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Regularized Cosine Functions and
Polynomials of Group Generators

Jizhou Zhang'

Let ¢4; (1 € 7 < n) be commuting generators of bounded strongly continuous groups and.

P(A) = Xlal<m TaA” (A® = AT' ... A%). It is proven that P(A) generates an exponentially
bounded regularized cosine function and an I-times integrated cosine function under suitable
conditions on the polynomial P(£). Then, these results are applied to the partial differential
operators P(D) (14; = 8/dz;, 1 < j < n) on spaces like LP(R™)(1 < p < o), Co(R™) and

BUC(R™).

INTRODUCTION

Many physical problems, including initial-value partial
differential equations, may be modelled as an abstract
Cauchy problem,

u(t,z) = Aut,z)(t > 0) u(0,z)=z, (1)

d

dt
where A is a linear operator on a Banach space X
and ¢t — u(t,z) € C([0,00).X). The problem is well-
posed, that is, depends continuously on the initial data
z if, and only if, A generates a strongly continuous
semigroup. Moreover, it is known that many partial
differential operators, such as the Schrédinger operator
iA on LP(R™)(p # 2), cannot be treated by strongly
continuous semigroups (see [1]).

Recently, there has been extensive development
and application of two generalizations of strongly con-
tinuous semigroups, known as regularized semigroups
[1,2] and integrated semigroups [3-6], that deal with
Equation 1 when it is ill-posed. Intuitively, if (Jf)(¢) =
fot f(s)ds, then the strongly continuous semigroup
generated by A is e*4, the C-regularized semigroup is
etAC and the n-times integrated semigroup is J™(et4).

One may similarly deal with a second-order ab-
stract Cauchy problem:

d2
Wu(t,xl,xg) = Au(t,z1,z2) (t = 0),
(2)

d
w(0, 71, %2) = Z1, EU(Q, T1,%2) = T2,
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with a cosine family when Equation 2 is well-posed. Co-
sine families have received less attention than strongly
continuous semigroups, partly because Equation 2 may
be re-written as a first-order abstract Cauchy problem:

Zulta) = [ of utte) €2 0)

u(0,z) = z,

s0, the semigroups generated by [ § 3] may be discussed
instead. However, this matrix reduction is not always
successful; it is sometimes necessary to leave Equation
2 as a second-order problem and sometimes it is
simpler to work with a cosine family generated by A
rather than a semigroup generated by [ §]. Similarly,
many partial differential operators such as the Laplace
operator A in LP(R™) with maximal distributional
domain do not generate a strongly continuous cosine
function unless n = 1,1 <p<ocoorn>2and p=2
(see [7]).

Thus, it is rational to deal with the obvious
second-order analogues of regularized or integrated
semigroups and regularized or integrated cosine fam-
ilies. Intuitively, one replaces exponentials by a cosine
family: a cosine family generated by A is cosh(tv/A4),
a C-regularized cosine family is cosh(tv/A)C and an
n-times integrated cosine family is J™(cosh(tv/A4)).

In this paper, regularized and integrated co-
sine families generated by operators of the form
P(A4,,---,A,;) are considered, where P is a polyno-
mial and 14, -+ ,1A, generate commuting bounded
strongly continuous groups. A special case of
such an operator is a constant-coefficient partial
differential operator in the wusual function spaces
LP(R™) (1 < p < ©), Co(R™), etc. Regularized and
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integrated semigroups generating such operators, have
been thoroughly studied in [1,8-10]. For cosine fam-
ilies, proof follows the same idea: natural functional
calculus is used for A = (41, -, 4An):

= [ T as, ©

where F is the Fourier transform and f(s) =
cosh(t+/s)g(s) is chosen for a regularized cosine family,
J™(t +» cosh(t+/s)) for an n-times integrated cosine
family, rather than e**g(s) for a regularized semigroup
and J™ (¢ +» e**) for an n-times integrated semigroup.

Of course it is much more difficult to work with
the function s + cosh(t./s) rather than s~ et Since
many derivatives must be estimated for the appropriate
Fourier multiplier techniques. It is particularly difficult
to get sharp results, that is, to minimize the order of
integration or maximize the range of the regularized
operator C.

In this paper, it is assumed that the polynomials
P(£) with constant coefficients are real valued and
bounded. It is proven that P(A) on X generates
a regularized or [-times integrated cosine function
depending on P(¢) being elliptic or non-elliptic. Then,
these results are applied to partial differential operators
on the spaces LP(R™)(1 < p < o0), BUC(R™) and
Co(R™) and the same results are obtained, which
improve the related results given in [4,5]. Here, the
main aim is to extend the khown results analogous to
the one proved in [9].

PRELIMINARIES

In this paper, all operators are linear. Let X be a
Banach space with norm || - || B(X) denotes the
set of all bounded linear operators from X into itself.
If A is an operator, D(A) will be written for the
domain of A, R(A) for its range, p(A) for its resolvent
set and R(A, A)(A € p(A)) for its resolvent. For a
polynomial P(¢§) = 341<m @af*(§{ € R™) with real
constant coefficients, P(4) = 3|, /< 6o A is defined
with a maximal domain, where A% = A$* ... A%~ for
a = (o, - ,an) € N = NU{0}. From [1,9], it
is known that P(A) is closable and cannot be directly
defined with Statement 3, although it may be indirectly
defined. Finally, S will denote the space of rapidly
decreasing functions on R™.

Definition 1

Let {C(t)}+>0 be a strongly continuous family in B(X).

a) If there exists an injective C in B(X) and constants
M,w > 0 such that 2C(s)C(t) = C(s+t)C+C(|s—

t))C for t,s > 0, C(0) = C and ||C(t)|| < Me«t
for ¢ > 0, then {C(t)}+>0 is called an exponen-
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tially bounded C-regularized cosine function (C-
regularized cosine function, for short). Its generator
is defined by Az = C} )lzir% 2h~2(C(h)z — Cz) with
maximal domain, ie., D(4) = {z € X; the limit
exists and is in R(C)}.

b) If there exists a linear operator A on X, ! € N7 and
constants M,w > 0 such that:

oo
R()\?, A)z = ,\1—1/ e MC(t)z dt
0

forall z € Xand A >w,

and ||C(t)]| < Me“t(t > 0), then {C(¢)}t>0 is
called an exponentially bounded [-times integrated
cosine function (I-times integrated cosine function,
for short) and A is its generator.

¢) {C(t)}s>0 is said to be norm-continuous if C(-) €
C([0, 00), B(X)).

Basic material on C-regularized or [-times
integrated cosine functions may be found in [4,11-
15].

Remark 1

If A generates an r-times integrated cosine function
{C+(t)}t>0 for some r € N, then A generates an [+7-
times integrated cosine function {C(t)}:>0 given by:

for ¢t > 0.

t(t— )t
oty = [ CEcwar,

Definition 2

Let P(§) = ¥ jajcm @™ (£ € R™) with the principal
part Pm(8) = 3|41=m 3af® (£ € R™). Then, P(£) is
elliptic if Pp,(¢) = 0 which implies that £ = 0.
Remark 2

If P(¢) is elliptic, then there exist constants M,L > 0
such that:

|P(¢| = MI¢[™, for [¢| =L, (4)
and m is even if n > 2 (see [16]).

Lemma 1

Let C € B(X) be injective and A a linear operator
in X. Then A is the generator of a C-regularized
cosine function {C(t)}:>¢ if, and only if, the following
conditions hold [11,15]:

a) A is closed and A = C~1AC;

b) There exists a w > 0 such that A\ — A is injective
and R(C) C R(\2 — A) for A > w;
c) There exists an M > 0 such that ||C(t)|| < M e~?
for £ > 0 and:
R, A)71Cx = ,\-1/ e MC(t)z dt ,
0

forz € X and X > w. (5)
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The following lemma will play an important role
in the proofs presented here (see [1,5,9]).

Lemma 2

a) f — f(A)is an algebric homomorphism from S into
B(X) and there exists M > 0, such that:

IF (AN < M||Ffllzr(mn), forany feS.

b) Let E = = [gn #(s)e">Azds, ¢ € S and
T € X} Then EcC D(A°°) = Nkeny D(4F), E =
X, P(A)|z = P(4) and:

P(A)z(¢) = z(P(iD)$) ,
forgeSandze X, 6
P(4)a(¢) = 2($)P(4) , ©
for ¢ € S and z € D(P(A)).

c) Bernstein’s theorem: Let n/2 < j € N, then
Hi(R™) — FL' and there exists a constant M > 0
such that:

1-% n
IFfllzs < MIIflI > S ID*AIEY
|k|=3

for f € Hi(R™) .

Lemma 3

Let A € p(A) # 0. Then, A is the generator of a
2n-times integrated cosine function Cs,(-) if and only
if, for A > w, A is the generator of a R()\2, A)"-
regularized cosine function C(-). C(-) and Cq,(-) are
related to each other in the following way: C(t) =
D*Cy,(t)R(A2, A)™ and

Con(t) =(AZ—A)" 1 ) /t(t—u)z’HC(u)a:du

(2n—1)! Jo

for all z € X and ¢ > 0 (see [11,15]).

MAIN RESULTS

For convenience, in this section, M will denote a
general constant independent of ¢t and £ Now, the
main results are presented.

Theorem 1

Let P(§) = 3 jaj<m @™ be a real valued elliptic
polynomial, w = sup{P(¢); £ € R"} < 00, ' > w
and [ > n/4 for | € N. Then, P(A) generates a norm-
continuous C-regularized cosine function {C(t)}:>0
such that:

IC#)|| < M(1+t™)er?, fort >0, (7)

where C = (v’ — P)~!(A) and w? = max(0,w).
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Proof

For fixed w’ > w and I > n/4 (I € N), since P(£) is
elliptic, there exist constants M, L > 1 such that:
lw' = P(&)| = M||™, for ¢ > L. (8)

Again, since P(£) is real valued and bounded,

0 < Rey/P(§) < {max(0,w)}'/?,
forall(§ e R™ . (9)
Let fi(&) = (W' — P(£))~! cosh(t4/P(£)) for t > 0 and

[ € N. Let t > 0 and |&] < [§]+1 (k € N2). By
induction on |k| and Statement 8, it can be seen that:

|D¥(w' = P(€))7!] < Mg~ M (10)
for || > L and:

[kl

ID*U(tv/P(£))] = Y _HU(t+/P(£))Q;

j=1
(€)(P(g))IkI+3/2,

where Q;() is a polynomial of degree < (m —1)|k| and
U(-) denotes the function cosh(-) or sinh(-). Thus by
Remark 2 and Equation 11,

for P(£) #0, (11)

| DEcosh(t/P(€))| < M (1 +tl#)ewrt|g|(m/2-Dikl
(12)

for t > 0 and |¢| > L. By Leibniz’s formula,

D= ¥ () (w-ren)

k1+ko=k

Dkz (cosh(t W)) .
It follows from Statements 10 and 12 that:
D f(§)] < M(1+ th)eent|gmk/2=D=1k1
for |(| > L and t > 0.
Let |k| <. Then, for |{| > L and t > 0,
D fo(&)] < M(1+ et~ (13)

On the other hand, since cosh(tvP) = Y 52, t% P7/
(25)! for t > 0, the following is obtained:

[kl oo
Z+] )2
D* cosh(ty/P EO E TS A“Q5(8),
7=0 i=0

(14)
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fort >0, £ € R™ and k € N7, where A = ¢,/P(£) and
Q;(€) is a polynomial of degree < max(0,jm — |k|).
Thus, if [A] < 1 from Equation 14 and [A| > 1 from
Equation 11:

|%|

D* cosh(t/PENISM D27 <M1+ £21M),
3=0 (15)

for |¢€] < L and t > 0. Note that [’ —P(§)] > w' —w >
0. Combining Statements 10 and 15, it is concluded
that:

|Dk f(6)| < M(1+ 21y
for || < Landt>0. (16)

Consequently, for all |k|] < [, Statements 13 and 16
imply that:

|D* fillz» < M(1+ e it for ¢ > 0.

Then, by Bernstein’s theorem (see Lemma 2(c)), it can
be seen that f;(¢) € H'(R™) and
|Ffellp, < M(1L+¢t™)e*t, fort>0. (17)
Now C(t) = fi(A) is defined for ¢t > 0. Conse-
quently, from Lemma 2(a) one realizes that ||C ()] <
M@+ tm)e“rt for t > 0, (C(t+3s)+C(|t —s)))C =
2C(t)C(s) for t,s > 0 and C(0) = C = (' — P)~}(A4).
To see the norm continuity of {C(t)}¢>0, for
t,t+h >0 and |£| > L, the followmg is derived from
Statements 10 and 11:

|k|
—FlE) < M D |(t+RYU((t+h)

7=0

VPE) = PU(t/P(O))] - |3t —0—1kl

—0ash— 0for |£] > L and k € N§.

|D*(fran(£)

Using Bernstein’s theorem and Lebesgue’s domi-
nated convergence theorem, it is determind that
limp—o | F(fexn — fe)|lzr = 0 and, therefore, the claim
follows from Lemma 2(a).

It is now proven that P(A) = C~1P(A)C. For
any z(¢) € E, using Statement 3 the following is
obtained:

Ct)z(p) = | F(fF)(€)e" "N udg

R=

= o(F(f.F19)) CE . (18)
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Thus, by properties of the Fourier transform and
Equation 6 it is obtained that:

P(A)C(t)z(¢) = z(P(iD)F(f: 7' 9))
= o(F(f:FH(P(D)4)))
= C(t)z(P(iD)9)

= C(t)P(A)z(4), (19)
and:

P(A)C()z=C()P(A)z , for z€ D(P(A)),
(20)

which implies that P(A) C C~'P(A)C and therefore,
P(A) C C7'P(A)C. On the other hand, from State-
ment 10 it can be easily proven that F(w' — P)~! € L?
for ' > w. Let C1 = (w' — P)71(A), it follows from
Equation 6 that (' — P(A))Ciz = C1(w'—P(A))z =z
for z € E. Thus, by Lemma 2(b) ' € p(P(A)) and
R(w', P(A)) = Cy. In fact, it has been proven that the
resolvent set of P{A) is nonempty, if P(£) is elliptic
polynomial and so C = (w’ — P(A))~!. It is immediate
that C71P(A)C C P(A) and, therefore, the claim
stated here holds. .

Finally, it is shown that P(A) is the generator of
{C(t)}¢>0. To this end, Ly € B(X) is defined by:

Lyz = /\‘1/ e MC(t)z dt
0
forze X and A >w. (21)

Let z(¢) € E and = € X. Then, by Equations 18 and
21 and the fact that P(A) is closed, it can be seen that
Lyz{¢) € D(P(A)) and:

P(A)Ly\z(¢)

= LyP(A)z(¢), for A >w.

(22)
Next, from Statements 13 and 16 it can be easily
concluded that:

||

&) < Zlqﬁj(f)l(

|D*(feF 1427 )ert,

for ¢ >0,

where ¢; € S(0 < j < |k|). Then, it is obtained that:

ID*(foF T @)lce < M(L+ 177 )er?,

for ¢t >0,
which implies from Berstein’s theorem that
|F(feF 1) lpr < M(1+ tn)e*rt for ¢t > 0. A direct

computation shows that ||f;{F 1|1 < Mevtt, for
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t > 0. Thus, combining Equations 19 and 21 and
Fubini’s theorem, the following equations are obtained:

La(g) =37 [T e[ AR zdan
0 R
= F( / T e fdF6) ()M A d
Rn 0

= {(3 = P() "' = P()'FT19H(A)

which implies that LyE C E (A > w). Note that
A;j(1 £ j < n)is closed and commuting. Hence, for
A>wandz e X,

Li(X* = P(A))z(¢) = Laz((3* = P(iD))¢)
={(¥ - P()7N - P())TF
(A = P(iD))¢)}(A)
={(w' = P()T'F$}A) = Cx(¢) . (23)

Consequently, it follows from Equations 22 and 23 and
Lemma, 2(b) that:

(A2 — P(A))Lyz =Cxz ,
for z € X and A > w;

Lx(X - P(A)z =Cxz ,

forz € D(P(A)) and A > w.

This implies that Lyz = R(\2, P(4))Cx for A > w and
z € X. Thus, the claims herein follow from Lemma 1.

Combining Theorem 1 with Lemma 3, the follow-
ing theorem is presented for integrated cosine functions.

Theorem 2
Let P(¢) = Elalsm a,€* be a real valued elliptic
polynomial, w = sup{P({); £ € R"} < oo and
!l > n/2forl € N. Then, P(A) generates a norm-
continuous [-times integrated cosine function {C(t)}:>0
such that ||C(2)]| < M (1 + t+7)e*1t for t > 0, where
w? = max(0,w).

Furthermore, for the case of non-elliptic polyno-
mial the following theorem is presented.

Theorem 3

Let P(£) = E]a|<m ao &% be a real valued polynomial,
w = sup{P(£); £ € R"} < 00, and | > n/2 for € N.
Then, P(A) generates a norm-continuous C-regularized
cosine function {C(t)}s>0 such that ||C(t)|| < M(1 +
t™)e“1t for t > 0, where C = (1 + |A|?)~™"2 is defined
as the fractional power.

Jizhou Zhang

Proof

Let g:(¢) = (1 + [€2)~™/2 cosh(t/P(€)) for I >

n/2,t > 0 and £ € R™. Then, for ¥ € N7, a direct

calculation shows that:

|DE(L+[¢%) ™2 < Mg~ =™, for J¢] > L.
(24)

Thus, by Statements 12 and 24 and Leibniz’s formula
the following is obtained:

|D*g,(&)] < M(1 + thHl)ewrt|g (' -D—1kl,
for [¢| > Landt > 0.

The rest of the proof may be carried out as in the
corresponding part of Theorem 1.

In the following, some applications of the pre-
sented results are given in concrete spaces. Let X
be one of the following spaces LP(R")(1 < p <
o0), CoR™) = {f € CR");limzof(z) = 0}
and BUCR™) = {f € CR™);f is bounded and
uniformly continuous } with the sup-norm. The
differential operator EICY <m @aD® is denoted by P(D)
associated with the constant coefficient symbol P(i£) =
2 ja<m 2a(i€)* and the set:

{D(P(D)) ={feX; F7U(PFf)e X},

P(D)f = F~Y(PFf), for f € D(P(D)).
Obviously, P(D) is closed and densely defined on these
spaces. In addition, it is known that ¢D; = 8/dz;(1 <
j < n) (with distributional domain) is the generator
of the translation group:

H] ‘/En) =

(Tj(t)f)(ml,---,.’l,‘j,...

f(a:l,...,xj_l,a:j +t,SI}j+1,...,£I}n) ,

for teR,

on X. This group is strongly continuous for p < co.
All results in Theorems 1-3 are applied to P(D) on X.

Theorem 4

Let P(£) = Elalsm ao&® be a real valued polynomial,
w=sup{P({);¢ € R"} < 00, w' > w, w? = max(0,w),
n, = nl} - %l for X = LP(R™) (1 € p < o0) and
n, = n/2 for other X. Then; the following assertions
hold.

a) If P(¢) isellipticand ! > nx /2 for! € N, then P(D)
generates a norm-continuous C-regularized cosine
function {C(t)}¢>0 on X, such that |C(t)|| < M(1+
tnx et for t > 0.
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b) If P(£) is elliptic and [ > nx for | € N, then P(D)
generates a norm-continuous /-times integrated co-
sine function {C(t)}s>0-on X, such that ||C(¢)] <
M(1 + thnx)ewit for ¢ > 0.

¢) If I > nx, then P(D) generates a norm-continuous
C-regularized cosine function {C(t)}¢>0 on X, such
that |C(¢)]| < M(1 + t™x)e*1t for ¢ > 0, where
C=(1-A)y""2

Proof

Note that p(P(D)) #.0 for the elliptic polynomial P(£).
Then, the assertions (a) and (c) follow Theorems 1-3 on
X = LY{R"),Co(R™) and BUC(R™). B X =17 (1<
p < 00), using the Riesz-Thorin convexity theorem
and a similar method in [5,10], it may be proven that
the claims stated hold. Here the detailed proofs are
omitted.

Remark 3

In the case of integrated cosine functions, Theorem
4(b) is well-known for X = LP(R™)(1 < p < 00)
(see Theorem 6.5 in [4]). However, Theorem 6.6 in
[4] required m > Z and I > 2+ 2 (I € N) on
L'(R™),Co(R™) and BUC(R™). Theorem 6.5 in [5]
supposes that P(¢) = -a?(¢), where a(£) is a real
valued elliptic polynomial on R™. Obviously, Theorem
4(b) has improved the results of [4,5]. Furthermore,
other results in Theorem 4 are new. In particular, the
Laplace operators A generate an o-times integrated
cosine function on LP(R™)(1 < p < o0) or Co(R™) ,
BUCR™ fora > (n-1)|3~3lora>(n-1)/2 (a€
R*) (see [5,17]).

Theorem 3 may be immediately applied to the
second order inhomogeneous Cauchy problem:

(25)

u(t) = P(A)u(t) + g(t) , fort>0
U(O) =z, ut(O) v,

where g € C(R*,X) and Rt = [0,00).

Let Y, (s > 0) denote D((1 + |A|?)*/?), a Banach
space with the graph norm || - ||, = [|(1 + |A4]?)~%/2 -||.
For a regularized cosine function {C(¢)}s>0, S(t)z =
fot C(s)zds for t > 0 and z € X. From Theorem
3.1 in [12], it is known that the connection between
regularized cosine functions and Equation 25 is given
by the following fact: Let P(A) be the generator of a
C-regularized cosine function {C(¢)}:>0. Then, for a
given z,y € X, v(t) € R(C) (t > 0) and C~to(:) €
C?*(R*,X), where:

o{t) = Cloyo + S(o+ | St — s)g(s) ds,
0
fort >0,

u(t) = C~'o(t) is the unique solution of Equation 25.
Thus, from Theorem 3, the following result is obtained.
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Theorem 5

Let P(£) be as in Theorem 3. If | € N,l > nx and
g € C(R*,Y,u41/2)), then for every pair (z,y) €
Yo(41) X Yim@+1/2), Equation 25 has a unique solution
u € C?(R*, X) such that:

lull < M1+ t")e“  (|2]| m@t1) + tYllmat1)

+t? sup lg(8)llm(i+1))-
0<s<t

Proof

Let {C(t)}t>0 be the C-regularized cosine function
generated by P(A) in Theorem 3, C = (1 +|A|?)~™!/2
and ||C(?)|| < M(1 + t™x)e“1? for t > 0.

Fort € RT,

u(t) = CEL+AP)™ e + S(t)(1+|AP)™/?y

+ /t S(t—s)(1+|A[)™/?g(s)ds . (26)
0

Using similar proof to that of Theorem 4.6 in [9], it is
obtained that u € C%(R*, X), therefore, Equation 25
holds. To prove the uniqueness, let v € C?(R*, X) be
any solution of Equation 25. Then, it follows that:

;_Ss(t —s)v'(8) = —C(t — s)v'(s)
+5(t—s) (WMS) + f(S))
4

Z=C(t = shu(s) = =S(t - ) P(A)u(s)

4Ot — s)v'(s) .

Thus, & (S(t — s)v/'(s) + C(t = s)v(s)) = S(t — ) f(s).
Integrating this equation from 0 to ¢, the following
statement is obtained:

Cu(s) = C(t)x + S(t)y +/0t5'(t - 3)f(s)ds, -

where C = (1 + |A]?)~™/? as fractional powers is
injective. It follows from Equations 26 and 27 that
u(t) = v(t) for t € RT.

Let W*X(R™)(a > 0) be the completion of
S under the norm |lulle,x = |lullx + |F7H(1 +
1€]2)2/2 Fu)||x for f € S. When X = LP(1 < p <
00), WP = W*X ig called Bessel-potential space. In
particular, WX is the usual Sobolev space if & € Ny
and 1 < p < oo (see [10]).
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Naturally, Theorem 5 can be applied to the
following initial value problem:

Pu(t,z) _
;ttz—

Y aaD%u(t,z) + f(t, 1),

|e|€m
for (t,z) € R* xR™, (28)
U(O,.’l)) = QD(.T) ’ Ut(O,fE) = ’(/)(.’ZJ) )
for x € R™,

on the concrete space X.

Theorem 6

Suppose w = {P(£);€ € R*"} < oo and | > nx. If
g € C(R*T,wm(+1/2).X) then for every pair (z,y) €
Wmi+1.X o Jym(+1/2),X  Equation 28 has a unique
solution, u € C?(R*, X), such that:

lu(t, ) < ML+ ") ([ @llmar1),x

+tl|bl mr1),x +1* sup [1g(8)lIm@+1),x)-
0<s<t

Example 1
Consider Klein-Gordon equation (cf. [18, Pj32]),

U = alu — bu (a,b>0) (29)
U(Oa :1:) =¢, Ut(O, -7:) =
on LP(R™). Then, by Theorem 6, for every pair

(p,%) € WoP(R3) x W*P(R3), where a > 2nx, Equa-
tion 29 has a unique solution, u € C?(R*, LP(R3)) N
C(R*, W2P(R?)).
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