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Research Note

Finite Simple Field Extensions

M. Arian-Nejad!

{n this paper, a new approach to finite simple field extensions based on a generalization of a
theorem of Kaplansky, is introduced. Furthermore, a simple method for enumeration of primitive
elements in the case of a finite extension of a finite field is obtained.

INTRODUCTION

Let E be a field with a subfield F. An extension
E/F is called simple if there exists an element a €
E (primitive element), such that E = F(a). This
paper is focused on finite dimensional simple extensions
and contains two sections. In the first section, by
generalizing Kaplansky’s method [1], a new approach
to finite simple extensions (Theorem 2) is given. In the
second section, the formula for the number of primitive
elements is obtained using a simple method, compared
with [2,3]. Before stating the obtained results, the
following two theorems are recalled.

Theorem A (Steinitz)

A finite extension E/F is simple if, and only if, the
number of intermediate fields between E and F is finite
[4]. :

Theorem B

Any finite dimensional extension of Q@ contains only a
finite number of roots of unity [4].

Let E be a field with a subset L. E is radical over
L, if for each element a € E, there exists a natural-
number n(a) such that a™® € L. FE is said to be
purely inseparable over L, if for each element ¢ € E
there exists a non-negative integer 7 such that a? € L,
where p = char E.

A NEW VIEWPOINT

A theorem of Kaplansky [5] states that if a field E is
radical over any of its proper subfields such as F, then
char E = p # 0. However, sometimes conditions in
which a finite union of proper subfields should be dealth
with, are encountered rather than a proper subfield.

1. Department of Mathematical Sciences, Sharif University
of Technology, Tehran, I.R. Iran

Therefore, a generalization of Kaplanskey’s Theorem
is needed such as the following (see also [6]).

Lemma

Let E be a field and let K; C E(i = 1,...,m) be some
proper subfields of E such that UK; # E. If E is radical
over L = UK}, then char E =p # 0.

Proof

Let char E = 0. For an arbitrary element a in £\ L,
consider the infinite set G = {a,a+ 1,6+ 2,---}. By
the pigeonhole principle, there exists an infinite subset
H = {a+r1,a+7r3,-- - } of G which is radical over one of
the intermediate subfields, say K;, for some 1 <t < m.
Let K be a finite normal extension of K; containing a.
Since a ¢ K, there exists an automorphism ¢ of K over
K, such that b = ¢(a) # a. Foreachi=1,2,---, there
exists a fixed integer n; > 0 such that (a + r;)™ € K;.
Then,

(b+71)™ = (pla) + )™
=¢((a+r)™)=(a+r)™,

implies that b+ r; = w;(a + ;), where w; # 1 is n;-th
root of unity in K. It is clearly seen that if s # 7, then
w; # w; and by eliminating b, the following equation is
obtained:

(w.,; —-w]-)az (LUj - 1)7‘j - (w.,; - 1)7‘.,; .

Since w; and w; are roots of unity, a and hence its
conjugate b, are algebraic over the prime field P, thus
[P(a,b) : P] < co. All the w;'s(i € N) are found in the
field P(a,b), which by Theorem B should contain only
a finite number of roots of unity. Thus char P # 0,
otherwise infinite mutually different roots of unity in
P(a,b) corresponding to the elements of the infinite
set H must exist.O

The following theorem is a revised version of
a result in [6] concerning some properties of finite
separable extensions.
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Theorem 1

For any finite separable field extension E/F, one, and
only one, of the following is true:

i. There exists a primitive element a such that £ =
F(at) forallt € N.

ii. Every element of E* = E — {0} is torsion.

Proof

Any finite separable extension is simple so, by Theorem
A, there exists a finite number of fields K; C E (i =
1,2,...,m),such that F C K; C E. Let L =|J K; and
note that every element of E\L # ¢ is primitive.

There are two possibilities concerning primitive
elements. Either there exits a primitive element a such
that a® € E\L for all ¢t € N, which yields case (i) of
the theorem, or, all primitive elements are radical over
L. The latter case means that E is radical over L,
hence, by the above Lemma, char £ = p # 0. Given
a primitive element a, note that if p; and p, are two
different primes then a* + 1 and a”? + 1 cannot be in
the same subfield K. So, there must be infinitely many
primes p; # p with a?* +1 primitive. By the pigeonhole
principle there exist natural ¢ and j such that (a? +
1™ € K; and (aPi +1)™ € K, for some fixed . Let K
be a finite normal extension of K, containing a. Since
a ¢ K, there exists an automorphism ¢ of K over K|
such that b = ¢(a) # a. Then, the equation b? +1 =
w(aP + 1) together with bP7 + 1 = w’'(a®’ + 1) implies
that:

(waP + (w—1))P7 — (W'aP? + (W' — 1)) =0,

where w and w' are the n;-th and the n;-th roots of
unity, respectively.

Let f(a) be the left hand side of the above
equation, which is a polynomial in a with coefficients
in P(w,w') and P is the prime subfield. First suppose
that all coefficients of f(a) are zero. By the choice
of p;»s, the coefficient of aP(Pi=1) is pwPi~(w — 1),
which must be zero. Since p; # p then, w = 1 is
obtained. Similarly, from the coefficient of a?s(P:=1)
it is concluded that ' = 1. Thus, a?* = b” and
aP’ = bPi | hence a = b, which is a contradiction. So let
some coefficients of f(a) be nonzero, then ¢ will become
algebraic over P(w,w’) and hence algebraic over P.
Now, let 7 € F, then a +r € E\L, hence a + r and
7 = (a+7)—a are also algebraic over P. In other words,
all of the elements of F are algebraic over P. Hence
any element of F is algebraic over P, consequently the
elements of E* are all torsion.O

The following approach to finite simple extensions
can now, be given.

Theorem 2

For any finite simple extension F/F one of the follow-
ing is true:
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i. F is separable over F' and there exists a primitive
element a such that E = F(at), for all ¢t € N.

ii. Every element of E* is torsion.

iii. char F' = p # 0 and there exists a primitive element
a such that E = F(a™) for all m € N such that

(map) =1

Note that only cases (ii) and (iil) can occur simultane-
ously.

Proof

Let S = S(E/F) be the separable closure of F in E.
If S = E, then F is separable over F, and by Theorem
1, only cases (i) and (ii) can occur. So suppose S #
E. Let K;(z = 1,2,3,...,7) be all of the intermediate
subfields of E over F'. E is purely inseparable and
hence radical over L = UK;. Let L' be the union of
all of the intermediate subfields over E which is purely
inseparable, in other words L' = |J K.
SCK;

Now, two separate cases could be realized, either
all of the primitive elements are radical over L \
L', or there exists a primitive element which is not
radical over L\ L’. In the former case, any primitive
element radical over some intermediate field which is
not contained in L’ has at least a different conjugate
in some finite normal extension of that field, hence the
same argument as in Theorem 1 leads to the case (ii) of
the theorem. For the latter case, consider the primitive
element o which is not radical over L \ L’. Clearly, a
is purely inseparable over L’. If the element a™ is not
primitive for some m € N, such that (m,p) = 1, it
must be in some subfield such as K; in L'(1 < < 7);
therefore, a € K;, which is a contradiction. Hence case
(iil) of the theorem is obtained. O

THE NUMBER OF PRIMITIVE
ELEMENTS

Let F be a finite field with ¢ elements and let E be
a finite extension of F with the degree of n. Let
n = p7" ...p% be the prime decomposition of n. As it
is known, the elements of E are characterized by the
roots of the separable polynomial f(z) = z¢" —z. Also
for any divisor d of n, E has a unique subextension
K, with the dimension d over F' and conversely, every
subextension K of E over F has dimension d for some
divisor d of n. This means that every maximal subfield
of E is of dimension n;=2 (for some 1 <4 < r) and is
uniquely determined by its dimension. Let K; be the
maximal subfield corresponding to dimension n,;. The
nonempty set .S = E\UK; forms the set of all primitive
elements of E over F. The cardinality of S is computed
by “the principle of inclusion and exclusion”. Since for
t# j, | KiK; |= g™, where ni,jzpin]_, and for
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) ;é] 75 k,l KiﬂKj NKy I= q"i-k, where i 5k
,..., it may be concluded that:

IS =q" =3 g™

+ Z qn.-,j NI (_1)7‘qn1,2 ..... T
1,

— n
PiP; Pk

If the “Mobius” function is denoted by g, then
the above equation can be written in the following “well
known” notation:

51=3" un/d)g*

d|n

Every irreducible monic polynomial of degree n
corresponds to n distinct elements of S. Hence N,,, the
number of irreducible monic polynomials of degree n
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[4], is equal to LiJ , in other words:

N,=n"1) " pu(n/d)g*.0
din
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