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Abstract. This paper studies the behavior of six air pollutants (including PM10, PM2:5,
O3, SO2, NO2, and CO) in Tehran over a 6-year time span. In this paper, an iterative
procedure based on the univariate Box-Jenkins stochastic models is applied to develop
the most e�ective forecasting model for each air pollutant. Applying a number of widely
used criteria, the best model for each air pollutant is selected and the results show that the
proposed models perform accurately and satisfactorily for both �tting and predicting where
the �tted and predicted values are so close to the true values of the related data. Finally,
factor analysis is conducted to investigate the relationships between the air pollutants
where the results show that four factors account for 93.2704% of the total variance. In
this regard, the factor containing PM10 and PM2:5 and the factor containing CO and NO2

are, respectively, the most and the second most a�ecting factors with the proportion of
43.2594% and 21.6500% of the total variability. Since both of these factors stem from
the large-scale use of fossil-fuel vehicles, reducing the number of vehicles or improving the
quality of fossil fuels, may increase air quality by 60%.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Urbanization, the ever-increasing development of cities,
and the volatile speed of technologies have been
intensi�ed in recent decades. Despite all bene�ts,
these technological developments and achievements
have drastically a�ected the ecosystem and put them
in danger. Air pollution is one of the serious envi-
ronmental problems stemming from the development
of these technologies, threatening public health, social
welfare, and even economic success [1{3]. Air pollution
is a consequence of one or several factors such as
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urbanization, rapid population growth, the inadequacy
of public transportation systems, non-standard motor-
vehicles and etc. The threat of air pollution and its
catastrophic e�ects are serious especially for megacities
and developing countries [4,5]. Accordingly, along
with the utilization of e�ective solutions to hinder
the negative e�ects of air pollution, monitoring of air
pollution is a necessary matter in order to support
municipal decision-making and management.

Air pollution can be interpreted as the presence
of various pollutants in the ambient air. These pollu-
tants are often detrimental to the health of humans,
animals, plants, and living creatures [6{8]. There are
many standards and regulations about air pollutants
which de�ne and determine the parameters and their
acceptable level of health. The National Ambient
Air Quality Standards (NAAQS) is one of the most
prominent environmental standards which is developed
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by the United States Environmental Protection Agency
(EPA). NAAQS identi�es the following parameters as
the criteria for air pollution: Particulate matter 10
(PM10), particulate matter 2.5 (PM2:5), ozone (O3),
sulfur dioxide (SO2), nitrogen dioxide (NO2), nitrogen
monoxide (NO), and carbon monoxide (CO) [9].

The problem of monitoring air pollutants has
received great attention among researchers and prac-
titioners for a long time and hence, various approaches
and tools have been developed to deal with this
problem. On one hand, the researches can be classi�ed
according to the considered air pollutants. Considering
more detrimental e�ects of particulate matter (PM10
and PM2:5) and O3 parameters on the environment and
human health, they have received more attention in the
researches [10{13], however, other parameters are still
important and have been considered in some researches
including Au�hammer and Carson [14], Olabemiwo
et al. [15], and Cabaneros et al. [16]. On the other
hand, the researches can be classi�ed according to
the exploited modeling approach. Considering the
high capability of Arti�cial Neural Networks (ANN)
in modeling non-linear relationships, some authors
developed an ANN-based forecasting model for air
pollutants [17,18] while, due to the simplicity and
reliability of Multi Linear Regression (MLR), some
other authors proposed an MLR model [19{21]. There
are also other researches in the �eld of forecasting air
pollutants that use hybrid models such as MLR and
ANN [22], support vector machine and ANN [23], and
Arti�cial Fuzzy Neural Networks (AFNN) [18]. In ad-
dition, some researchers have used a Response Surface
Modeling (RSM)-based approach for the prediction of
air pollutants [24].

Time series modeling approaches have been
widely used for modeling and forecasting of time series
data in di�erent applications (see for example [25{36]).
Among them, there are many types of researches that
consider the air pollutants' behavior as a stochastic
process and apply the univariate time series models for
analysis and forecasting of these processes. In fact,
the air quality is highly dependent on the weather
conditions, and air pollution is strongly governed by
meteorology [37]. However, in the univariate time
series models, the concentration of air pollutants is
considered to be the �nal result of intricate interactions
between di�erent actors including meteorology, chem-
istry, transportation, and etc. As a result, the process
of air pollution is modeled by univariate time series
models without the inclusion of other variables like me-
teorological ones which lead to simplifying the process
modeling and the related calculations. Considering
the high e�ciency of univariate Box-Jenkins models,
exploitation of univariate models also helps to achieve
suitable results. Although there are some critics and
arguments about Box-Jenkins models [38], there are a

lot of research works that applied these models and
achieved invaluable results. Box-Jenkins models have
been popular in forecasting air pollution, and the high
capabilities of these models have been proved in dif-
ferent researches. Kumar and Jain [39] proposed Box-
Jenkins models for forecasting ambient air pollutants
including O3, NO2, NO, and CO. Zhou and Goh [40]
used the same approach for modeling PM2:5, and Jian
et al. [41] applied the Box-Jenkins model for predicting
PM10 and submicron concentrations. The combination
of Box-Jenkins models with other statistical models has
been considered, also, for forecasting and analysis of
air pollution where ANN is more popular than others.
D��az-Robles et al. [42] applied a hybrid Box-Jenkins
and ANN model for forecasting PM10 and O3, and
Samia et al. [43] used the same approach for PM10. A
summary of the related researches in the past decade
based on the type of model(s) for forecasting, the
timespan to develop the forecasting model, and the air
pollutants considered to be forecasted, is presented in
Table 1.

Based on the reports of the World Bank and
World Health Organization (WHO), Tehran has one
of the most polluted ambient air in the world, ranked
12th among 26 megacities in the world in 2016 [51].
Tehran as the capital and the biggest city of Iran
is a megacity in a developing country that is highly
endangered with harmful damages of air pollution.
The Air Quality Control Company (AQCC) of the
Municipality of Tehran is responsible for monitoring
the air quality in Tehran and its urban area. The
AQCC monitors the air pollution parameters based
on NAAQS, as mentioned above. The AQCC has
23 stations throughout the city, and systematically
collects data from these stations and processes them
to monitor air quality. In this study, we use the daily
reports and information of the AQCC for a timespan
of 6 years from 20 March 2012 (1 Farvardin 1391 in
Persian calendar) to 20 March 2018 (29 Esfand 1396 in
Persian calendar).

This paper presents a statistical study of the air
pollutants parameters in Tehran. In this regard, a
stationary stochastic Box-Jenkins modeling approach
has been adapted to forecast the daily average ambient
air pollutants (PM10, PM2:5, O3, SO2, NO2, and CO)
concentrations in Tehran. The data for daily mean
air pollutants concentrations have been obtained from
AQCC under the supervisory of the Municipality of
Tehran (http://air.tehran.ir/; accessed in June-2018).
This research is conducted, mainly, in order to provide
a good forecast for each of the air pollution parameters
and to present an e�ective short-term forecasting model
of air pollutants for Tehran, based on the statistical and
time series modeling techniques. The novelty of this
paper resides in providing a study over each of the six
air pollutants of Tehran's ambient air and proposing
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Table 1. Summary of the related researches in other countries and cities (sorted based on year).

Author(s) Year Location Timespan Model(s) Index

PM10 PM2:5 O3 SO2 NO2 NO CO

D��az-Robles et al. [42] 2008 Temuco, Chile 7 years ANN and ARIMA
p

{
p

{ { { {

Kurt et al. [17] 2008 Istanbul, Turkey 3 years ANN
p

{ {
p

{ {
p

Hoi et al. [44] 2009 Macau, Macau 5 years ANN
p

{ { { { { {

Kumar and Jain [39] 2010 Delhi, India 1 year ARIMA { {
p

{
p p p

Genc et al. [45] 2010 Ankara, Turkey 2 years MLR
p

{ {
p p p p

Vlachogianni et al. [22] 2011
Athens, Greece

Helsinki, Finland
1 year MLR and ANN

p
{ { {

p
{ {

Poggi and Portier [46] 2011 Rouen, France 5 years CLR
p

{ { { { { {

Samia et al. [43] 2012 Sfax, Tunisia 5 years ANN and ARIMA
p

{ { { { { {

Jian et al. [41] 2012 Hangzhou, China 1 year ARIMA
p

{ { { { { {

Mu~noz et al. [23] 2014 Algeciras, Spain 7 years SVM and ANN
p

{ {
p

{ { {

Gocheva-Ilieva et al. [47] 2014 Blagoevgrad, Bulgaria 1 years SARIMA
p

{
p p p p

{

Elbayoumi et al. [19] 2014 Gaza, Palestine 1 year MLR
p p

{ { { { {

Asadollahfardi et al. [72] 2015 Aghdaseiyeh, Iran 1 year ARIMA
p

{
p p p p p

Cortina-Januchs et al. [48] 2015 Salamanca, Mexico 2 years ANN
p

{ { { { { {

Jiang et al. [49] 2017 Jingjinji, China 1 year AFNN {
p

{ { { { {

Zhou and Goh [40] 2017 Singapore, Singapore 1 year ARIMA {
p

{ { { { {

Abdolkarimzadeh et al. [50] 2018 Tehran, Iran 2 years AFNN
p p p p p

{
p

This study 2021 Tehran, Iran 6 years ARIMA
p p p p p

{
p

the best forecasting model for each air pollutant. In
addition, applying factor analysis, the relationships
between these air pollutants are analyzed to determine
the e�ect of air pollutants on air quality and group
them based on their e�ect on the air quality. Ac-
cordingly, the main sources of the Tehran air pollution
problem are studied empirically, and investigating the
air pollutants that have the greatest impact on air
quality, decision-makers can focus on the sources of air
pollutants and take appropriate actions to improve air
quality by reducing the emission of these air pollutants.

The rest of the paper is organized as follows.
The study area and the related air pollutants data
are described in Section 2. The Box-Jenkins mod-
els are generally introduced in Section 3. Then,
in Section 4, the Autoregressive Integrated Moving
Average (ARIMA) models are proposed for each of the
air pollutants including PM10, PM2:5, O3, SO2, NO2,
and CO, based on the iterative procedure of time series
modeling. The factor analysis is applied in Section 5
to illustrate the relationships among the variables and
show the variables that have the greatest impact on air
quality. Finally, concluding remarks are provided in
Section 6.

2. Situation

2.1. Study area
The area under study in this paper is the city of
Tehran, the capital of the Islamic Republic of Iran

Figure 1. The geographical location of Tehran province
and the city.

(IRI). Tehran is the biggest city of IRI with a mean
population of 8.5 million which can reach over 12.5
million during the day, because of commuting people
from nearby cities [52]. Tehran is located in the north
of Iran and the south of the high altitudes of the Alborz
Mountain Range. The geographic coordinates of the
city are 51�,20 and 51�,360 East longitude and 35�,340
and 35�,500 North latitude as illustrated in Figure 1,
and the altitudes of the city vary between 2000 to
1000 meters from the north to south above to sea
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Table 2. Descriptive statistics for observed air pollutants of Tehran city.

Variable Standard
threshold

Maximum Minimum Range Mean Standard
deviation

Variance Skewness Kurtosis KS test

PM10 20a, 50b 252 14 238 61.9666 18.5311 343.4032 1.6537 13.6134 0.07

PM2:5 10a, 25b 192 28 164 92.2314 25.3085 640.5211 0.5312 3.3957 0.06

O3 100c 128 7 121 35.9808 15.5687 242.3857 1.2185 6.1055 0.06

SO2 125b 50 6 44 23.8041 7.0564 49.7941 0.1719 2.9046 0.06

NO2 40a 106 29 77 61.2487 12.8121 164.1512 0.4102 2.8533 0.06

CO 10c 81 19 62 38.6964 9.2980 86.4542 0.6493 3.3891 0.07

Note: aAnnual mean; b24-hour mean; c8-hour mean.

level, respectively. Tehran has a semi-arid climate and
the main source of precipitation is the Mediterranean
and Atlantic winds which blow from the West. Also,
the Alborz Mountain Range hinders the penetration
of air masses from the Caspian Sea. The variations
of Tehran's temperature are in a range from 40�C (in
summers) to �5�C (in winters) and the mean annual
rainfall is about 250 millimeters [53].

Based on the reports provided by Hosseini and
Shahbazi [54], Tehran has more than 17 million cars
traveling every day, most of which are obsolete, and
therefore become one of the main sources of air pol-
lution in Tehran. On the other hand, Tehran is
surrounded by the Alborz Mountain Range altitudes
which trap polluted air, especially when the weather
becomes cold and inhibits the pollutants to be diluted;
a phenomenon called Temperature Inversion.

2.2. Data
The models, in this paper, are developed for data
related to six air pollutants in a 6-year time span
in Tehran from 20 March 2012 (1 Farvardin 1391 in
Persian calendar) to 20 March 2018 (29 Esfand 1396
in Persian calendar), equal to 2192 days. The observed
pollutants are concentrations of PM10, PM2:5, O3, SO2,
NO2, and CO which are expressed in the unit of mass
concentration of pollutants in microgram per cubic
meter (�g/m3). The data related to the air pollutants
have been collected and processed by 23 stations of
AQCC across the city. It should be noted that there
are no missing values in the data set.

The general properties of the data are illustrated
and represented in Table 2 by descriptive statistics of
the data including maximum, minimum, range, mean,
standard deviation, variance, skewness, and kurtosis
coe�cients. The skewness and kurtosis are often
employed to examine the properties of symmetry and
atness of the density function and the distribution of
the data in the time series. According to Table 2,
the maximum value of skewness and kurtosis are,
respectively, 1.6537 and 13.6134 which is related to
PM10. Also, the threshold limit for each of the six
air pollutants is presented according to the standards
of WHO and the European Commission for air quality
and standard.

As the data are gathered in a daily routine, a
seasonality behavior in the time series of the indices
can be considered by days.

3. Box-Jenkins models

In 1970, Box and Jenkins introduced a general class
of models in order to �nd the best �t for a time-
series model of past observations, entitled ARIMA
models [55]. ARIMA models are intrinsically a mixture
of three processes of (a) Autoregressive (AR), (b)
di�erencing, and (c) Moving Average (MA). Hence,
the notation in order to distinguish an ARIMA model
is suggested as ARIMA (p; d; q) where, p is a non-
negative integer that describes the parameters of the
AR process; d is a nonnegative integer that describes
trend process (I), and q is also a nonnegative integer to
introduce the parameters of MA process. Estimation
of these parameters is usually determined by means of
iterative procedures which seek to minimize the sum of
squares for a non-linear regression model.

The general form of an ARMA model of order
(p; q), a mixture of AR and MA models, can be
represented as:

�(B)xt = � + �(B)"t; (1)

in which t = 1; 2; 3; � � � ; n denotes the time values and n
is the total number of observations in the time series,
xt denotes the value of the time series variable x at
time t, and B is the backshift operator. In addition,
"t represents the error term at time t where, based
on the Wold theorem [56], the error term should be
white noise, that is, uncorrelated random shocks with
mean zero and constant variance of �2 or equivalently
"t � WN(0; �2). Moreover, �(B) and �(B) are AR
and MA operators of order, respectively, p and q are
represented as:

�(B) = 1�
pX
i=1

�iBi and �(B) = 1�
qX
i=1

�iBi:

In some situations, a process has not a constant
level and does not exhibit a stationary process. A time
series that exhibits nonstationary behavior but it is



J. Delaram and M. Khedmati/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3551{3568 3555

changeable to a stationary process by di�erencing, is
called a homogenous nonstationary process. Therefore,
a homogenous nonstationary ARMA (p; q) process
which is transformed into a stationary process using
a di�erencing of order d, is called an ARIMA process
of orders p; d, and q or equivalently ARIMA (p; d; q)
and is represented as:

�(B)(1�B)dxt = � + �(B)"t: (2)

In most cases, �rst-order (d = 1) or second-order (d =
2) di�erencing is enough to achieve the stationarity
condition.

If a periodic pattern or a seasonal behavior exists
in the time series, a seasonal ARIMA or Seasonal
Autoregressive Integrated Moving Average (SARIMA)
model can be exploited to investigate the behavior of
the process in which, the general form of SARIMA
models is given as:

��(Bs)�(B)(1�B)d(1�Bs)Dxt
= � + ��(Bs)�(B)"t: (3)

The notation of this model is ARIMA (p; d; q) �
(P;D;Q)s where, P is the parameter for the number
of seasonal AR terms, D is the parameter for the order
of seasonal di�erencing, Q is the parameter for the
number of seasonal MA terms and s is the parameter
for the number of periods in a season.

4. Building the forecasting model

There are several approaches to develop a Box-Jenkins
forecasting model but, in essence, almost all of them
are the same and only di�er in lateral details. One of
the common characteristics of these approaches is being
iterative. Hence, it is needed to iterate the procedure
successively to achieve a suitable forecasting model.
The (iterative) procedure which is exploited in this
paper to develop the forecasting model is as follows.

Step 1: Initial analysis. Plotting and analyzing
the time series plot of the data can help to determine
the general pattern and behavior of the corresponding
process. By investigating the patterns and behavior
of the process, one can take the appropriate action to
stabilize data, reduce the variability and detrend data
to achieve the stationarity conditions.

The time series plot of the six air pollutants
presented in Appendix A reveals that the data have
some patterns that make them nonstationary. For
example, the time series of O3 in Figure A. 4 illustrates
a strong seasonal behavior with a slight descending
trend which is a sign of nonstationarity. Furthermore,
Table 3 presents the results of applying the Augmented

Table 3. The result of the Augmented Dickey-Fuller
(ADF) test on the air pollutants time series.

Variable ADF statistic
Level of

signi�cance
(%)

C-values
(MacKinnon

critical values)

PM10 {6.0801
1 {2.5690

5 {1.9416

10 {1.6168

PM2:5 {4.8116
1 {2.5690

5 {1.9416

10 {1.6168

O3 {4.9888
1 {2.5690

5 {1.9416

10 {1.6168

SO2 {3.3896
1 {2.5690

5 {1.9416

10 {1.6168

NO2 {3.2986
1 {2.5690

5 {1.9416

10 {1.6168

CO {5.0748
1 {2.5690

5 {1.9416

10 {1.6168

Dickey-Fuller (ADF) test on the time series of air
pollutants in which, the results show that the values
of the ADF statistic for all pollutants violate the
critical values (C-value) at 1%, 5%, and 10% level of
signi�cance. Obviously, the null hypothesis of the unit
root test should be rejected for all cases.

In addition, according to the results of the
Kolmogorov-Smirnov (KS) test, presented previously
in Table 2, a manipulation is required in order to
reduce the variation and to achieve normality. Two
appropriate techniques in this step are data trans-
formation and di�erencing in order to stabilize the
variation of the data and detrend the process, re-
spectively. This paper exploits Yeo-Johnson power
transformation [57] which is an improvement of the
Box-Cox power transformation family [58]. The Yeo-
Johnson power transformation is suitable for data with
any sign:

	Y J(�; x) =

8>>><>>>:
(x+1)��1

�
log(x+ 1)
� (�x+1)2���1

2��� log(�x+ 1)

x � 0; � 6= 0
x � 0; � = 0
x < 0; � 6= 2
x < 0; � = 2

0 � � � 2: (4)

By considering all the possible values in the range
of [�2, �1:9, �1:8,� � � ,1.8, 1.9, 2], the Yeo-Johnson
power transformation coe�cients for all the variables
are obtained according to the KS test statistic in which,
the � which provides transformed data with minimum
KS statistic is selected as the best value. The values
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for coe�cient � and other descriptive statistics for
transformed data are summarized in Table 4.

Step 2: Development of tentative models. In
this step, a number of models which are expected to
explain the behavior of the time series are proposed
and examined. One of the e�ective tools to specify
the potentially appropriate models for time series
data is the sample Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF). ACF
is a function that provides a measure to show the
correlation between xt and its value in another time
period like xt+k, and it is obtained as:

�k =
E[(xt � �)(xt+k � �)]q
E[(xt � �)2]E[(xt+k � �)2]

=
Cov(xt; xt+k)
V ar(xt)

=
k
0
; k = 0; 1; 2; :::; (5)

in which k is the autocovariance at lag k. To
provide an estimation for �k, according to time series
x1; x2; x3; � � � ; xT , the following formula is presented to
calculate the sample ACF:

rk = b�k =
ck
c0
; k = 0; 1; 2; :::;K; (6)

where ck = bk = 1
T

T�kP
t=1

(xt � x)(xt+k � x) is an

estimation for autocovariance at lag k.
However, the correlation between a variable and

its lagged value does not always interpretable with only
the autocorrelation coe�cient. Therefore, the partial
autocorrelation coe�cient is presented to address this
problem. The PACF gives the partial correlation
coe�cients of a time series with its own values at any

lag. To obtain the PACF, consider the Yule-Walker
equations set for the ACF of an AR (p) process:

�(j) =
kX
i=1

�kj�(j � i); j = 1; 2; :::; k: (7)

Denoting �kj as the jth coe�cient of an AR (p)
process, the �kk for any given k is called the partial
autocorrelation coe�cient at lag k for the time series
xt.

According to the de�nition of PACF, in an AR (p)
process if k > p, then �kk = 0. Hence, the PACF
should cut o� after lag p in an AR (p) process. This
feature helps us to identify the order of the AR process,
just like the ACF does in a moving average process.
ACF and PACF are two useful tools in the model
identi�cation phase. As mentioned previously, AR and
MA processes have some characteristics that a�ect the
form of ACF and PACF plots. Therefore, despite the
various forms of these diagrams according to di�erent
characteristics of AR, MA, and ARMA processes, their
ACF and PACF can be categorized based on Table 5
[59].

Although the visual inspection of the time series,
ACF, and PACF provide helpful insights about the
model, they are very subjective and depend highly
on the experience of the forecast experts. In order
to have a more objective approach and comparing the
proposed models in a quantitative manner to be able
to select the best models among the tentative ones, the
utilization of some criteria such as Akaike Information
Criterion (AIC), Schwarz's Bayesian Information Crite-
rion (SBIC), and Hannan-Quinn Information Criterion
(HQIC) are suggested [60,61]. These criteria measure
the statistical model �tting performance and present
the relative goodness of �t for potential models. AIC

Table 4. Descriptive statistics for transformed data.

Variable � Maximum Minimum Range Mean Standard
deviation

Variance Skewness Kurtosis KS
test

trPM10 0.5 16.4552 4.2866 12.1685 8.9548 1.1942 1.4262 0.0757 5.5230 0.04
trPM2:5 0.3 17.6970 6.9166 10.7804 12.4692 1.6438 2.7022 0.0064 3.1540 0.02
trO3 0.4 7.9477 2.3521 5.5956 4.9808 0.8351 0.6974 0.0003 3.0507 0.02
trSO2 0.7 26.4264 3.9393 22.4870 14.0437 3.6309 13.1839 {0.0138 2.8896 0.03
tr NO2 0.2 7.5254 4.7260 2.7993 6.2170 0.4588 0.2105 {0.0046 2.6503 0.03
trCO {0.1 3.6230 2.5834 1.0395 3.0884 0.1703 0.0290 0.0030 2.5807 0.03

Table 5. The form of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) diagram in AR,
MA, and ARMA processes.

Diagram AR (p) MA (q) ARMA (p; q)

ACF Tail o� Cut o� after lag q Tail o�
PACF Cut o� after lag p Tail o� Tail o�
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is the �rst information criterion proposed by Akaike
in 1974, which its logic is based on the Kullback-
Leibler (KL) distance [62]. AIC is de�ned as an
expected KL distance that calculates the Maximum
Likelihood Estimation (MLE) with some corrections
related to the number of the parameters in the model.
By introducing AIC, other information criteria were
developed with di�erent mathematical and statistical
properties. SBIC, like AIC, penalizes the complexity
of the model and adding more parameters to the model
in order to prevent over�tting, but the penalty term in
SBIC is larger than AIC [63]. The corrected version of
AIC or AICc is an e�cient information criterion when
the sample size is small and it prevents over�tting by
introducing more penalty for parameters, compared to
AIC [64]. HQIC is an alternate information criterion
for AIC and SBIC which is developed based on the
law of the iterated logarithm that states any strongly
consistent method will miss its e�ciency by at least
one ln(ln(n)) and accordingly, HQIC has a very well
behavior asymptotically [65]. Also, in contrast to AIC
and AICc, SBIC and HQIC are two criteria that are
not a�ected by increasing the sample size. As a result,
the paper will use HQIC as the information criterion
for model selection, although other information criteria
will be calculated to be used if they are needed. The
formulas for these criteria are given as:

AIC = �2
ln(Lmax)

n
+ 2

k
n
; (8)

AICc = �2
ln(Lmax)

n
+ 2k + 2

k(k + 1)
n� k + 1

; (9)

BIC = �2
ln(Lmax)

n
+ k

ln(n)
n

; (10)

HQIC = �2
ln(Lmax)

n
+ 2k

ln(ln(n))
n

; (11)

where Lmax is the maximum likelihood of the model,
k is the number of parameters, and n is the number of
observations in the model.

Step 3. Estimation and diagnosis of the models:
This step consists of estimating the parameters of the
tentative models identi�ed in the previous step and
performing the diagnostic checking. After suggesting
a number of eligible models, it is needed to estimate
the parameters of these models. Estimation of the
parameters of the models (� and �) can be obtained
utilizing di�erent methods such as MLE, Minimum
Least Squares (MLS), or Conditional Least Squares
(CLS) [66,67]. As the SARIMA/ARIMA models are
almost nonlinear, it is needed to use the procedure
of nonlinear model �tting. This procedure is usually
performed by statistical software packages such as
Minitab, JMP, and SAS. In this paper, JMP software
has been exploited to develop the models. The best-
�tted models among the tentative ones along with
a number of important measures for selecting the
best model are summarized in Table 6. The selected
models are shown in bold font in Table 6 in which
the best forecasting model is selected according to the
combined criteria, with (1) maximum adjusted R2 (R2

Adj.), (2) minimum HQIC, (3) minimum Root Mean
Square Error (RMSE), (4) minimum Mean Absolute
Percentage Error (MAPE), and (5) minimum Mean
Absolute Error (MAE). Also, in all cases, it has been
considered that the conditions for stationarity and
invertibility of AR and MA parameters (� and �) and
white noise conditions of the residuals are satis�ed.

Step 4: Exploitation of the model. After specify-
ing the best model, the last step is to use the model to
predict future data. To do this, the model selected
in the previous step is employed to forecast the air
pollutants for the �rst three months of the Persian
calendar, from 21 March 2018 to 21 June 2018. In
Figures (2){(7), the �tted model for each of the six
air pollutants over the six years timespan has been
illustrated which shows a very good correspondence
with the pattern of the real data. Also, in each �gure,
a red reference line distinguishes the prediction of the
out-of-sample data from the rest of the data which are
used for �tting.

Figure 2. Fitting and predicting using ARIMA (3,1,2) model for CO.
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Table 6. The best �tted models among the tentative ones with their selection measures.
Trans.

variable
Box-jenkins

models
Model �tting statistics

R2 R2 Adj. RMSE MAE MAPE AIC AICc SBIC HQIC

trPM10

(1, 1, 3 ) 0.4221 0.4211 1.7218 1.1953 6.8844 8605.322 8611.388 8633.783 8595.337
(1, 1, 5 ) 0.4209 0.4193 1.7245 1.2007 6.9155 8614.173 8616.239 8654.011 8600.188
(3, 1, 2 ) 0.4225 0.4212 1.7216 1.1952 6.8845 8605.909 8607.960 8640.061 8593.922
(3, 1, 5 ) 0.4231 0.4210 1.7218 1.1943 6.8820 8609.574 8611.674 8660.803 8591.592

trPM2:5

(2, 1, 5 ) 0.4975 0.4958 0.7546 0.5627 3.5023 4993.285 4995.367 5038.821 4977.301
(2, 1, 7 ) 0.4983 0.4960 0.7545 0.5625 3.5013 4995.728 4997.871 5058.341 4973.750
(3, 1, 2 ) 0.4974 0.4962 0.7543 0.5628 3.5026 4989.741 4991.792 5023.894 4977.754
(3, 1, 5 ) 0.4986 0.4967 0.7538 0.5633 3.5062 4990.500 4992.601 5041.729 4972.518

trO3

(2, 1, 3 ) 0.7958 0.7954 0.7794 0.5933 4.6846 5132.858 5134.909 5167.010 5120.871
(2, 1, 2 ) 0.7982 0.7978 0.7747 0.5904 4.6617 5105.980 5108.019 5134.441 5095.992

(2; 1; 2) (2; 1; 1)365 0.7471 0.7461 0.8446 0.6959 5.5416 4851.276 5737.652 4895.355 4835.972

(3; 1; 2) (2; 1; 0)365 0.7400 0.7390 0.8777 0.7042 5.6124 4890.272 5776.647 4934.351 4874.968

trSO2

(1, 1, 1 ) 0.8113 0.8111 1.1826 0.8808 6.0516 6956.761 6958.779 6973.837 6950.768
(2, 1, 1 ) 0.8122 0.8119 1.1801 0.8790 6.0735 6948.555 6950.583 6971.324 6940.565
(3, 1, 2 ) 0.8124 0.8120 1.1799 0.8785 6.0360 6949.983 6952.035 6984.136 6937.996
(2, 1, 3 ) 0.8124 0.8120 1.1800 0.8788 6.0380 6950.182 6952.233 6984.335 6938.195

tr NO2

(1, 1, 1 ) 0.5898 0.5894 0.3009 0.2384 1.4601 959.467 961.485 976.543 953.475
(2, 1, 1 ) 0.5914 0.5908 0.3003 0.2381 1.4585 952.949 954.976 975.717 944.958
(2, 1, 2 ) 0.5916 0.5908 0.3003 0.2380 1.4577 953.846 955.885 982.307 943.858
(2, 1, 5 ) 0.5924 0.5911 0.3002 0.2374 1.4543 955.500 957.582 1001.036 939.516

trCO

(1, 1, 3 ) 0.3543 0.3528 0.1031 0.6089 0.1287 {2758.805 {2756.767 {2730.345 {2768.794
(2, 1, 4 ) 0.3546 0.3528 0.1031 0.6084 0.1287 {2755.733 {2753.667 {2715.888 {2769.718
(2, 1, 5 ) 0.3574 0.3526 0.1030 0.6083 0.1287 {2754.141 {2752.058 {2708.604 {2770.124
(3, 1, 2 ) 0.3543 0.3528 0.1031 0.3528 0.1287 {2756.803 {2754.752 {2722.651 {2768.790

Figure 3. Fitting and predicting using ARIMA (2,1,5) model for NO2

Figure 4. Fitting and predicting using ARIMA (3,1,2) model for SO2.
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Figure 5. Fitting and predicting using ARIMA (2,1,2) model for O3.

Figure 6. Fitting and predicting using ARIMA (3,1,5) model for PM2:5.

Figure 7. Fitting and predicting using ARIMA (3,1,2) model for PM10.

Table 7. The performance of the proposed models for out-of-sample data.

Transformed
variable

Box-Jenkins
models

Model predicting statistics

RMSE MAE MAPE
trPM10 (3, 1, 2 ) 0.9184 0.7185 8.5968
trPM2:5 (3, 1, 5 ) 1.1630 0.8840 8.0439
trO3 (2, 1, 2 ) 0.6005 0.4427 8.0104
trSO2 (3, 1, 2 ) 1.0064 0.6909 15.7536
trNO2 (2, 1, 5 ) 0.3654 0.2842 4.7036
trCO (3, 1, 2 ) 0.1472 0.1118 4.0739

Based on the results, the models provide satisfac-
tory performance where the predicted values are close
to the data and follow correctly the trend of the related
process. In addition, the three performance criteria
including RMSE, MAE, and MAPE are calculated and
reported in Table 7 for the model selected for each of
the air pollutants which shows the high accuracy of

the models and con�rms the good performance of the
models for predicting the future data.

5. Discussion

Grouping parameters and variables has always been
one of the interesting ways to study air quality. Factor
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analysis is one of the most widely used approaches
for processing time-series data in atmospheric and
environmental sciences. It provides a tool to classify
variables based on a number of unknown resources
(called factors). The aim of factor analysis is to deter-
mine the presence or absence of interactions between
the variables or parameters [68]. In this approach,
the presence of interactions is interpreted as existing
a latent common source among the variables (the air
pollutants in this study).

An advantage of the factor analysis approach is to
permit the researchers to categorize the variables into
distinct classes and recognizing the variables which are
related to each other. The proposed classes by factor
analysis include mutually dependent variables which
are strongly correlated. After performing factor analy-
sis, if a number of variables are recognized as (strongly)
correlated, they will be considered to be a�ected by
a latent variable. Although factor analysis can be
used to classify variables and reduce the complexity of
calculation, it will cause some information to be lost.
Therefore, a number of factors should be chosen to have
the least information loss. The procedure for applying
factor analysis to the air pollutants considered in this
study is carried out in the following steps:

Step 1. Calculating the correlation matrix;
Step 2. Testing the adequacy of the approach;
Step 3. Extracting the factors;
Step 4. Rotating the factors;
Step 5. Scoring the calculation of the variables factors.

The correlation matrix of the air pollutants is presented
in Table 8. The existence of a large coe�cient (greater
than or equal to 0.5) in the correlation matrix indicates
the singularity of the correlation matrix, which is
interpreted as its determinant is near to zero. By
calculating the determinant of the corresponding cor-
relation matrix, the determinant is obtained as 0.0526
which is a small value but not equal to zero. As shown
in Table 8, there are signi�cant correlation coe�cients
between some variables.

Figure 8. The scatter plot matrix of the six air
pollutants.

In addition, for visual inspection of the correlation
structure between variables, the corresponding scatter
plot matrix of the correlation structure is illustrated in
Figure 8. The scatter plot matrix presents all pairwise
combinations of variables to demonstrate the relation-
ship between them. According to the scatter plot
and correlation matrix, PM2:5 and PM10 are highly
correlated and have a positive correlation coe�cient of
0.8425. Also, CO and NO2 are positively correlated
with a correlation coe�cient of 0.6333, and the rest of
the correlations between the variables are negligible.

The KMO test and Bartlett sphericity test can
be used to measure the adequacy of the factor analysis
approach. In the KMO test, the KMO statistic should
be more than 0.5 and the Bartlett statistic should
have a signi�cance value less than 0.05 [69]. The
KMO statistic is 0.601 and the Bartlett statistic is
0.0000. Accordingly, there is a relationship between
air pollutants, and applying the factor analysis can be
useful. Therefore, using Principal Component Analysis

Table 8. The correlation matrix of the air pollutants for initial data.

CO NO2 SO2 O3 PM2:5 PM10

CO 1 0.6333 0.1913 {0.0797 0.4625 0.3317

NO2 0.6333 1 -0.0935 0.0651 0.4186 0.3141

SO2 0.1913 {0.0935 1 {0.2035 0.3627 0.1779

O3 {0.0797 0.0651 {0.2035 1 {0.1739 0.0614

PM2:5 0.4625 0.4186 0.3627 {0.1739 1 0.8425

PM10 0.3317 0.3141 0.1779 0.0614 0.8425 1
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Table 9. Pattern matrix from factor analysis.

Component
Variables Factor 1 Factor 2 Factor 3 Factor 4

CO { 0.9172 { {
NO2 { 0.8961 { {
SO2 { { 0.9956 {
O3 { { { 1.0092

PM2:5 0.8685 { { {
PM10 1.0264 { { {

Partial contribution 43.2594% 21.6500% 16.2516% 18.8390%
Extraction Method: Principle Component Analysis (PCA);
Rotation Method: Promax with Kaiser Normalization;
Rotation converged in six iterations.

(PCA) method, four factors have been considered and
the Promax method is used to rotate the factors. The
results are presented in Table 9 in which, the values
below 0.5 have been ignored.

Based on the results of factor analysis presented
in Table 9, the air pollutants can be divided into four
groups including F1 = fPM2:5, PM10g, F2 = fCO,
NO2g, F3 = fSO2g, and F4 = fO3g.

These four factors are considered to account for
93.2704% of the total variance, of which the minimum
recommended value is 80% [70]. The results of factor
analysis and grouping of the air pollutants are highly
related to the resources of emanating air pollution;
in this way, the unknown resources are considered
as factors. According to these results for a 6-year
timespan in Tehran, PM2:5 and PM10 have similar
behavior as they decrease and increase simultaneously
over time. Investigating the correlation structure of
the air pollutants has resulted in di�erent conclusions
in the literature. For example, Kumar and Joseph [71]
addressed the high correlation of PM10, PM2:5, and
NO2, while Asadollahfardi et al. [72] addressed the cor-
relation of PM10 and SO2. These di�erent conclusions
can be the consequence of high variability of weather
conditions over time and various resources of pollution
which vary from a location to the other. Especially for
particle pollution (PM2:5 and PM10), location has a
distinctive role in determining the sources of pollution.
For Tehran, the main sources of these air pollutants
are incomplete combustion, automobile emissions, and
dust. Another useful result that can be obtained
from factor analysis is to determine the air pollutant
that accounts for the largest proportion of ambient air
pollution. In this way, based on the results in Table 9,
the partial contribution of F1 in the total variability
of data is 43.2594% which is more than the partial
contribution of other factors. This means that PM2:5
and PM10 have been the major air pollutants in Tehran
over six recent years.

The presence of CO and NO2 in one group (F2)
can be a result of the high number of automobiles in

Tehran. Considering the high number of automobiles in
Tehran and the fact that CO and NO2 are produced as
a result of the combustion of fossil fuels, the presence of
CO and NO2 in one group (F2) is rational. According
to the results of the factor analysis, O3 is proposed to
be grouped individually. O3 or ozone is a colorless gas,
formed in a series of complex reactions, in which the
presence of sunlight and heat are the main variables.
Because of the photochemical characteristic of this
reaction, the level of O3 has a seasonal behavior. As
the temperature rises and the day gets longer, the level
of O3 becomes higher. Finally, SO2 is the variable that
is grouped as the least e�ective factor. SO2 can be
emanated from di�erent sources but the sources that
have the most proportion are electric power plants
and re�neries. Existing a lot of small and dispersed
electric power plants across the city and Tehran Oil
Re�nery near the city are the main sources of SO2 in
air pollution.

6. Concluding remarks

While Tehran has one of the most polluted ambient air
in the world and is endangered with harmful damages
of air pollution, it has received less attention in the
literature, and no one has considered determining the
air pollutants that have the greatest impact on air
quality. Hence, in this paper, univariate Box-Jenkins
stochastic models along with factors analysis are used
to predict environmental air pollutants in Tehran and
analyze the relationship between air pollutants to de-
termine the factors that have the greatest impact on air
quality. In this regard, the behavior of six air pollutants
including PM10, PM2:5, O3, SO2, NO2, and CO in
Tehran city over a 6-year timespan is studied. The data
for this study are achieved from the Air Quality Control
Company (AQCC) which is responsible for monitoring
the air quality in Tehran city. Because of the high
variability and non-normality of the data, a Yeo-
Johnson power transformation is conducted to stabilize
and normalize the data. Then, the univariate Box-
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Jenkins stochastic models are applied in order to build
forecasting models for each of the six air pollutants.
The proposed Box-Jenkins models for the air pollutants
have a relatively simple form and could be considered as
�tted models. Then, the proposed models are used for
forecasting the out-of-sample data from 21 March 2018
to 21 June 2018 in which the results reveal the good
performance of the proposed methods in both �tting
and forecasting the air pollutants.

Since air pollution can be a consequence of many
factors, there is a need to study and analyze the origin
of air pollutants and their relationships. Therefore,
a factor analysis approach is used to categorize the
air pollutants and determine the proportion of each
of them in the total variability of the air quality.
Based on the results of factor analysis, the variables
are classi�ed into four groups. The �rst group that
has the biggest proportion in air pollution includes
PM10 and PM2:5 with a proportion of 43.2594% of
the total variability. The second group includes CO
and NO2 with a proportion of 21.6500% of the total
variability. Because of the geographical situation of
the city and as the combustion of fossil fuels is the
main source of emanating PM2:5, PM10, CO, and NO2,
the interpretation of the �rst and the second group
indicates that the major concern of air pollution in
Tehran city is related to a high number of automobiles
and the quality of fossil fuels. Therefore, decreasing or
controlling the number of automobiles and increasing
the quality of fossil fuels, can resolve up to 60% of air
pollution concerns.

As mentioned in the introduction, air quality
modeling using univariate Box-Jenkins stochastic mod-
els have been one of the most e�ective and interesting
approaches for researchers and practitioners. But,
air quality is a result of many variables, especially
weather conditions. Therefore, considering weather
condition variables that a�ect air quality, such as
temperature, humidity, precipitation, wind speed, and
wind direction, can signi�cantly improve the results
of the prediction model. In this way, developing
multivariate forecasting models can be an attractive
subject for future research. In addition, other methods
(such as ANN) can be applied to predict air pollutants
and compare their performance with the proposed Box-
Jenkins model.

Nomenclature

AIC Akaike Information Criterion
ADF Augmented Dickey-Fuller
AFNN Arti�cial Fuzzy Neural Networks
AQCC Air Quality Control Company
ANN Arti�cial Neural Networks

ARIMA Autoregressive Integrated Moving
Average

ACF Autocorrelation Function
CO Carbon Monoxide
CLS Conditional Least Squares
EPA Environmental Protection Agency
HQIC Hannan-Quinn Information Criterion
IMO Iran Meteorological Organization
IRI Islamic Republic of Iran
KMO Kaiser-Mayer-Olkin
KS Kolmogorov-Smirnov
MLE Maximum Likelihood Estimation
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLS Minimum Least Squares
MLR Multi Linear Regression
NAAQS National Ambient Air Quality

Standards
NO2 Nitrogen dioxide
NO Nitrogen monoxide
O3 Ozone
PACF Partial Autocorrelation Function
PM2:5 Particulate Matter 2.5
PM10 Particulate Matter 10
PCA Principal Component Analysis
RMSE Root Mean Square Error
SBIC Schwarz's Bayesian Information

Criterion
SARIMA Seasonal Autoregressive Integrated

Moving Average
SO2 Sulfur dioxide
WHO World Health Organization
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Appendix A

Time series plots
The time series plot of the air pollutants CO, NO2,
SO2, O3, PM2:5, and PM10 is presented in Figures A.1{
A.6, respectively.

Appendix B

ACF and PACF plots
The ACF and PACF plots of the six air pollutants
including CO, NO2, SO2, O3, PM2:5, and PM10 are
illustrated in Figures B.1{B.6 to specify the potentially
appropriate models for each of the air pollutants.

Figure A.1. The time series plot of CO (�g/m3).
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Figure A.2. The time series plot of NO2 (�g/m3).

Figure A.3. The time series plot of SO2 (�g/m3).

Figure A.4. The time series plot of O3 (�g/m3).

Figure A.5. The time series plot of PM2:5 (�g/m3).

Figure A.6. The time series plot of PM10 (�g/m3).
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Figure B.1. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of initial CO data.

Figure B.2. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of initial NO2 data.

Figure B.3. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of initial SO2 data.

Figure B.4. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of initial O3 data.
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Figure B.5. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of initial PM2:5 data.

Figure B.6. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of initial PM10 data.
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