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On the Convergence of a Time Discretization
Scheme for the Navier-Stokes Equations

F. Tahamtani?

A linearized version of the implicit Euler scheme is considered for the approximation of the
solutions to the Navier-stokes equations in an n-dimensional domain. The rates of convergence

in the H! and L? norms are established.

INTRODUCTION

In this paper, the concern is the discretization in
time of the Navier-Stokes equations in a bounded n-
dimensional domain:

Gu(t,z) — Au(t,z) + Vop(t, z)

+ (u-Vu(t,z) =0, z€Q, t>0, (1)
divu(t,z) =0, z€Q, t>0,
u(t,z) =0, ze€d9Q, t>0,

w(0,2) = up(z), z€N. (2)
Here, u(t,z) = (uw1(t,z),us(t, ), ..., un(t,z)) is the
velocity, p(t, z) is the pressure,  is a bounded domain
in R™ with a smooth boundary 8 and w, is the initial
velocity field.

As in [1-3], Equations 1 and 2 were cast as an
evolution equation in the appropriate Hilbert space:

V={v=(v1,V2.:,0n):
V1,02, ., U € C§°(R), dive =0}.

H is the closure of V in L*2(Q) (the space of R™-
valued functions, each component of which is in L2(£2))
equipped with the inner product:

(u,v) = /Q ;ui(a:)vi(m) dz ,

and the induced norm [|ul| = (u, u)/2.
V is the closure of V in Hy(Q) (the Sobolev
space of R"-valued functions, each component of which
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is in H}(2)) equipped with the inner product:

(u,0)1 :/ Z Ou,; Ov; dz
Q

1
Fyrd] O0z; Ox;

and the induced norm [jul|; = (u,u)}/z.

Similarly, the spaces H*?(2) and the norms || - ||,
are defined in terms of the standard Sobolev spaces.

P : L??(Q) — H denotes the orthogonal projec-
tion and defines the Stokes operator A: D(A) C H —
H, D(A) =V N H?%(Q) by Au = —PAu, u € D(A).

Within this framework, Equations 1 and 2 are

expressed as the evolution equation in H : u(t) €
D(A), t > 0 and:

%u(t) + Au(t) + Bu(t), u(t)) = 0,

t> 0, 2(0)=1ug, (3)

where B(u,v) = P(u- V)v.

The application of a linearized version of the
implicit Euler scheme to Equation 3 determines the
sequence uxn, € D(4), n=0,1,2,..., such that:

—gtuk,n + Auk,n + B(uk,71—17uk,n) =0,
n=1,2,..., Uko=1up, (4)
where k > 0 is the time step and:

Ug,n — Ug,n-1
—
Now the following results will be established:

6tuk,n =

Theorem 1
If ug € D(A) and t = nk:

Ce™ 0t
lek,n — w(®)|1 < tlTk ) (5)

for k < ko, where C, é§ and kg are positive constauts
depending on the data uo and €2 only.



Theorem 2
If ug € D(A) and t = nk:

l[ur,n ~ (@)l < Ce™*k (6)

for k < ko, where C, 6 and kg are positive constants
depending on the data ug and Q only.

Here, and in the sequel, C, 6 and ky will denote
possibly different constants which depend only on the
data. This convention renders the proofs of results,
such as the above theorems, more readable. In any
case, the interested reader should have no difficulty in
tracing the dependence of the various constants on the
data.

The above results are parallel to those pertaining
to the approximation by the implicit Euler scheme
of the analytic semigroup generated by the positive-
definite self-adjoint operator A, as discussed, for exam-
ple, in [4,5].

The convergence of the scheme described by
Equation 4 has been discussed by Girault and Raviart
[6]. They have established the L2-convergence of
the scheme in terms of the smoothness properties of
the solution. In the n-dimensional case the results
presented here are directly in terms of the data and
it is also possible to assert convergence in the H!-
norm. This approach, unlike that of [6], is based on
Fujita-Kato’s approach to the Navier-Stokes equations
[1,2] and has been inspired by Okamoto’s papers [7,8]
on the spatial discretization of Equation 3. In fact,
these results complement Okamoto’s results. Fully
discrete schemes have not been considered since the
technicalities, which are considerable, vary depending
on the spatial discretization schemes that are utilized
and may obscure the essential goal of the paper, i.e.,
the demonstration of the convergence of the linearized
implicit Euler scheme (Equation 4) at the predicted
rate for ug € D(A).

It is relatively easier to establish the rate of
cornivergence of a particular scheme by assuming the
actual solution to be sufficiently regular. However,
as is emphasized by Heywood and Rannacher [9,10]
and also discussed by Rautmann [11] and Temam
[12,3], such regularity assumptions may entail global
compatibility conditions which are not met or which
are not verifiable, in general.

In the next section certain a priori estimates will
be obtained and the proofs of the theorems will be
presented.

SOME A PRIORI ESTIMATES

A priori bounds on |[ug Al|, || A 4wk | and || A 2ug ],
n = 1,2,..., parallel to the a priori bounds estab-
lished by Okamoto for spatial discretization are first
established [8]. In establishing the a priori bounds and
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the actual convergence proof, it will be necessary to
appeal frequently to the results of Fujita and Kato [1,2],
Fujita and Morimoto [13], Temam [14,3] and Foias and
Temam [15] with regard to the fractional powers of
the Stokes operator A and properties of the trilinear
form b(u,v,w) = (B(u,v),w). The a priori estimates
that have been established by Okamoto [8] for the
actual solution are essential as well. The reader will
notice the parallels between the presented treatment of
time-discretization and Okamoto’s treatment of spatial
discretization.

Lemma 1

If {uk,n}52, is the solution of the linearized implicit
Fuler scheme, Equation 4, the following a priori esti-
mates are valid:

lurnll® +2 1A 2u 5112k < Jluoll?,

n=1,2, Fl (7
| AY g nl| < C[| A 4 ugll, Q)e =%, (8)
A g | < C(IA 2 ugl|, Q)2
O0<k<kg, (9)

where, t = nk, C, 6 and kg are positive constants which
depend on the data ug and Q.

Proof

The inner product of Equation 4 with uy , is formed
and the following is obtained:

(Euk,n,uk,n) + (Aug n, Uk,n)
+ (B{uk,n—1,Uk,n ), Uk,n) = 0. (10)
Since,
(B(uk,n=1,Uk,n), Uk,n) =
DUk n—1,Ukmy Ukn) = 0 (11)

as in [14, p 163] and:

Bk mrnn) = 5Bllunnl + £MBeal®  (12)
as in [5, p 157], Equation 10 yields:

STl nll + 14" 2wl <0 (13)
so that:

n
luknll® +2 > 1A 2uk 517k < Jluoll?,
i=1

i.e., Statement 7 is established.
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In order to establish the a priori bound, Statement
8, on ||AY%uy .||, the inner product of Equation 4 with
AY 2uk,n is formed and the following is obtained:

(Bt ny AY *ur;n) + (At AV 1)
+ (B(uk o1, k), AY?up ) =0,
and:
SBUA P+ 1A

+ (A" Y4B(ug net1, e n), A g n) <0,
so that:

1—
SUAY P A s <

1, . 1
SIATY B s 1) [P+ 1A

and:

Bl AY uk | + | A urn? <
IA™* Bk, w1 - (14)

The proof of Lemma 3 in [2] is easily modified to show
that:

A=Y B(v,w)|| < C||AY 0] || A 2w]. (15)
It is also known that:

|4 40]| < C| A% 0],
so that, Statement 14 yields:

A ug |+ C Y || A g 5117k <

j=1
C > NAY a2 | A *ur j-1 [Pk + ]I A a0,
j=1
which can be written as:
[AY Sur w2 < CD (A 2w 501 — 1)
=1
A A i1 |2k + || A g2, (16)

A discrete Gronwall type result, as presented for
example by Jerome [16, p 53], is directly applicable
to Statement 16 and yields:

A 42 < CILA a0 21 + [ A% )

exp() | AV us 5%k - 6t) (17)

3=1

21

where ¢ = nk. Considering Statement 7, it is possible
to obtain the following from Statement 17:

|AY A un® < CIAM 0o 1?(1 + luol?)
exp(||uo|® - 6t),

which readily yields Statement 8.
Now, the a priori bound, Statement 9, on
|| AY/2uy, || will be established. From Equation 4,

Uk = Extign_1 — ExB(tukn-1,Urn)k , (18)
where E, = (I + kA)~!, I denoting the identity.
Repeated use of Equation 18 results in:

n .
Uk, = Eguo — ZEZ‘JHB(UIC,J'—LU/C,J')/C ;
j=1 (19)
so that:

Ay o = ER AN ?ug

et Z A3/4E:_j+1A—1/4B(’lLk,j_1 , uk,j)k.
j=1 (20)
Since A is positive-definite self-adjoint, the inequality:
|ER A Pug|| < Cem®| A ?uo|| (¢ = nk), (21)

is obtained via spectral representation as in [5, Ch.7].
Even though the exponential decay factor is not present
in the statement of the results in [5], the required
modification of the proofs is straightforward and does
not warrant a lengthy exposition here.

For j = n in the sum appearing in Equation 20,

| A3 4 By A=Y Bug e, uk,n) |k <

<

k3/4 ||A_1/4B('U/k,n_1,uk,n)“k 3 (22)

as in [5, Ch.7]. Statements 8, 15 and 22 yield:
|AY2 B B(ug n—1, k) |1k <
ClIAY w1 || | A P |1 <
Cl|AM g V4] AV 20 ] (23)

From Statements 8, 20, 21 and 23, the following is
obtained:

||A1/2uk,n” < Cenk ||A1/2u0 I

n—1
+CkY | AMEIH ATV Bur o1, w5,
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if k is sufficiently small, say, k& < ko.
Now, as a result of Statement 8:

|A3AEP=% A=A B(ug i1, e 5)l| <

Ce—(n—j+1)k6
(nk - (j — 1)k)3/4

| AY g s || | AY 20 4] <

ClA 4 uoll, )
(nk ~ (j — 1)k)*/*

eI A By 5l (25)
From Statements 24 and 25 it is possible to obtain:
& A 2| < CIAYuo)

n=1l sk§)41/2,, . k
1/4 Z 7| A 2u 4|
j=1

(26)

©(s) is defined as e7™(|AY?u ||, s € [(j — 1)k, jk).
From Statement 26, the following is obtained:

@(t) < C|l AV uq)

t
+Ol4" 4wl 9) | “—ff)’mds. (27)

As in Lemma 6.5 of [8], the above inequality leads to:

o(t) < Ol 41 uo|| exp{CH*t}, (28)
where 8 depends on the data also. Furthermore,
Statement 28 yields:

1A 2ugnll < C(I| A ?uoll, )

exp{CB*nk — énk}. (29)

Then, the a priori estimate, Statement 9, on || A}/ 2u .||
is obtained by Okainoto’s argument [8, proof of Prop.
6.6] from the above inequality.

Aside from the estimates on the solution of Equa-
tion 3 that may be referred to, the following estimate
will be needed.

Lemma 2
If uo € D(A),

C(||AU0||,Q)6_5t

|42 D] s ==

t>0.
(30)
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Proof
By differentiating Equation 3 and setting v(t) =
Dyu(t), the following is obtained:

Duu(t) + Au(t) + B(v(t), u(t))

+ B(u(t),v(t)) =0, t>0, (31)
v(0) = — Aug — B(up,uo) -
As in [15, Section 1],
1B (uo, wo)|| < Clluoll1]|uol|2. (32)

As a consequence of the results of the fractional powers
of the Stokes operator A [13] and the regularity results
concerning the Stokes problem as in [14, Ch.1], the
following inequality can be obtained from Statement
32:

1B (w0, uo)ll < ClIA?uo]| || Auol|
< C(ll4uoll, 9). (33)
From Equation 31:
v(t) =e 4y
t
- [ AR s) o))+ Bla(s), o)),
0 (34)
so that, by using Statement 33:

Cll4uoll, Q) s

420(t) < =20

+ /t (|A%/4e~(t=5)4 A=1/4[ B (v(s), u(s))
0
+ B(u(s),v(s))]llds. (35)
From Statement 15,
|A=Y4[B(v(s),u(s)) + B(u(s), v(s))]]| <
Cl|AY2u(s)|| || A 2u(s)|| <
CI1AY 2uo|, Q) |AY 20 (s)]), (36)

using Okamoto’s estimate on || A}/u(s)|| [8, Prop. 6.1].
Furthermore, Statements 35 and 36 lead to:

A2 < C(ll Auoll, Q)(¢ 2

‘el AY20(s))|
+/0 &= )" ds). (37)

Again, asin [8], Statement 37 yields Estimate 30. Now,
it is time to establish the error estimates.
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THE ERROR ESTIMATES
The H!-convergence result is restated.

Theorem 1
Ifupe D(A)and t=nk, n=1,2,...,

C|| Augl|, Q)e~*?
fluk,n — w(t)| < ”—(;Pm)_k' (38)

Proocf
It is known that:

u(t) = e Hug

t
—/ e~ (=94 B(u(s),u(s))ds, t=nk,
0

(39)
Uppn = E;’:’uo bl EE:_j+lB(’lLk’j_1,’lLk,j)k,
j=1 (40)
as stated in the previous section. As in [5],
—6t
41/2(Ep - ety < SUAUD DT,

(41)
where, as always, 6 > 0 also depends on the data.
Thus,

Ce™%
A2 (u(t) — urn)ll < tlTk

t
+1AY2 [ e 0=I8Bu(s), u(s))ds
0
— AVES BT Blug g1, uk, )k (42)

j=1

Also, it is written that:

/t e~ (t=9)A B(u(s), u(s))ds
0

= > By Blugjer, uk, )k =

j=1
t
[/0 e~(t=9)AB(u(s), u(s))ds
- EEZ—HIB(uj-l,uj)k]
j=1
+ [ZEn J+1 UJ—I,UJ')
Jj=1

- B(uk,j_l,uk,j))k], (43)

where u; denotes u(jk).
The last expression of Statement 43 is written as:

n

EE,Z—j+1(B(uJ__1’uj)_.B(uk’j_l,’Uzk,j))k =
j=1

Y BT Blujo1 — ko1, u5)k

=1

n
+ Y BT Bluk,son,uy — uk )k =
i=1

n—1
> Ef7B(u
j=1

n—1
+ E E:'HIB(uk,j_l,uj — uk,;)k
j=1
+ EkB(U.k,n—l,un - ulc,n)k y (44)
since ugg = ug.
As stated before,
“Al/zEkB(uk,n—laun - uk,n)”k =

||A3/4EkA—l/4B(uk,"—1’ Up — ’Urk,ﬂ-)“k <

||A1/4ukn 1l A2 (un = )l <

%3/
Ckl/4||A1/2(“n - k), (45)

which is a result of Estimate 8 on || A}/ 4ug »||.
Next, the following is considered:

n—1

> NAYV2EF Bluj — kg, ujpn)llk =

j=1
n—1 )
> A BT AT B(uy — up g, uip)|E <
j=1

n- ejk5
Ce™ 3 W”Al“(uj = uk,;)
j=1

142411k <

n—1 ko
Cem® S — || AY2(u; — wi 5)lIk,
; (nk — jk)3/4 ’ (46)
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due to Estimate 9 on ||A'/%u,||. Similarly,

n—1
Z||A1/2E:—J+IB(Uk,j—11uj — uk,5)|lk <
j=1

n—1 k6
Ce S — = || AY2(u; — up ;)|
J.; (nk — jk)3/4 T @

From Statements 42-47, the following is obtained for
sufficiently small values of %,

eI AY (un — uk )l <

n—1

t1/2 Z 3/4 IA1/2(UJ — Uk J)“k

t
+ e%t|| AL/? / e~ (=94 B(u(s),u(s))ds
[¢]

— AY2N " BRI By, ug)k. (48)
j=1

Therefore, as stated before, the theorem will be estab-
lished once it is shown that:

Al/? /t e~ (=94 B(u(s), u(s))ds
0

n . Ce_st
_A1/2ZE:"J+1B(uj_1,Uj)k < 1172 k.

Jj=1

(49)

Next, it is written that:

/te_(t“s)AB(u(s),u(s))ds

0

=Y Byt B(uj_1,u,)k =

=1

/0 e~ (=4 (B(u(s),u(s)) — B(u(t), u(t)))ds
_ i E:_j-H(B(
j=1

uj—1,u;5)—B(u(t), u(t)))k

/te—(t—-s)A _ iE:’_'H-lk B (u(t)1 u(t)) .

0 j=1 (50)

+

Now, the last line of Equation 50 will be dealt with.
As stated in [17, p 489],

t
/ e~ (t=)Ads = (I — e )AL, (51)
0

F. Tahamtani

It is also easily verified that:

i Ep it =
j=1

From Equations 51 and 52,

(I - EMA~L (52)

n

A1 /Ot (=04 _ S Rt gl Blu(e), u(t))|| =
i=1
|AV2(EP - e~t4) A~ B(u(t), u(t))|| <
C—tf-;“B(U(t),u(t))“k <
C;f—/_;tllflu(t)ll 1AM 2u(8)|lk <
W e, (53)

as a result of the error estimates on the approximation
of e7*4, as in [5] and the a priori estimates established
by Okamoto [8]. Clearly, Statement 33 has been used
as well. From Statements 50 and 53, Statement 49 will
be-established once the following is estimated:

A%/Ote—(t_s)" (B (u(s),u(s))—B(u(t), u(t)))ds

— Z E:—j+1 (B(uj—l y UJ') —B (U(t), U(t))) k” .
=1
To this end, the following is written:

/0 e~ ()4 B(u(s), u(s)) — B(u(t),u(t)))ds
= B (B4, u5) ~ B(u(t), u(t))) b =

7 e
=171k

- B(u(t),u(t)))ds

_ e—(t—(j—l)k)A]

(B (u(s), u(s))
+ Z/

(4-1)k

e—(t—(i-1)k)A

(B(u(s),u(s)) - B(u]-_l,u]-))ds

+ i [e(-G-004 _ gp=G-1]

=1

(B(us-1us) = Blu(®), u(®)) )k =
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I+ 1, + Is5. (54)
Now, it will be established that:

Ce —6t

1421l < =2

Yk €=1,2,3, (55)
and this will conclude the proof.

In order to estimate ||A/2I||, it is first noted
that:

—(t—s)A _ t—(j—1)k)A _

e e (

~(t=5)A _ o~ (t=9)Ag=(s=(i=1)k)A _

€ — €

e~(=A[] _ g=(s=(i=DR) 4],

for s € [(§ — 1)k, jk). Therefore,
|AY/2[e~(t=9)4 _ e~ (t=U-DRAIq|| =
[|[A3/2=(:=9)A 4=1(] — ¢~ (—(G-DRA)q|| <

Ce—&(t s)

as in [18, proof of Theorem 1].
As in the proof of Lemma 2,

[1B(u(s), u(s)) — Blu(t), u(d))ll <

CllAu()ll | A2 (u(s) = u(®)] <

Clluoll, )= 2D (57)

using Okamoto’s estimate on ||Au(t)|| [8, Prop 6.3] and
Lemma 2. Statements 54, 56 and 57 yield:

1/2 —6t
|AY20|| < Ce kZ/ e t—sl/2sl/2d

In order to estimate ||A'/2I,]| it is written that:
k
L =/ e A B(u(s), u(s))ds — e"*4 B(ug, u1 )k
0

+ Z/ e~ (t=U=DRAB(y(s) —uj_1, u(s))ds
(G-1)k

n ik ‘
+ Z/ 6_(t_(J_l)k)AB(’u]‘_1, u(s) - u]-)ds.
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It is first observed that:
|| A/2e=4 B(u(s), u(s))|| <

Ce——&t
t1/2

C(llAuoll, )~
t1/2 ’

A 2u(s)]| [l Au(s)l <

so that:

AL/2 ¢ —tAp , Ce™%
l | e (u(s), u(s))ds|| < tlTk' (60)

Similarly,

1/2 . Ce-—&t
| A2 B(ug, u1)||k < Wk' (61)
Using Statements 5961, the result of Statement 55 for
¢ = 1 will be established if such an estimate is proven
for the remaining terms of Equation 59. Treating the
following statement will be sufficient,

7k
“A1/2 / e—(t—(i—1)k)A
JZ; (J-1)k

¥

B(u(s) — uj_1, u(s))ds|

since the last term is treated in a similar manner. For
j=23,...,n, s€[(j— 1)k, jk),

| A/ 2e=(¢=0=DF) By (s) — uj_q,u(s))]| <

Ce—btebli—1)k
(t— (5 —1k)/2
A2 (u(s) = uj1)l| <

[ Au(s)ll

Ce %tk

(t— (G - DG - 1)k)1/2 (62)

again due to [8] and Lemma 2.
From Statement 62, the following is obtained:

Al/2 Z/ —(t-(G-1)k)A
1)k

B(u(s) — uj—1,u(s))ds

st k
MY GGG - ) S

t
1
C’e—“k/ ——————ds < Ce7 %,
o (t—s)/2s1/2 (63)
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The last line of Equation 59 is treated similarly and
only the task of estimating ||A'/2I3| remains. It is
written that:

I =[e™*4 - E}|(B - Bu(t), u(t)k

(uo,u1)

+ i [e—u—u-l)k)A - E:—(j—l)]

j=2

B(’U,j__l — u(t), uj)lc

+ KZ [e—u—u—l)k)A - E;»—(a‘—l)]

j=2
B(u(t),u; — u(t))k. (64)
Each term of the first line of the above equation is

treated in a similar manner. For example,

AV2E,. B k<G g k
“ k (’U.(),’U.l)“ = t1/2 “ (uﬁvul)“

C(ll Auoll, Ve~?

< v k.

Now,

n
j=2

Al/2 [e-—(t—(j——l)k)A _ E:—(j—l)]

B(uj_l - u(t),uJ-)k <
2 Ce—t(t—(3-1)k) |

Z = G-Dmpre 1B — ult), ws)llk <
Ce—8(t=(3-1)k)

Z(t—(j— e 14 (i = w@)]

j=2

| Aus|k <

B\ Cet=G-URE (- (5= 1K) _sip,
J=22 - G-1k32 (G -Dk2° =

s - 1
CHY TGRS

j=
Ce %k, (65)

again due to [5,8] and Lemma 2.

The last line of Equation 64 is handled similarly
and Statement 55 is established for I3 as well. As an-
ticipated earlier, the proof of Theorem 1 is concluded,
since ||AY/2(u(t) —ug,»)|| is equivalent to ||u(t) —ux .1,
as in [13].

Theorem 2 on L?-convergence is now restated and
the proof is merely sketched, since it parallels very
closely the proof of Theorem 2. The reader should have
no difficulty in supplying the details.
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Theorem 2
If up € D(A) and t = nk,
luk,n - u(t)l| < Ce™ %%,

for k < kg, where C, 6 and kg are positive constants
depending on the data ug and Q only.

Praoof

As before, the starting point is Equations 39 and 40.
It is first observed that:

I(e™*4 ~ ER)uoll < C(l|Auoll, Q)e~*k (66)

as in [5]. Then, taking note of Equations 43 and 44,
parallel to Statement 45, it is noted that:

— Ukn)|lk =

|AY2E A=Y 2 Bug ne1, n,

| ExB(tk,n—1,Un
— Ukn)|lk <

C

mllA_l/zB(uk,n—l y Un

— ug,n) k. (67)
Furthermore, it is claimed:

”A'l/zB(’U,k,n-—lau'ﬂ - ukvn)“ <

Cllukn—1 ~ Un—1)ll1 l[uk,n = unlls
+ C”u‘n—1”2 ”uk,n - un” (68)
Indeed,

b(Uknm1y Un = Uk ny A7 20) =
b(Uk,ne1 — Un—1,Un — Uk,n, A'"l/zv)
+ b(Un_1,Un — Up n, A7),
and, due to [15, Sec. 1] and [13],
|b(uk,n_1 —Up1,Un — uk,n,A‘l/Z'v)l <
= up,nll |47 20y <

C“uk,n—l - un—l”l “u'ﬂ

Cllug,n-1 — Un—1l1 Jun — uknll1 ilvll,

'b(un—lyun — Uk,n, A_l/z'v)l =
Ib(un—la A—l/zv)un - uk,n)l S
Cllun-1llz A7 ?0]y flun - urall <

C||un_1||2 |un — uk,n” o]l

so that Statement 68 is valid.



Navier-Stokes Equations

Theorem 1 and Statement 67 yield:

”EkB(uk,n—lyun - Uk,n)”_k <

Otk 2 (K 4 g ) <
m k,n n =

Ce™%k + Ce kM2 ||lug n — uall, (69)
for 0 < k < ko, say. Statement 69 is the counterpart
of Statement 45. By using Statement 68 and similar
estimates, the counterparts of the other steps of the
proof of Theorem 1 are easily established. Now, merely

a sample will be provided:

n—1

Z ”E:_jB(UJ
j=1

— Uk,j, 1)k =

n—1
> IAYRERTT A2 Bu; — u g, ui) |k <
3=1
- ~(n~3)ké
Z R ||A_"B( ~ k5, Ui+1) ||k <
i -—(n——] )ké
Z AT [Aujprll llus = ukslik <
J=1
n-—1 1
Ce—bt Z W“uj — ug,; ||k (70)

This is the counterpart of Statement 46.
In this manner one establishes that

Jk,m — u()]] < Ce™? (k "

n—1

1/2 |’U/k,_7 uJ”k)v

=1

LN

if k is sufficiently small and, therefore, the L2-

convergence result follows.
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