling price per unit during the period R 90,000
The selling price per unit of wastages Lw 10,000
The cost of production per unit C0 40,000
The volume per unit V S 200
The cost of holding per unit H 20,000
The selling price per unit after the period L0 50,000
The cost of lost demand per unit � 60,000

the period is a random variable at the interval (300,
1000) (or dmin = 300, dmax = 1000) with a continuous
uniform distribution.

The production of each unit of the �nished prod-
uct consumes 40,000 units of money, that is, one unit
from each of the four raw materials. The production
process has a wastage of 5% (� = 0:05), and 40% of
the customers can wait for their demand to be ful�lled
(� = 0:4). An overview of the �nished products is
presented in Table 3.

This sample problem is solved using the approach
presented in the last section and proper coding in
MATLAB (2013) on a laptop equipped with Intel Core
i7-processor and 8 GB of RAM under Windows 8.1
operating system.

The details of the solution method and its result
are presented as follows: The point (QS = 200, QR =
200) is arbitrarily selected as the initial feasible point.

The multiplier penaltyk takes values 1, 0.1, 0.01, etc.
at 10 iterations. These multiplier values for the inverse
penalty function of the constraints are added to the
objective function in the SUMT technique. At each
iteration of the SUMT, the resulting unconstrained
objective function is solved through the SD procedure
at seven iterations.

In the �rst step, each of the objective functions
is considered separately. When SL is assumed to be
the only objective function of the study, the optimal
value of 90.1% is obtained for SL at the optimal
point (QS = 335:77, QR = 329:94). That is, by
setting the levels of inventory of raw material and
�nished products as (QS = 335:77, QR = 329:94),
the best level of satisfying the demands is expected
to be 90.1%. On the other hand, when U is the
only objective function, we get the optimal value of
9,416,684.5 for U at the optimal point (QS = 331:37,
QR = 249:21). In other words, the best value of the
pro�t is expected to be 9,416,684.5 units of money and
for reaching this amount, the levels of inventory should
be set as (QS = 331:37, QR = 249:21). In both of
the problems, it is observed that after a few iterations
of SUMT execution, all the values remain the same.
More details are given in Tables 4 and 5. In fact, after
running one iteration of SUMT, which includes seven
iterations of SD, the last result is almost obtained. In

Table 4. A summary of calculations with the expected service level (SL) as the only objective function.

No. of iterations QS QR SL U
1 200 200 65.47 {2,124,056.6
2 335.7688 329.9381 90.09 8,934,258.4
3 335.7688 329.9381 90.10 8,934,258.4
4 335.7688 329.9381 90.10 8,934,258.4
5 335.7688 329.9381 90.10 8,934,258.4
6 335.7688 329.9381 90.10 8,934,258.4
7 335.7688 329.9381 90.10 8,934,258.4
8 335.7688 329.9381 90.10 8,934,258.4
9 335.7688 329.9381 90.10 8,934,258.4
10 335.7688 329.9381 90.10 8,934,258.4

Table 5. A summary of calculations with the expected pro�t (U) as the only objective function.

No. of iterations QS QR SL U
1 200 200 65.49 {2,124,056.64
2 331.3736 249.2057 84.33 9,416,684.46
3 331.3736 249.2057 84.33 9,416,684.46
4 331.3736 249.2057 84.33 9,416,684.47
5 331.3736 249.2057 84.33 9,416,684.47
6 331.3736 249.2057 84.33 9,416,684.47
7 331.3736 249.2057 84.33 9,416,684.47
8 331.3736 249.2057 84.33 9,416,684.47
9 331.3736 249.2057 84.33 9,416,684.47
10 331.3736 249.2057 84.33 9,416,684.47



284 M. Yazdi and S.H.R. Pasandideh/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 275{289

Table 6. A summary of calculations with the aggregated objective (LP) as the only objective function when starting at
the arbitrary point (QS = 200; QR = 200).

No. of iterations QS QR LP SL U

1 200.00 200.00 1,061,908.37 65.49 {2,124,056.62

2 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

3 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

4 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

5 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

6 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

7 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

8 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

9 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

10 305.97 241.96 {3,843,317.18 81.59 7,686,378.33

Figure 1. Convergence plot of the service level SL by
running the Steepest Descent (SD) (each Sequential
Unconstrained Minimization Technique (SUMT) iteration
equivalent to seven iterations of SD).

Figures 1 and 2, convergence to the optimum point
based on iterations of SD is illustrated. As mentioned
earlier, each iteration of SUMT technique includes
seven iterations of SD technique. As can be observed,
upon running the initial iterations of SD technique
in the �rst iteration of SUMT, the plot reaches its
equilibrium state.

The global criterion method is employed based
on Eq. (31) to aggregate the objective functions.
The resulting objective function with the same set
of constraints is optimized via the SUMT and SD
techniques starting at the arbitrary point (QS = 200,
QR = 200). We assume the same weights w1 = 0:5
and w2 = 0:5, suggesting the equal importance of the
objective functions. In addition, the parameter p = 1
is considered for Manhattan distance. The optimal
point (QS = 305:97, QR = 241:96) is obtained, and
it is expected that about 81.6% of demand will be
ful�lled and about 7,686,381.9 units of monetary pro�t
be earned at this point. A summary of the results is
given in Table 6. Here again, we can observe that after

Figure 2. Convergence plot of the expected pro�t U by
running the Steepest Descent (SD) (each Sequential
Unconstrained Minimization Technique (SUMT) iteration
equivalent to seven iterations of SD).

running one iteration of the SUMT, the last result is
obtained. In Figure 3, convergence to the optimum
point based on iterations of the SD is illustrated. As
can be seen, just after running the initial iterations of
the SD technique in the �rst iteration of SUMT, the
plot reaches its equilibrium state.

The aggregate objective function Lp described in
the previous section with the same parameter values
is again solved using a di�erent starting point (QS =
335:77, QR = 329:94), which is the optimal point of
the problem when SL (the expected service level) is
assumed as the only objective function. The results
are summarized in Table 7. As seen, the value of
the optimal objective function does not point to any
signi�cant improvement through the 10 iterations.

Again, the aggregate objective function LP
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Table 7. A summary of calculations with the aggregated objective (LP) as the only objective function when starting at
the point (QS = 335:77; QR = 329:94) (obtained from Table 4).

No. of iterations QS QR LP SL U
1 335.77 329.94 {4,467,267.40 90.10 8,934,270.27
2 335.77 329.94 {4,467,267.41 90.10 8,934,270.27
3 335.77 329.94 {4,467,267.41 90.10 8,934,270.27
4 335.77 329.94 {4,467,267.41 90.10 8,934,270.27
5 335.77 329.94 {4,467,267.41 90.10 8,934,270.27
6 335.77 329.94 {4,467,267.41 90.10 8,934,270.27
7 335.77 329.94 {4,467,267.41 90.10 8,934,270.27
8 335.77 329.94 {4,467,267.41 90.10 8,934,270.27
9 335.77 329.94 {4,467,267.41 90.10 8,934,270.27

10 335.77 329.94 {4,467,267.41 90.10 8,934,270.27

Table 8. A summary of calculations with the aggregated objective (LP) as the only objective function when starting at
the point (QS = 331:37; QR = 249:21) (obtained from Table 4).

No. of iterations QS QR LP SL U
1 331.37 249.21 {4,708,369.60 84.33 9,416,480.47
2 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
3 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
4 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
5 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
6 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
7 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
8 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
9 331.37 249.21 {4,708,369.61 84.33 9,416,480.47
10 331.37 249.21 {4,708,369.61 84.33 9,416,480.47

Figure 3. Convergence plot of the aggregated objective
Lp by iterations of the Steepest Descent (SD) (each
Sequential Unconstrained Minimization Technique
(SUMT) iteration equivalent to seven iterations of SD).

is solved one more time using the same parameter
values, but starting at a new point (QS = 331:37,
QR = 249:21) obtained as the optimal point
when U (the expected pro�t) is assumed the only
objective function. According to Table 8, the value

of the optimal objective function does not improve
signi�cantly throughout the 10 iterations.

Comparison of the results of the last three tables
(Tables 6{8) illustrates that the two previous ones give
better results. Alternatively, the better results come
from starting with the optimal points of the problems
with the single objective than from starting with our
initial arbitrary feasible point. To evaluate the starting
points of single-objective problems by comparing the
values of Lp, it can be concluded that Table 8 is the
best because of the smaller Lp. In other words, in
the case of this problem, the optimal objectives obtain
the expected pro�t, i.e., 9,416,480.47 units of money,
and the expected completion of 84.33% of demands. In
order to reach these results, it is necessary to set the
inventory levels of �nished product and raw materials
as (QS = 331:37, QR = 249:21) before the start of the
selling period.

4.2. Veri�cation, validation, and sensitivity
analysis

In order to ensure the quality of the implemented
method, some tests are done to check if the method
runs properly. Veri�cation of the method or assurance
about building the right model is controlled by debug-
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ging and tracing the program code of the mathematical
model. Validation of the method or assurance about
building the right model is controlled by examining the
results of about 50 sample tests. In each of these tests,
we select a starting point arbitrarily and calculate the
value of the objective function. Then, after running
the method with this starting point, we again calculate
the value of the objective function at the �nal point. A
comparison between the values of the objective func-
tion points to its improvement upon running the code
of the method. The validity of the results of these tests
is also managed manually, which is in agreement with
the results obtained through the computer code. Of
note, similar to all other exact nonlinear programming
methods, the �nal point is completely related to the
selection of the starting point and by varying the start
point, the �nal point is changed.

The sensitivity analysis of the solution approach
based on parameters w1; w2, and penaltyk is examined.
In all these tests, it is supposed that each iteration of
the SUMT calls seven times the SD and in all the tests,
it starts at point (QS = 200, QR = 200).

In the �rst step, we only change the parameters
w1, w2 or weights of two objective components. In
this test, similar to the previous part, the SUMT
function runs 10 times (k = 1; 2; :::; 10) or the value
of penaltyk = 1; k = 1 multiplies by 0.1 in iterations
of running SUMT function. Table 9, Figures 4 and
5 illustrate the variation of objective components by
changing the weights. These �gures show that the
changes in the objective components are very small.

In the second step, we set three di�erent settings
for parameter penaltyk:

� SUMT function runs 5 times (k = 1; 2; :::; 5) or the
value of penaltyk = 1; k = 1 multiplies by 0.2 in
each iteration of function SUMT;

� SUMT function runs 10 times (k = 1; 2; :::; 10) or
the value of penaltyk = 1; k = 1 multiplies by 0.1 in
each iteration of function SUMT;

� SUMT function runs 20 times (k = 1; 2; :::20) or the
value of penaltyk = 1; k = 1 multiplies by 0.05 in
each iteration of function SUMT.

Then, these settings are considered to solve the
problem with only one objective function and again,

Figure 4. Changes of the expected pro�t U by varying
the weight w1.

Figure 5. Changes of the service level SL by varying the
weight w2.

the problem with two objective functions and weights
w1 = 0:5; and w2 = 0:5.

Tables 10{12 and Figures 6{8 show the results of
these tests when SUMT functions run 5 times. As can
be seen in these tables and �gures, in all of them in the
�rst iteration of function SUMT and in the second or
third iteration on function SD, the proposed approach
reaches the �nal solution. In other iterations, this
solution cannot be enhanced. The same result with
the same �nal solution is obtained upon repeating the
test by setting the run number of SUMT function to
10 and 20 (changing the settings of penaltyk). The
results show that after the �rst iteration of the SUMT,
the method almost reaches its optimum point and it is
not sensitive to penaltyk.

Table 9. Sensitivity analysis of the solution approach by varying the weights.

w1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
w2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
QS 305.97 305.97 305.97 305.97 305.97 305.97 305.97 305.97 305.97
QR 241.96 241.96 241.96 241.96 241.96 241.96 241.96 241.96 241.96
SL 81.59 81.59 81.59 81.59 81.59 81.59 81.59 81.59 81.59
U 7686353.67 7686370.69 7686376.36 7686376.36 7686375.17 7686382.03 7686382.03 7686382.03 7686382.03
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Table 10. Changes of the optimum point of the aggregated objective (LP) in various iterations of Steepest Descent (SD)
when Sequential Unconstrained Minimization Technique (SUMT) runs 5 times (penaltyk times (penaltyk Technique (UMT
runs 5 times (penaltyk takes 1, 0.2, 0.04,...).
NO. SUMT 1 2 3 4 5

NO. SD 1 2 3 4 5 6 7 8{14 15{21 22{28 29{35

QS 200.00 271.23 305.97 305.97 305.97 305.97 305.97 305.97 305.97 305.97 305.97
QR 200.00 232.57 241.96 241.96 241.96 241.96 241.96 241.96 241.96 241.96 241.96
LP {1061908 {2507436 {3843317 {3843317 {3843317 {3843317 {3843317 {3843317 {3843317 {3843317 {3843317

Table 11. Changes of the optimum point of the expected pro�t (U) in various iterations of Steepest Descent (SD) when
Sequential Unconstrained Minimization Technique (SUMT) runs 5 times (penaltyk takes 1, 0.2, 0.04,...).

NO. SUMT 1 2 3 4 5

NO. SD 1 2 3 4 5 6 7 8{14 15{21 22{28 29{35

QS 200.00 284.78 331.37 331.37 331.37 331.37 331.37 331.37 331.37 331.37 331.37
QR 200.00 238.76 249.21 249.21 249.21 249.21 249.21 249.21 249.21 249.21 249.21
U {2124057 6141625 9416684 9416684 9416684 9416684 9416684 9416684 9416 684 9416684 9416684

Table 12. Changes of the optimal point of the expected service level (SL) in various iterations of Steepest Descent (SD)
when Sequential Unconstrained Minimization Technique (SUMT) runs 5 times (penaltyk takes 1, 0.2, 0.04,...).

NO. SUMT 1 2 3 4 5

NO. SD 1 2 3 4 5 6 7 8{14 15{21 22{28 29{35

QS 200.00 279.73 309.62 335.77 335.77 335.77 335.77 335.77 335.77 335.77 335.77
QR 200.00 276.28 304.90 329.94 329.94 329.94 329.94 329.94 329.94 329.94 329.94
SL 65.47 82.16 86.74 90.09 90.09 90.09 90.09 90.09 90.09 90.09 90.09

Figure 6. Changes of the expected pro�t U in various
iterations of Steepest Descent (SD) when Sequential
Unconstrained Minimization Technique (SUMT) runs 5
times.

5. Conclusion and future works

In this paper, a two-echelon newsvendor model (NVM)
with two objective functions, i.e., service level and
total pro�t, was modeled. The study constraints were
budget and storage space. The main problem was the
nonlinear problem with two objective functions and
some constraints. In the �rst step, two single-objective
problems were determined regardless of each initial

Figure 7. Changes of the service level SL in various
iterations of Steepest Descent (SD) when Sequential
Unconstrained Minimization Technique (SUMT) runs 5
times.

object function. Both of the problems had the nec-
essary requirements for being resolved using Sequen-
tial Unconstrained Minimization Technique (SUMT)
method. SUMT method transforms a constrained
nonlinear problem to a series of unconstraint problems.
These unconstrained nonlinear problems can be solved
with Steepest Descent (SD) technique. In this way, the
optimum points in each of these two single-objective
problems were obtained. In order to solve the initial
problem, the global criterion method that belonged
to the scalarization method of Multi-Objective Opti-
mization (MOO) methods was employed. Scalarization
methods di�ered from Pareto methods. These methods
assign weights to each objective function and, �nally,
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Figure 8. Changes of the aggregated objective LP in
various iterations of Steepest Descent (SD) when
Sequential Unconstrained Minimization Technique
(SUMT) runs 5 times.

give one scalar objective function instead of the initial
multi-objective functions. Global criterion method
takes the optimum points of the two single-objective
problems and two weights for each objective function
and, �nally, gives a single-objective function. This
�nal problem was solved like the two earlier ones using
a mixture of SUMT and SD methods. A numerical
example was solved using a computer code developed
on the MATLAB software.

Our main contribution in this paper is the applica-
tion of the mixture of SUMT and SD techniques from
exact methods in nonlinear programming for solving
an NVM. This method is rarely used for solving the
NVMs in the literature. Considering both goals of
producer and consumer in the objective function is
another contribution. In this problem, it is supposed
that the values could take any real number and working
on the integer version of this problem is proposed as
future work. Moreover, we suppose that the demand
has a prede�ned distribution which is a reasonable
assumption for general products, whereas there is not
any information on the demand for new products.
As another future work, we suggest considering this
problem when the demand is distribution free.
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