Galerkin Approximations for a Semilinear Stochastic Integral Equation

B.Z. Zangeneh¹

In this paper, the Galerkin method is used to approximate the solution of the H-valued integral equation:

$$X_t = \int_{-\infty}^{t} U(t-s) f_s(X_s) ds + V_t,$$

where H is a real separable Hilbert space. U(t) is a semigroup generated by a strictly negative definite, self-adjoint unbounded operator A, such that A^{-1} is compact and f is of monotone type and is bounded by a polynomial. Furthermore, V_t is a cadlag adapted process.

INTRODUCTION

Let H be a real separable Hilbert space with norm $\| \|$ and inner product \langle , \rangle . Suppose $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ is a complete stochastic basis with a right continuous filtration and $\{W_t, t \geq 0\}$ is an H-valued cylindrical Brownian motion with respect to $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$. Consider the stochastic semilinear equation:

$$dX_t = AX_t dt + f_t(X_t) dt + dW_t , \qquad (1)$$

where A is a closed, self-adjoint, negative definite, unbounded operator such that A^{-1} is nuclear. A mild solution of Equation 1 with initial condition, $X(0) = X_0$, is the solution of the integral equation:

$$X_{t} = U(t,0)X_{0} + \int_{0}^{t} U(t-s)f_{s}(X_{s})ds + \int_{0}^{t} U(t-s)dW_{s} , \qquad (2)$$

where U(t) is the semigroup generated by A.

Marcus [1] has proved that when f is independent of t as well as ω and uniformly Lipschitz, then the solution of Equation 2 is asymptotically stationary. To prove this, Marcus studied the following integral equation:

$$X_{t} = \int_{-\infty}^{t} U(t-s)f_{s}(X_{s})ds$$
$$+ \int_{-\infty}^{t} U(t-s)dW_{s}, \tag{3}$$

where the parameter set of the processes is extended to the whole real line. This gave the motivation for studying the existence of the solution of a more general equation:

$$X_t = \int_{-\infty}^t U(t-s)f_s(X_s)ds + V_t, \tag{4}$$

where U(t) is a semigroup generated by a strictly negative definite, self-adjoint unbounded operator A such that A^{-1} is compact, f is of monotone type, bounded by a polynomial and V_t is a cadlag adapted process. In [2], the existence and the uniqueness of the solution to Equation 4 is proved. In this paper it is proven that finite dimensional Galerkin approximations converge strongly to the solution of Equation 4. In [3] this result is used to prove the stationarity of the solution of Equation 4. Results of this paper are presented in [4] without proof.

PRELIMINARIES

A Semilinear Evolution Equation

Let g be an H-valued function defined on a set $D(g) \subset H$. Recall that g is monotone if, for each pair, $x, y \in D(g)$,

$$\langle g(x) - g(y), x - y \rangle \ge 0$$
.

We say g is bounded if there exists an increasing continuous function ψ on $[0,\infty)$ such that $||g(x)|| \le \psi(||x||), \forall x \in D(g)$. g is demi-continuous if, whenever

^{1.} Department of Mathematical Sciences, Sharif University of Technology, Tehran, I.R. Iran.

 (x_n) is a sequence in D(g) which converges strongly to a point $x \in D(g)$, then $g(x_n)$ converges weakly to g(x). Consider the following integral equation:

$$X_t = \int_0^t U(t-s)f(X_s)ds + V_t , \qquad (5)$$

where f, V and the generator A of the semigroup U satisfy the following hypothesis.

Hypothesis 1

- a) U(t) is a semigroup generated by a strictly negative definite, self-adjoint unbounded operator A such that A^{-1} is compact. Then there is $\lambda > 0$ such that $\|U(t)\| \le e^{-\lambda t}$.
- b) Let $\varphi(t) = K(1+t^p)$ for some p > 0, K > 0. -f is a monotone demi-continuous mapping from H to H such that $||f(x)|| \leq \varphi(||x||)$ for all $x \in H$.
- c) Let $r = 2p^2$. V_t is cadlag adapted process such that $\sup_{t \in R} E\{\|V_t\|^r\} < \infty$.

Proposition 1

Suppose that f, V, A and U satisfy Hypothesis 1. Then Equation 5 has a unique adapted cadlag (continuous, if V_t is continuous) solution. Furthermore,

$$|X(t)|| \le ||V(t)|| + \int_0^t e^{(\lambda)(t-s)} ||f(s,V(s))|| ds$$
 (6)

For the proof see [5].

The Stability of the Solution

Proposition 2

Let f^1 and f^2 be two mappings satisfying Hypothesis 1 bounded by functions φ_1 and φ_2 respectively.

Suppose V^1 , V^2 , U^1 and U^2 satisfy Hypothesis 1. Let $X^i(t)$, i = 1, 2 be the solution of the integral equations:

$$X^{i}(t) = \int_{0}^{t} U^{i}(t-s) f_{s}^{i}(X^{i}(s)) ds + V^{i}(t).$$
 (7)

Define $v^3(t)$ and \bar{I} as:

$$V^3(t)\!:=\!\int_0^t (U^2(t\!-\!s)\!-\!U^1(t\!-\!s))f^2(X^1(s))ds,$$

$$\bar{I} := 4 \int_0^T e^{-2\lambda s} \|f^2(X^2(s)) - f^1(X^1(s))\|^2 ds .$$

Then the following is obtained:

$$\begin{split} \|X^{2}(t) - X^{1}(t)\|^{2} &\leq 4\|V^{2}(t) - V^{1}(t)\|^{2} \\ &+ 4\|V^{3}(t)\|^{2} \\ &+ \bar{I}\left(\int_{0}^{t} e^{-2\lambda s}\|V^{2}(s) - V^{1}(s)\|^{2}ds\right)^{\frac{1}{2}} \\ &+ \bar{I}\left(\int_{0}^{t} e^{-2\lambda s}\|V^{3}(s)\|^{2}ds\right)^{\frac{1}{2}} \\ &+ \int_{0}^{t} e^{-2\lambda s}\|f^{2}(X^{1}(s)) - f^{1}(X^{1}(s))\|^{2}ds. \end{split} \tag{8}$$

For proof see [6].

EXAMPLES

A Semilinear Stochastic Evolution Equation

The existence and uniqueness of the solution of the integral Equation 2 have been studied in [7]. Marcus assumed that f is independent of $\omega \in \Omega$ and $t \in S$ and that there are M > 0, and $p \ge 1$ for which:

$$\langle f(u) - f(v), u - v \rangle \leq -M \|u - v\|^p,$$

and:

$$||f(u)|| \le C(1 + ||u||^{p-1}).$$

Marcus proved that this integral equation has a unique solution in $L^p(\Omega, L^p(S, H))$.

As a consequence of Proposition 1, this result can be extended to a more general f and the existence of a strong solution of Equation 2 which is continuous instead of merely being in $L^p(\Omega, L^p(S, H))$ can be shown

The Ornstein-Uhlenbeck process $V_t = \int_0^t U(t-s)dW(s)$ has been well-studied e.g., in [8] where they show that V_t has a continuous version. Therefore, Equation 2 can be rewritten as:

$$X_t = \int_0^t U(t-s)f_s(X_s)ds + V_t,$$

where V_t is an adapted continuous process. Then, by Proposition 1, the Equation 2 has a unique continuous adapted solution.

A Semilinear Stochastic Partial Differential Equation

Let D be a bounded domain with a smooth boundary in \mathbb{R}^d . Let -A be a uniformly strongly elliptic second order differential operator with smooth coefficients on D. Let B be the operator $B = d(x)D_N + e(x)$, where D_N is the normal derivative on ∂D , and d and e are in $C^{\infty}(\partial D)$. Let A (with the boundary condition $Bf \equiv 0$) be self-adjoint.

Consider the initial-boundary-value problem:

$$\begin{cases} \frac{\partial u}{\partial t} + Au = f_t(u) + \dot{W} & \text{on} \quad D \times [0, \infty), \\ Bu = 0 & \text{on} \quad \partial D \times [0, \infty), \\ u(0, x) = 0 & \text{on} \quad D, \end{cases}$$
(9)

where $\dot{W}=\dot{W}(t,x)$ is a white noise in space—time for the definition and properties of white noise (see [9]), and f_t is a non-linear function that will be defined below. Let $p>\frac{d}{2}$. W can be considered as a Brownian motion \tilde{W}_t on the Sobolev space H_{-p} (see [9] Chapter 4, page 4.11). There is a complete orthonormal basis $\{e_k\}$ for H_p .

The operator A (plus boundary conditions) has eigenvalues $\{\lambda_k\}$ with respect to $\{e_k\}$, i.e., $Ae_k = \lambda_k e_k$, $\forall k$. The eigenvalues satisfy $\Sigma_j (1 + \lambda_j^{-p}) < \infty$ if $p > \frac{d}{2}$ (see [9] Chapter 4, page 4.9) Then $[A^{-1}]^p$ is nuclear and -A generates a contraction semigroup $U(t) \equiv e^{-tA}$. This semigroup satisfies Hypothesis 1.

Now consider the initial-boundary-value Problem 9 as a semilinear stochastic evolution equation:

$$du_t + Au_t dt = f_t(u_t)dt + d\tilde{W}_t , \qquad (10)$$

with initial condition u(0) = 0, where $f: S \times \Omega \times H_{-p} \to H_{-p}$ satisfies Hypothesis 1(b) relative to the separable Hilbert space $H = H_{-p}$. The mild solution of Equation 10 (which is also a mild solution of Problem 9) can be defined, to be the solution of:

$$u_{t} = \int_{0}^{t} U(t-s)f_{s}(u_{s})ds + \int_{0}^{t} U(t-s)d\tilde{W}_{s}.$$
(11)

Since \tilde{W}_t is a continuous local martingale on the separable Hilbert space H_{-p} , then $\int_0^t U(t-s)d\tilde{W}_s$ has an adapted continuous version (see for example [10]). If the following is defined

$$V_t := \int_0^t U(t-s)d\tilde{W}_s,$$

then by Proposition 1, Equation 11 has a unique continuous solution with values in H_{-p} .

A SEMILINEAR INTEGRAL EQUATION ON THE WHOLE REAL LINE

Let us reduce the integral Equation 4 to the following integral equation:

$$X_t = \int_{-\infty}^t U(t-s)f(X_s + V_s)ds . \qquad (12)$$

The following theorem translates Proposition 1 to the case when parameter set of the process is the whole real line.

Theorem 1

If A, f and V satisfy Hypothesis 1, then the integral Equation 12 has a unique continuous solution X such that:

$$||X_t|| \le \int_{-\infty}^t e^{-\lambda(t-s)} \varphi(||V_s||) ds , \qquad (13)$$

$$E\{\|X_t\|\} \le \frac{1}{\lambda} \sup_{s \in R} E\{\varphi(\|V_s\|)\} := K_1 . \tag{14}$$

For proof see [2].

Galerkin Approximations

Let U(t) be a semigroup generated by a strictly negative definite closed unbounded self-adjoint operator A such that A^{-1} is compact. Then there is a complete orthonormal basis (ϕ_n) and eigenvalues $0 < \lambda_0 < \lambda_1 < \lambda_2 < ...$ with $\lambda_n \to \infty$, such that $A\phi_n = -\lambda_n \phi_n$.

Let H_n be the subspace of H generated by $\{\phi_0, \phi_1, ..., \phi_{n-1}\}$ and let J_n be the projection operator on H_n .

Define:

$$f_n = J_n f, \quad V_n(t) = J_n V(t),$$

$$U_n(t) = J_n V(t) J_n ,$$

and define $X_n(t)$ and X(t) as solutions of:

$$X_n(t) = \int_{-\infty}^{t} U_n(t-s) f_n(X_n(s)) ds + V_n(t) ,$$
 (15)

and:

$$X(t) = \int_{-\infty}^{t} U(t-s)f(X(s))ds + V(t) . \qquad (16)$$

Now the following theorem can be proved.

Theorem 2

If A, U, f and V satisfy Hypothesis 1, then one has:

$$E(||X_n(t) - X(t)||) \to 0.$$

Proof

Define:

$$X_n^k(t) = \int_{-k}^t U_n(t-s) f_n(X_n^k(s)) ds + V_n(t),$$

$$X^k(t) = \int_{-k}^t U(t-s) f(X^k(s)) ds + V(t),$$

and:

$$\bar{V}_{n,k}(t) = \int_{-k}^{t} (U_n(t-s) - U(t-s)f(X^k(s))ds.$$

By Proposition 2, the following is obtained:

$$||X_{n}^{k}(t) - X^{k}(t)||^{2} \leq 4||V_{n}(t) - V(t)||^{2}$$

$$+ 4||\bar{V}_{n,k}(t)||^{2}$$

$$+ \bar{I} \left(\int_{-k}^{t} e^{2\lambda_{0}s} ||V_{n}(s) - V(s)||^{2} ds \right)^{\frac{1}{2}}$$

$$+ \bar{I} \left(\int_{-k}^{t} e^{2\lambda_{0}s} ||\bar{V}_{n,k}(s)||^{2} ds \right)^{\frac{1}{2}}$$

$$+ \int_{-k}^{t} e^{2\lambda_{0}s} ||f_{n}(X(s)) - f(X(s))||^{2} ds.$$

$$(17)$$

Taking expectations and using the Schwartz inequality and Fubini's theorem, Statement 17 implies that:

$$E\{\|X_{n}^{k}(t) - X^{k}(t)\|^{2}\} \leq 4E\{\|V_{n}(t) - V(t)\|^{2}\}$$

$$+ 4E\{\|\bar{V}_{n,k}(t)\|^{2}\}$$

$$+ (E\{\bar{I}^{2}\})^{\frac{1}{2}} \left(\int_{-\infty}^{t} e^{2\lambda_{0}s} E(\|V_{n}(s) - V(s)\|^{2}) ds\right)^{\frac{1}{2}}$$

$$+ (E\{\bar{I}^{2}\})^{\frac{1}{2}} \left(\int_{-\infty}^{t} e^{2\lambda_{0}s} E(\|\bar{V}_{n,k}(s)\|^{2}) ds\right)^{\frac{1}{2}}$$

$$+ \int_{-\infty}^{t} e^{2\lambda_{0}s} E(\|f_{n}(X(s)) - f(X(s))\|^{2}) ds. \tag{18}$$

It is first shown that:

$$E\{\|X_n^k(t) - X^k(t)\|^2\} \to 0 \quad \text{uniformly in } k \ . \tag{19}$$

Since $V_n = J_n V$ and $f_n = J_n f$, the first, third and 5th term of the right hand side of Statement 18 converge to zero. Then to prove Statement 19 it is enough to show that $E(\|\bar{V}_{n,k}(t)\|^2)$ converges to zero uniformly in k and $t \in (-\infty, T]$.

By using $||f(x)|| \le C(1+||x||^p)$ and Statement 6, it is shown that:

$$\sup_{t\in R} E(\|V(t)\|^{2p}) < \infty ,$$

and, using Fubini's theorem, one has:

$$\sup_{t \in R} E(\|\bar{V}_{n,k}(t)\|^2) \le \sup_{t \in R} E\{1 + \|V(t)\|^p\}$$

$$\int_{-\infty}^{0} \|U(-s) - U_n(-s)\|_L^2 ds.$$

Since:

$$||U(-s) - U_n(-s)||_L \to 0$$
 for $s < 0$ and

$$||U(-s) - U_n(-s)||_L \le e^{2\lambda_0 s}$$
,

then by the dominated convergence theorem:

$$\sup_{t \in R} E(\|\bar{V}_{n,k}(t)\|^2) \to 0 \quad \text{uniformly in } k.$$

Then:

$$E(||X_{n,k}(t) - X^k(t)||^2) \to 0$$
 uniformly in k.

By the proof of Theorem 1 (see [2]), then $E(\|X_{n,k}(t) - X_n(t)\|) \to 0$ as $k \to \infty$, hence $E(\|X^k(t) - X(t)\|) \to 0$ and it is obtained that $E(\|X_n(t) - X(t)\|) \to 0$. Q.E.D.

ACKNOWLEDGMENT

This research is partially supported by Sharif University of Technology and Institute for Studies in Theoretical Physics and Mathematics.

REFERENCES

- Marcus, R. "Parabolic Ito equations", Trans. Amer. Math. Soc., 198, pp 177-190 (1974).
- Zangeneh, B.Z. "Existence and uniqueness of the solution of a semilinear stochastic evolution equation on the whole real line", Seminar on Stochastic Processes, Birkhauser, Boston (1992).
- Zangeneh, B.Z. "Stationarity of the solution for the semilinear stochastic integral equation on the whole real line", Sharif University of Technology, Department of Mathematical Sciences TR/11 (1995).
- Zangeneh, B.Z. "Galerkin approximation for the semilinear stochastic integral equation on the whole real line", The Proceedings of the 26th Annual Iranian Mathematics Conference (1995).
- Zangeneh, B.Z. "Measurability of the solution of a semilinear evolution equation", Seminar on Stochastic Processes, Birkhauser, Boston (1990).
- Zangeneh, B.Z. "The stability of the solution of a semilinear evolution equation", The Proceedings of the 24th Annual Iranian Mathematics Conference (1993).
- Marcus, R. "Parabolic Ito equations with monotone non-linearities", Functional Analysis, 29, pp 275-286 (1978).
- Iscoe, I., Marcus, M.B., McDonald, D., Talagrand, M. and Zinn, J. "Continuity of l²-valued Ornstein-Uhlenbeck process", The Annals of Probability, 18(1), pp 68-84 (1990).
- Walsh, J.B. "An introduction to stochastic partial differential equations", Lecture Notes in Math., 1180, pp 266-439 (1986).
- Zangeneh, B.Z. "Semilinear stochastic evolution equations with monotone nonlinearities", Stochastics and Stochastics Reports, 53, pp 129-174 (1995).