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Galerkin Approximations for a
Semilinear Stochastic Integral Equation

B.Z. Zangeneh'!

In this paper, the Galerkin method is used to approximate the solution of the H-valued integral

equation:

Xt=/t Ut — s)fe(Xs)ds + Vi,

oo

where H is a real separable Hilbert space. U(t) is a semigroup generated by a strictly negative
definite, self-adjoint unbounded operator A, such that A~! is compact and f is of monotone
type and is bounded by a polynomial. Furthermore, V; is a cadlag adapted process.

INTRODUCTION

Let H be a real separable Hilbert space with norm
| || and inner product { , ). Suppose (@, F, F:, P)
is a complete stochastic basis with a right continuous
filtration and {W;,t > 0} is an H-valued cylindrical
Brownian motion with respect to (2, 7, F;, P) . Con-
sider the stochastic semilinear equation:

dX; = AXidt + fi(X¢) dt +dWe (1)

where A is a closed, self-adjoint, negative definite,
unbounded operator such that A~! is nuclear. A mild
solution of Equation 1 with initial condition, X (0) =
X, is the solution of the integral equation:

X =U(t,0) X0 + /t Ut — 3)fs(Xs)ds
0

+ /Ot Ut — s)aw, , (2)

where U(t) is the semigroup generated by A.

Marcus [1] has proved that when f is independent
of ¢t as well as w and uniformly Lipschitz, then the
solution of Equation 2 is asymptotically stationary.
To prove this, Marcus studied the following integral
equation:

X, = / " Ut = s)f(X.)ds

+ /_ t Ut — $)dW,, (3)

oo
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where the parameter set of the processes is extended
to the whole real line. This gave the motivation for
studying the existence of the solution of a more general
equation:

X, =/_t Ut — )fo(Xs)ds + Vi, (4)

oo

where U(t) is a semigroup generated by a strictly
negative definite, self-adjoint unbounded operator A
such that A~! is compact, f is of monotone type,
bounded by a polynomial and V; is a cadlag adapted
process. In [2], the existence and the uniqueness of
the solution to Equation 4 is proved. In this paper it is
proven that finite dimensional Galerkin approximations
converge strongly to the solution of Equation 4. In
[3] this result is used to prove the stationarity of the
solution of Equation 4. Results of this paper are
presented in [4] without proof.

PRELIMINARIES

A Semilinear Evolution Equation

Let g be an H-valued function defined on a set D(g) C
H. Recall that g is monotone if, for each pair, z,y €

D(g),

(g(z) —g(y),z—y) >0.

We say g is bounded if there exists an increasing
continuous function 7 on [0,00) such that ||g(z)| <
¥(||z|)), Yz € D(g). g is demi-continuous if, whenever
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(z,,) is a sequence in D(g) which converges strongly to
a point x € D(g), then g(z,) converges weakly to g(x).
Consider the following integral equation:

X, = /tU(t— f(X.)ds + Vi, (5)
0

where f,V and the generator A of the semigroup U
satisfy the following hypothesis.

Hypothesis 1

a) U(t) is a semigroup generated by a strictly negative
definite, self-adjoint unbounded operator A such
that A~! is compact. Then there is A > 0 such
that ||U(2)]] < e

b) Let p(t) = K(1 + ?) for some p >0, K > 0. —f
is a monotone demi-continuous mapping from H to
H such that ||f(z)|| < ¢(||z|) for all z € H.

c) Let r = 2p%. V; is cadlag adapted process such that
supe g E{||V2l|"} < oo.

Proposition 1

Suppose that f , V, A and U satisfy Hypothesis
1. Then Equation 5 has a unique adapted cadlag
(continuous, if V; is continuous) solution. Furthermore,

X&) < [Vl + /0 N £(s, V(s)lds . (6)

For the proof see [5].

The Stability of the Solution
Proposition 2

Let f! and f? be two mappings satisfying Hypothesis
1 bounded by functions ¢; and 2 respectively.

Suppose V1, V2, U! and U? satisfy Hypothesis
1. Let X%(t), i = 1,2 be the solution of the integral
equations:

X’(t):/o Uit — 8) F1(X(s))ds + V¥(2). (7)

Define v3(t) and I as:
V0= [ W9 -U =D s,

T
=4 /0 MY (X3 (s) — FH(XN(s))|Pds -

Then the following is obtained:

1X2@) - XTI < 4V - VI O)I?

+4lVE)l?

2

+I (_/Ote_z’\SHV"’(s) -V (s)”zds)

t Z
+1 (/ e‘z’\s||V3(s)||2ds)
0

+ / e f(X(5)) — (X7 (s))||?ds.
0 ®)

For proof see [6].-

EXAMPLES

A Semilinear Stochastic Evolution Equation
The existence and uniqueness of the solution of the
integral Equation 2 have been studied in [7]. Marcus
assumed that f is independent of w € Q and ¢t € S and
that there are M > 0, and p > 1 for which:

(f(u) = fv),u—v) < —Mlu-o|,
and:
If (@)l < C(1 + [JullP~).

Marcus proved that this integral equation has a
unique solution in LP(§2, LP(S, H)).

As a consequence of Proposition 1, this result can
be extended to a more general f and the existence of
a strong solution of Equation 2 which is continuous
instead of merely being in LP(Q, LP(S,H)) can be
shown.

The Ornstein-Uhlenbeck process V; = fot Ut —
s)dW (s) has been well-studied e.g., in [8] where they
show that V; has a continuous version. Therefore,
Equation 2 can be rewritten as:

X = /tU(t — 8)fs(Xs)ds + V4,
0

where V; is an adapted continuous process. Then, by
Proposition 1, the Equation 2 has a unique continuous
adapted solution.

A Semilinear Stochastic Partial Differential
Equation

Let D be a bounded domain with a smooth boundary
in R%. Let —A be a uniformly strongly elliptic second
order differential operator with smooth coefficients on
D. Let B be the operator B = d(z)Dy + e(z), where
Dy is the normal derivative on 8D, and d and e are in



10

C*®(8D). Let A (with the boundary condition Bf = 0)

be self-adjoint.
Consider the initial-boundary-value problem:

% + Au= fy(u)+ W on D x[0,00),
Bu=0 on 8D x [0, 00), 9)
©(0,z) =0 on D,

where W = W (t, ) is a white noise in space-time for
the definition and properties of white noise (see [9]),
and f; is a non-linear function that will be defined
below. Let p > %. W can be considered as a Brownian
motion W; on the Sobolev space H_, (see [9] Chapter
4, page 4.11). There is a complete orthonormal basis
{ex} for Hy.

The operator A (plus boundary conditions) has
eigenvalues {Ax} with respect to {ex}, ie., Ae;, =
Aker, Vk. The eigenvalues satisfy X;(1 + X;7) < oo
if p > £ (see [9] Chapter 4, page 4.9) Then [A71]P
is nuclear and —A generates a contraction semigroup
U(t) = e~*4. This semigroup satisfies Hypothesis 1.

Now consider the initial-boundary-value Problem
9 as a semilinear stochastic evolution equation:

dug + Augdt = fi(ug)dt + dW; | (10)

with initial condition u(0) = 0, where f : S x 2 x
H_, — H_, satisfies Hypothesis 1(b) relative to the
separable Hilbert space H = H_,. The mild solution
of Equation 10 (which is also a mild solution of Problem
9) can be defined, to be the solution of:

ut=/0 U(t—s)fs(us)ds+/0 Ut — 5)dWs. )

Since W; is a continuous local martingale on the
separable Hilbert space H_p, then fot U(t — s)dW, has
an adapted continuous version (see for example [10]).
If the following is defined

¢
Vt:=/ U(t — s)dW,
0

then by Proposition 1, Equation 11 has a unique
continuous solution with values in H_,.

A SEMILINEAR INTEGRAL EQUATION
ON THE WHOLE REAL LINE

Let us reduce the integral Equation 4 to the following
integral equation:

X = / t Ut — $)f(Xs + Vs)ds . (12)

The following theorem translates Proposition 1 to
the case when parameter set of the process is the whole
real line.

B. Z. Zangeneh

Theorem 1

If A, f and V satisfy Hypothesis 1, then the integral
Equation 12 has a unique continuous solution X such
that:

t
1% < / e N (|[Va)ds (13)
1
B{IX]} < 5 sup BE(IV.D} = Ki (14)

For proof see [2].

Galerkin Approximations

Let U(t) be a semigroup generated by a strictly nega-
tive definite closed unbounded self-adjoint operator A
such that A~! is compact. Then there is a complete
orthonormal basis (¢,) and eigenvalues 0 < Ay < A; <
A2 < ... with A, — oo, such that A¢, = —A,dn.

Let H, be the subspace of H generated by
{do, %1, ..., on—1} and let J,, be the projection operator
on H,.

Define:

fn = Jnf; Vn(t) = Jn V(t)a
Un(t) = V() Jn ,

and define X,,(t) and X (¢) as solutions of:

Xo(t) = / C Ut — $)fu(Xa(5))ds + Valt) |
~eo (15)

and:
X(t):/t Ut — s)f(X(s))ds + V(2) . (16)

Now the following theorem can be proved.

Theorem 2
If AU, f and V satisfy Hypothesis 1, then one has:

E(|| Xn(t) — X)) — O.
Proof
Define:
XE(t) = /1t Un(t — 8)Fa(XE(s))ds + Va(2),
—k
x40 = [ k U(t = 5)f(X*(s))ds + V(2),
and:

Vn,k(t):/t(Un(t —5) = U(t — s)f(X*(s))ds.

k
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By Proposition 2, the following is obtained:
[ X5(8) = X*ON? < 4lIValt) = V)
+ 4] V(O

+1I (/_t e220%||V,(s) — V(s)||2ds> '

k

1
t 2
+I (/ e”"SIIVn,k(S)IIzdS)
—k

+ / ¢29%)| £,,(X (s)) — F(X(5))|[ds.
—k
(7)

Taking expectations and using the Schwartz in-
equality and Fubini’s theorem, Statement 17 implies
that:

E{|X5() =X )17} < 4E{IVa () = V(OII%}

+ 4E{||Vo ()1}

+ B [0 BV -V (175

1
2

et ([ w 0 B[V (9]

+ [ Bl XE) - FXE)IPs. (9)

oo

It is first shown that:

E{(|X5(t) - X*(#)[|?} —» 0 uniformly in & .
(19)

Since V,, = J,V and f, = J.f, the first, third
and 5th term of the right hand side of Statement 18
converge to zero. Then to prove Statement 19 it is
enough to show that E(||V,, x(t)||?) converges to zero
uniformly in £ and t € (—oo,T].

By using ||f(z)|| £ C(1 + ||z||?) and Statement 6,
it is shown that:

supe pE(|V(8)]|*) < o0 ,

and, using Fubini’s theorem, one has:

SuPteRE(”Vn,k(t)|I2) < SuPteRE{l + ”V(t)”p}

0
/_ U (=s) = Un(—s)||2ds .

o)

11

Since:
U(=8) = U,(—3s)||z — 0 for s < 0 and

[U(=8) = Un(=s)llz < e,
then by the dominated convergence theorem:

supre p (|| Vv (8)II*) — 0
Then:
E(|| Xnx(t) = X*(t)||?) = 0 uniformly in & .

uniformly in & .

By the proof of Theorem 1 (see [2]), then E(||Xn (t) —
X)) — 0as k — oo, hence E(|| X*(t) - X(¢)||) = 0
and it is obtained that E(|| X.(¢)— X (¢)||) — 0. Q.E.D.
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