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Improved Illinois-Type Methods for
the Solution of Nonlinear Equations

J.A. Ford!

An approach for the construction of a class of derivative-free methods for the solution of a
single nonlinear equation in one variable is described and several new methods are obtained. The
prototype for the class is the “lllinois” Method, which itself is a variant of the classical method
of Regula Falsi. These methods deal with the problem of “end-point retention” in Regula Falsi
and the consequent failure to achieve superlinear convergence by modifying one of the function-
values used in the linear interpolation. The resuits of numerical experiments on new and existing
algorithms in the class are reported, indicating that the performance of some of the new methods
obtained here is very promising. The local convergence of these methods is analyzed and the
asymptotic orders of convergence and patterns of behavior are determined and compared with

those of existing methods.

INTRODUCTION

This paper will be concerned with a class of methods,
which are called Ulinois-type methods, for the solution
of the single nonlinear equation:

flz)=0, (1)

with a single real variable z. The need to solve
such equations arises frequently in many areas of
numerical computation. A typical situation occurs
when a nonlinear equation must be solved as a sub-
problem within an iterative method (say, to determine
a parameter required later in the iteration; see, for
example, [1]), when the need for efficiency and speed is
evident. The name for this class of methods is derived
from the first such method, described by Dowell and
Jarratt [2]. Each member of the class may be viewed as
a modification of the classical Regula Falsi method and,
as such, is derivative-free and guaranteed to converge
to a solution, on condition that f is continuous and
given a bracket [a,b] for which f(a).f(b) < 0. Other
known members of the class are the Pegasus method
[3] and the method of Anderson and Bjorck [4]. The
construction of several other members of the class and
analyses of their asymptotic behavior will be described.
The results of numerical tests will also be presernited and
these will demonstrate the superiority, from a practical
point of view, of some of the new methods over the
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known methods. It is noted that all of these methods
are easily programmed and that existing code for any
of the known methods may readily be modified in order
to implement the new methods. .

It will be assumed that the root z* of interest in
Equation 1 is simple. Given two estimates (r and s,
say) of z* such that z* lies within the bracket [r, s] and
F(r).f(s) < 0, Regula Falsi computes a new estimate,
t, by means of linear interpolation:

=5 — f(s)/fls,7] (2)
= {sf(r) = rf(s)}/{f(r) = f(s)}, (3)

where f[s,7] denotes the standard divided difference:
fls,rl={f(s) = F(r)}/{s —r}.

The next iteration is then carried out with a bracket
constituted by ¢ and either s (if f(s).f(¢) < 0) or 7.
In this way, the root always lies within the current
bracket and convergence is guaranteed. However, it
is well-known that, for many functions, this process
results ultimately in one end-point being permanently
retained and, thus, only linear convergence. Illinois-
type methods eliminate this “end-point retention” in
the following way.

Given two estimates z;_; and z; of z* with
fi—1fi < 0, where:

5 ) i, - (4)

apply Equation 2 with r = z;,_; and s = z;, and call
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Table 1. Known methods corresponding to differing
choices of v.

Method Value of v
Illinois 0.5
Pegasus fi/(fi + fix1)
L Anderson & Bjorck | flziy1, i)/ flzi, zi-1]

the result z;41. If fi11f: <0, then r := 2, 5 := 2441,
and apply Equation 2 again. If f;11 f; = 0, then x4
is the desired root. Otherwise, fiy1f; > 0,80 5 := 2,41
and the modified formula:

t = {slyf(r)] = rf(s)}/{[vf ()] = f(s)}, (5)

is applied instead of Equation 2, where r retains the
value z;—;. In other words, when [z;,z;1+1] does not
contain z*, the value f;—; is scaled by the factor .

As shown in Table 1, the various known methods
of this type correspond to differing choices of the
parameter 7.

A step utilizing Formula 3 is known as an un-
modified step and is denoted by the letter U, whereas
a step employing Formula 5 is said to be modified and
will be denoted here by I, P or A, according to the
method that is in use. It is possible for the expression
for « in Anderson and Bjorck’s method to yield a non-
negative value, in which case v = 0.5 is used and the
step is denoted by M. In this method, however, v ~ 1
asymptotically, so that M-steps are only to be expected
far from the root, if at all.

Before listing properties of these methods, some
standard notation is introduced. Let:

er = fENE) /R, k=1,2,...,

B=cy/a1, K=p~csfer.

(Note that the condition ¢; # 0 may be inferred, from
the assumption that z* is simple.) Furthermore, the
errors €; are defined by:

—_ *
E; =T, — T,

recalling that (e.g., [2]), for an unmodified step, the
successive errors are related by (ignoring the higher-
order terms):

€iy1 ~ Peigi_1. (6)

Table 2. Results concerning asymptotic behavior
patterns.

Asymptotic| Order Effici

Method Step over crency

Index
Pattern |Pattern

Illinois 10U 3 1.44225
Pegasus PPUU 7.27492 1.64232
A& B (K >0) AUU 5 1.70998
A& B (K <0) AAUU 8 1.68179
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The following results (Table 2) concerning asymp-
totic behavior patterns and speed of convergence are
known (see [2-4]) for the Ilinois-type methods de-
scribed above. The “Order over Pattern” column is
obtained by relating the errors at the beginning and
end of a complete pattern of steps; the efficiency index
is that defined by Traub [5].

NEW METHODS

In order to develop new methods of “Illinois” type, it
is instructive to examine a typical instance in which
a modified step is required. Therefore the situation
illustrated in Figure 1 is considered, where the lin-
ear interpolation between the points (z;-1, f;—1) and
(zi, f;) has yielded an iterate z;;; on the same side
of z* as xz;, necessitating a modified step. The ideal
choice of v would then cause the chord joining the
points (z;—1,vfi—1) and (Zit+1, fi+1) to pass through
the desired point (z*,0). Examination of the slope of
this chord yields:

7= {firr/(@ir1 =N { (@1 = 27)/ fimn} . (7)

Evidently, this expression for v is not computable but,
by approximating the constituents of the expression
with other, known, quantities, it is possible to obtain
new (and, in some cases, better) methods. Recalling
that z* is a zero of f, Equation 7 can be written in the
following form:

Y = flzir1, 27/ flzio1, 27]. (8)

Thus, it is apparent that the ideal value for ~ is
the ratio of the slopes of the chords joining, respec-
tively, (@;_1, fi—1) with (z*, f(z*)) and (Zi41, fit1)
with (z*, f(z*)). It is then possible to appreciate why
the method of Anderson and Bjoérck is effective, since
it amounts to approximating z* in Equation 8 with z,.
It should be remarked, however, that Anderson and
Bjorck derived their formula by other means, using a
derivative-free variant of Newton’s Method.

fi—1

vfi—

J z* Tipl T

zi1

i \jfi+ljf'
3

Figure 1. The ideal value of .
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Once it is recognized that the essential problem is
one of obtaining two slopes, it is possible to derive many
new methods by employing and combining various esti-
mates. A valuable tool in this respect is the expression
for the derivative of the quadratic (g, say) interpolating
f at z,-1, z; and x;4;. Traub [5] shows that if
{4,k,1} is some permutation of {¢ — 1,%,7 + 1}, then
the derivative of the interpolating quadratic at z; is
given by the expression { f[x;, zx]+ f[%;, 1] — fzk, T1]}-
Thus, for example, the numerator in Equation 8 can
be estimated through replacement of z* with the most
recent approximation, z;y1, and use of the derivative
of ¢

Flzir1, 2] = fleir1, Tig1)
= f'(®it1) (formally)
~ q'(ziy1)
= flziy1, zi] + flZir1, Tim1]

- f[wiaxi—l] -

Therefore, as shown in Table 3, four new methods have
been defined. In each case, «y is the ratio of the two
stated approximations. As with Anderson and Bjorck’s
method, it is possible for these expressions for v to yield
a non-negative value, in which case v = 0.5 is used. A
fifth method, defined by the expression:

¥ = flzivr, s /{ Fl®iv1, wima]

+ flzs, wic1] — flzip1, z:]},

was discarded after initial numerical tests showed its
performance to be no better than the method of
Anderson and Bjorck and, often, significantly worse.

It is clear that the methods outlined above by no
means exhaust the list of possible choices for v and
for example, suitably-chosen convex combinations of
appropriate terms might well be considered. However,
here consideration is restricted to the methods that
have been numbered 1 to 4.

NUMERICAL TESTS

Before embarking upon an examination of the local
convergence properties of the new methods, the results
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of numerical experiments are presented. Tests have
been carried out on a wide variety of functions: a
representative sample of the results is presented here.
(Results from a more extensive set of experiments are
reported by Ford [6].) Some of the functions used
were drawn from the literature on solving nonlinear
equations: Function 4 is taken from Anderson and
Bjorck [4], Function 2 is studied by Hopgood and
McKee [7], and Function 3 comes from the paper by
Shacham and Kehat [8]. Other test functions were
specifically designed to test the capabilities of the
methods on different types of functions. To reduce
the possibility of freak results, a selection of different
initial brackets was employed for each function. The
tests were carried out in double precision (about 16
decimal places). A tolerance, 7, provided by the user
is converted to a “program tolerance”, ¢, by means of
the relation:

e=7+2"¥max(|al,|b],1),

where [a,b] is the initial bracket. Convergence was
assumed when a function-value less than ¢ in modulus
was obtained or when the length of the current bracket
was less than 0.95¢. In all the experiments, T was 10~14
and a limit of 200 iterations was imposed.

The Test Functions
1. f(z) = sin(0.01/x) — 0.01;
™ = 0.99998333286109.

10
2. f(x)=10"8%x —1) H(:n2 +z +1);
=1
z* =1.0.
3. f(z) = exp(21,000/z)/(1.11 x 101x?) — 1;

x* = 551.77382493033.
4. f(z) =2z exp(—20) + 1 — 2 exp(—20z);
z* = 0.034657358821882.
. flz) = exp(z™ —25) - 1;
z* = 0.04.

[S4)

In the following table of results (Table 4), the
number of iterations required by each method to locate
the root to within the specified tolerance is given. The

Table 3. Four new methods.

Method Approximation Approximation
to flziy1,z*] to fle; _1,x*]
1 Ffleigr, ) + fleigr, 2ic1] — floa, zio1] | Flzict, miga] + flzio1, @] — flwiga, =)
2 Flziza, =i Fflzi-1,zit1]
3 flziga, m] + floiga, mi—1] — flzi, zia] Flzie1, mit1]
4 flziv1, ] + fl@ig1, ®i1] — flzi, zi4] flzimy, x;)




Illinois-Type Methods for Nonlinear Equations

Table 4. Comparison of old and new methods.

31

Function Initial Illinois | Pegasus | Anderson | Method | Method | Method | Method
(root) Bracket & Bjorck 1 2 3 4
1 [0.5, 2] 10 6 5 5 8 7 8
(0.999983) [0.2, 6] 12 10 5 10 9 9 10
[0.004, 200] 21 18 7 13 10 13 15
2 [0.9, 1.1] 8 7 7 8 8 7 7
(1.0) [0.5, 1.5] 15 14 12 20 12 17 17
-5, 10] 70 103 45 65 51 65 59
3 [550, 560] 7 5 5 6 6 5 6
(551.774) | [400, 600] 29 27 18 15 20 12 12
[350, 850] 44 42 200+ 15 200+ 15 19
4 [0, 1] 9 10 11 10 14 9 10
(0.034657) | [-0.1, 1.5] 15 14 43 11 46 12 12
[-0.5, 2] 33 31 200+ 16 200+ 14 13
5 [0.035, 0.05] 14 14 18 9 21 12 10
(0.04) [0.03, 0.09] 27 26 200+ 15 200+ 7 » 13
[0.025, 0.5] 49 46 200+ 19 200+ 17 15

notation “2004” indicates that the method required
more than 200 iterations (in many cases, substantially
more than 200) in order to converge.

DISCUSSION OF NUMERICAL RESULTS

In the discussion of numerical performance, it should
first be emphasized that, for “simple” functions, the
behavior of all the methods may be expected to be
broadly similar, as computational experience indeed
indicates. On functions of greater difficulty, however,
it does appear to be possible to draw some firm
conclusions about relative performance. It is first
observed that the behavior of Method 2 is very similar
to that of Anderson and Bjorck’s method. Only on rare
occasions is there a significant difference in the figures
returned and therefore further discussion of Method 2
will be omitted.

Perhaps the most noticeable feature of the results
is the frequent inability of Anderson and Bjorck’s
method to converge within the limit of 200 iterations,
whereas none of the other methods (except Method 2)
experienced this difficulty. It appears that Anderson
and Bjorck’s method may have this difficulty when
the initial bracket is (relatively) large. Typically,
the method will almost immediately commence the
asymptotic “AUU” pattern of behavior, but makes ex-
tremely slow progress. Notwithstanding this difficulty,
Anderson and Bjorck’s method is noticeably better
than all the other methods, on occasion; Function
1 probably provides the best demonstration of this.
Conversely, there are also functions for which Anderson
and Bjorck’s method is clearly worse. The Illinois and
Pegasus methods are reliable but sometimes compara-
tively slow (for example, Function 3).

With regard to the new methods, it would appear
to be the case that, overall, Method 1 is not quite as
effective as Methods 3 and 4, although it may out-
perform them on occasion. Methods 3 and 4 are rather
more difficult to separate; more extensive testing has
indicated that Method 3 may have a slight overall
advantage. It is, however, certainly fair to conclude
from the results presented here and in [6] that all three
of the new methods have performed better, in general,
than the older methods.

ANALYSIS OF CONVERGENCE

The’local convergence of Methods 1, 3 and 4 will be
examined by studying the application of one or more
modified steps in each case, on the assumption that
the preceding step (i.e., the step producing z.y1) was
unmodified. It then follows that the latest error, €;49,
is related to the previous errors by (compare Equations
2 and 3):

€ive = {Vfic1€ip1 — firrci1}/{vfi-1 — fixr}
_ Eim1&i41 ficr  fin
C vfio1~ fin (751‘—1 5i+1> ' ©

In all three of the new methods, it is easy to show
that v ~ 1 asymptotically. Hence, v will be expressed
in the following form:

y=1+v/n, (10)

where it is assumed (and will be demonstrated in each
case) that:

(11)
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where:

e = max(| €i-1 |,] & |)- (12)

It follows that the bracketed term in Equation 9 may
be expressed in the following form:

¥ = coeimy — €i41) + 3874

+ %(61 + cogi-1) + O(e%), (13)
since:
eir1 = Beimie; + O(e%) = O(e?), (14)

from Relation 6. Relation 14 implies that, asymptoti-
cally,

sgn(ei+1) = —sgn(B) , (15)

and, since a modified step was necessary to produce

Eit2, it is evident that:
sgn(e;) = —sgn(B);  sgn(ei—1) = sgn(B). (16)

Method 1

It is not difficult to show, from the expression for <y in
this method, that:

v =2{co(eit1 — €i-1)
—c3ei—1(e; +€im1) + o };
N =c1 + 2c26;-1
+ c3ei-1(265-1 + &) + O(€3) .
Thus, from Equation 13,
P =—cegin1 + O(€%)

and, substituting in Equation 9, the following relation
is obtained:

Eit2 = —,35,;_157;+1 + 0(54). (17)
From Equations 15 and 16, it is deduced that, in the
neighbourhood of the root,

sgn(eit2) = —sgn(eit1),

so that the next step will be unmodified. Consequently,
if a modified step for this method is denoted by B, the
asymptotic step pattern will be “BUU”. To compute
the order of the method over the complete composite
step BUU, the following relation may be drived:
Eita ~ ,825?4_15.,;__12-

Thus, the order is 2 + v/3 ~ 3.73205 and the efficiency
index is:

(2 + V3)1/3 =~ 1.55113. (18)
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Method 3

Returning to Equation 13, it can be shown that v and
7 for this method are given by:

v= 62(5i+1 - Ei—l)
— caei1 (s + &im1) + O(E°) ;
n=c1+cz(eir1 +ei-1) +c3e?_; + O(%) .
It follows that:
P = —caei_1&; + O(e®).

Thus, from Equation 9, the following relation is ob-
tained:

Ei42 = —(63/61)Ei_15i5i+1 + 0(55). (19)

(It is interesting to note that the same result, to O(g3),
is obtained when the Miiller-Traub method is used; see
[4], for instance.) It is apparent that the properties of
Method 3 will depend on the sign of (c3/cy). If it is
negative, then Equations 15 and 16 imply that:

sgn(eit2) = sgn(B) = —sgn(eit1) ,

and the next step will be unmodified. Denoting a
modified step for this method by E, it is concluded
that the asymptotic step sequence, in the case when
(csf/c1) < 0, will be “EUU” and the order over this
sequence may be derived from the relation:

€ite ~ (ca/c1)’edy;.
Hence, the order is 5 and the efficiency index is:
51/3 ~ 1.70998. (20)

Turning to the case when (c3/c;) > 0, it is clear
that Equation 19 then implies that:

sgn(€ite) = —sgn(B) = sgn(eit1), (21)

so that a further modified step will be required. To
analyze a second such step, some relations will be
required (valid whatever value for -y is used) which have
been derived by Anderson and Bjorck [4]:

fior = firr _
=T = f[xi—1,$i+1]
Ti—1 — Ti41

— Jit1
B (Ei—i—l —€iy2) (22)

vfi-1 = ﬁ'—l
= {(8,;_1 - Ei+2)/(€i+1 - 5i+2)}f‘i+l (23)

= 0fiy1,say. (24)
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The “y - factor” required for scaling ﬁ-_l for the second
modified step will therefore be:

¥ = (f[$i+2,$i+1] + f[$i+2,$i—1]
— fleir, ziaa))/ flwise, zic)

= {fir1 — (L + 07" figa}/{fir1 — 0 fira}.

Thus, the scaled function-value to be used in the new
step is:

ficr = 4fic1 = 0{firr — L+ 071 fiya} fir
[{fir1 — 67 fira}- (25)
This step will yield an error £;,3 defined by:
eirs = (fim1€ipa — firzeia1)/(Fi1 — fira)
= ¢1/¢27 say, (26)
where, using Equation 25,

¢1 = Oeirafiri {firn — (L + 67" ) fisa}
—eicy fipa{fix1 — 07 fiva}s
and:
¢2 = 0fir1{fir1 — (1 +67") fia}
~ fira{firr = 07" fiya}-

Observing, from Equations 23 and 24, that § = O(¢71),
it may then be shown that

¢1 = caeim16dy 1 Eipafiy1/(Eiv1 — Eita)
+ O(e1%)

and:

$2 = 0f1 +O(c%).
Thus, in Equation 26,

it = PBeir1€iv2 + O(ET). (27)
It is deduced, by means of Equation 21, that

sgn(ei43) = sgn(B) = —sgn(ei+2),

so that the next step will be unmodified. Therefore,
it has been shown that, asymptotically, the pattern of
steps in the case when (cz/c;) > 0 will be “EEUU”
with corresponding order 8, derived from the relation:

€its ~ —f(es/c1)’edys-
Finally, the efficiency index is:

8'/4 ~ 1.68179. (28)
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Method 4

Returning to Equation 13 again, it may first be shown,
for Method 4, that:

v =c3(26i41 — €im1 — &)
—c3(e? ) +eimrei +€2) + O(e%) ;
n=oc +czei-1 +€i)
+e3(el ;) +eimiei +€2) + O(3) .
Thus,
Y = —cag; + O(e2),
and, by Equation 9,
eiy2 = —Peigiy1 + O(e?). (29)

Hence, Equations 15 and 16 show that, as the root is
approached,

sgn(ei+2) = —sgn(B) = sgn(eiy1), (30)

so that a further modified step will be necessary. To
analyze the effect of such a step, it is first noted that
Equations 22, 23 and 24 still hold and that, therefore,
the new “y - factor” will be:

4 = (flTite, Tog1] + Flzite, io1]
~ flziv1, 3ica])/ Flmig1, Tic]
={fir1 = L+ 0V fiya}/ Fir1,

which implies that the scaled version of f;_; is given
by:

fict = 0{fir1 — 1+ 671) fiza}, (31)

by virtue of Equation 24. The second modified step
will thus yield an error determined by:

eivs = (fimr€irz — fiyaein1)/ (i1 — fira)
= ¢1/¢2, say,
where, from Equation 31,
¢1 = Beira{fir1 — (L +071) fiya} — €im1 firo
and:
¢2 = 0{fir1 — (L +07") fiya} — fira:

Since § = O(e~!) again, it follows, using Equation 29,
that:

¢1 = caeli1€ipa(Eint + 26:)/(Eag1 — Eiy2)
+O(e");

¢2 = 0fir1 + O(e°),
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and hence that
€ip3 = Beip16s42(1 + 265 i) + O(°).

Therefore, as long as ¢;/¢,—; remains less than 1/2 in
magnitude (in practice, it would be anticipated that
g;/ei—1 — 0), it may be deduced that, asymptotically,

Ei43 ~ QE41E442, (32)

for some constant « with the same sign as 3. From
Equation 30, it is inferred that ;3 and €;42 will have
opposite sign, so that the next step will be unmodified.
The sequence of iterations as the root is approached,
therefore, may be expected to be “FFUU” (where F
denotes a modified step for this method) and the order
may be determined from the relation:

4.7 _—1
Eivo ~ —af e 561 -

The order is thus the dominant zero of the quadratic
p? — 7Tp+ 1, which is 7* ~ 6.85410 (where 7 = (1 +
v/5)/2, the Golden Section), while the efficiency index
is, therefore,

T & 1.61803.

For the sake of completeness, it may be stated
here that Method 2 exhibits the asymptotic pattern
“CUU” (where C denotes a modified step for this
method), has the order 73 ~ 4.23607 over this pattern
and an efficiency index of 7.

Finally, it may be noted that the numerical
experiments reported in the third section and in [6]
confirm the conclusions of this section regarding the
patterns of steps as the root is approached.

SUMMARY AND CONCLUSIONS

A technique has been developed for the construction
of methods of Illinois-type for the solution of single-
variable nonlinear equations. Three of the new meth-
ods thus constructed have been shown, empirically,
to exhibit improved numerical performance and their
asymptotic properties have been determined.

The analysis presented here for the local conver-
gence of the new methods has shown that only Method
3 is competitive with Anderson and Bjorck’s method
insofar as efficiency indices are concerned. In that
practical experience hitherto appears to indicate that
(cs/c1) and K are both more likely to be positive than
negative, it may be reckoned that, locally, Method 3

J.A. Ford

is at a very slight disadvantage when compared with
Anderson and Bjorck’s method. It has already been
observed, however, that, globally, the picture is very
different, with Methods 1, 3 and 4 often out-performing
Anderson and Bjorck’s method by a considerable mar-
gin. The behavior of the new methods demonstrates
clearly that such measures as order and efficiency index
by no means tell the whole story and that other factors
must be taken into account in assessing the relative
merits of methods. Such behavior may also be taken
as a strong indication that attempts to develop better
methods in this class should devote at least as much
attention to the issue of global behavior as to improving
the order of convergence.
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