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Abstract. Computer Numerical Control (CNC) is a manufacturing concept where
machine tools are automated to perform some prede�ned functions based on the instructions
fed to them. CNC turning processes have found wide-ranging applications in modern-
day manufacturing industries due to their capabilities to produce low-cost high-quality
parts/components with very close dimensional tolerances. In order to exploit the fullest
potential of a CNC turning process, its di�erent input parameters should always be set
to the optimal level for operation. In this paper, two classi�cation tree algorithms,
i.e., Classi�cation And Regression Tree (CART) and CHi-squared Automatic Interaction
Detection (CHAID) are applied to study the e�ects of various turning parameters on the
responses and identify the best machining conditions for a CNC process. It is perceived that
the obtained settings almost match with the observations of the earlier researchers. The
CART algorithm outperforms CHAID with respect to higher overall classi�cation accuracy
and lower prediction risk.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

In manufacturing industries, machining is one of the
major operations performed to remove unwanted ma-
terial from the workpiece surface to attain the desired
shape of the �nal product/component while ful�lling
the customers� needs. Therefore, machining involves
shaping the component by removing material. This can
be achieved by using a tool whose material is harder
than the component to be molded, which is removed
by shear deformation in the form of chips [1]. Amongst
various machining operations, turning is the most
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popularly adopted process. To meet the increasing
requirements of low-cost and high-quality products,
higher productivity, higher dimensional accuracy, and
lower surface �nish, Computer Numerical Control
(CNC) technology is constantly replacing traditional
turning operations. The precision and accuracy that
can be achieved through the use of CNC turning
operations cannot be achieved by traditional material
removal processes [2]. The performance of any of the
machining operations can usually be characterized by
the combination of its various input parameters and
outputs (responses). The input parameters of CNC
turning operation mainly include feed rate, cutting
speed, depth of cut, spindle speed, tool nose radius,
machining time, type of the work material, cutting
tool type, cutting uid used etc. On the other hand,
Material Removal Rate (MRR), Surface Roughness
(SR), the amplitude of vibration, Tool Life (TL), Power
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Consumption (PC), Cutting Force (CF), and acoustic
emission are the major process outputs. In CNC
machines, these input parameters need to be more ef-
fectively controlled so as to achieve the target response
values, minimize machining time and cost, minimize
tool wear, impart more exibility, generate complicated
shapes, provide higher repeatability, attain high dimen-
sional tolerance, reduce power consumption etc. It has
been observed that there exist complex relationships
between the input parameters and responses in CNC
turning operations. Understanding these relationships
and proposing parametric optimization techniques to
improve the performance of CNC turning processes
play a pivotal role in a manufacturing environment.

Optimization of a CNC turning operation has
already been identi�ed as a complex problem due to the
involvement of several di�erent and often contradictory
objectives, like maximization of MRR and minimiza-
tion of SR, maximization of turning e�ciency, and
minimization of power consumption etc. It is the pri-
mary objective of any optimization tool to identify the
optimal values of various CNC turning parameters so
as to achieve better process performance [3]. Usually,
in manufacturing industries, the concerned machinists
select the most suitable settings of di�erent input
parameters based on their knowledge and expertise.
Sometimes, machining data handbooks have also been
consulted to meet these requirements. However, the
proposed machining parameters are far from their
optimal values which could hinder the goal of achieving
better performance. Due to the rapid development of
CNC technology and the availability of large amounts
of related data, it is now impossible to achieve the best
machining performance only by deploying conventional
optimization technologies. Therefore, the need for
more advanced tools is ardently felt to ful�ll the above-
mentioned objective. In this paper, the application
of a data mining tool in the form of the development
of decision trees is explored to determine the optimal
parametric settings of di�erent input parameters in
a CNC turning operation. Two decision tree gen-
eration algorithms, i.e. Classi�cation And Regression
Tree (CART) and CHi-squared Automatic Interaction
Detection (CHAID) are employed here to investigate
the e�ects of the considered CNC turning parameters
on the responses. The relative performance of both the
algorithms is also compared with respect to solution
accuracy and prediction risk.

The `If-Then' decision rules generated based on
the applications of CART and CHAID classi�cation
algorithms constitute a more powerful knowledge rep-
resentation to understand the e�ects of di�erent input
parameters on the responses for the considered CNC
turning process. When these rules are organized as a
non-overlapping decision set, they become quite easy
to interpret, even by a non-technical end-user. They

follow a general structure, i.e. if the given CNC turning
conditions are met, then certain response values can be
attained or predicted. They are probably the most in-
terpretable prediction models, semantically resembling
the natural language and human thinking process.
They also provide valuable information on how to
make the �nal decision and why certain conditions are
met. The rule generation process using the CART
and CHAID algorithms has high speed and scalability
and is almost robust against the presence of outliers
in the input dataset. The decision rules usually
generate sparse models, which do not contain many
features and draw �nal conclusions based on only a few
binary statements. They can be generated from large-
scale datasets containing numerical and categorical
information.

2. Literature survey

Gupta et al. [4] employed Taguchi method along with
fuzzy modeling for multi-objective optimization of a
CNC turning process while considering cutting speed,
feed rate, depth of cut, tool nose radius, and cutting
environment as the input parameters, and SR, tool
life, CF and power consumption as the responses.
Mukherjee et al. [5] introduced the application of the
Taguchi method to identify the optimal operating levels
of speed, feed, and depth of cut to maximize MRR
during CNC turning of SAE 1020 material. Marko et
al. [6] applied the Particle Swarm Optimization (PSO)
technique to determine the optimal settings of three
CNC cutting parameters, i.e. cutting speed, feed rate,
and cutting depth for achieving the desired values of
cutting force, SR and tool life. Saini and Pradhan [7]
conducted CNC turning operation on aluminum alloy
8011 to investigate the e�ects of cutting speed, feed,
and depth of cut on MRR and SR using an integrated
Taguchi-fuzzy approach. While taking into account
tool nose radius, cutting speed, feed rate, and depth of
cut as the input parameters, Vasudevan et al. [8] com-
bined grey theory and fuzzy technique with the Taguchi
method to optimize SR, tangential CF, and MRR in
CNC turning of GFRP/epoxy composite materials.
Saini and Pradhan [9] studied the e�ects of three
CNC turning parameters, i.e. spindle speed, feed rate,
and depth of cut on SR properties of 316L stainless
steel, EN24 alloy steel, and Ti6Al4V alloy materials.
While considering cutting speed, spindle speed, feed
rate, and depth of cut in a CNC machining operation,
Aghdeab et al. [10] determined the minimum SR
values using the Simulated Annealing (SA) technique.
Camposeco-Negrete [11] identi�ed feed rate and depth
of cut as the two most important input parameters in
rough turning operation of AISI 6061 T6 aluminum
material to minimize energy consumption and SR and
maximize MRR. Sar�kaya and G�ull�u [12] presented the
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application of Taguchi-based Grey Relational Analysis
(GRA) to identify the optimal combination of the type
of the cutting uid, uid ow rate, and cutting speed
for having better values of ank wear, notch wear,
and SR during machining Haynes 25 material under
minimum quantity lubrication condition.

Asilt�urk et al. [13] presented the combined appli-
cation of Taguchi methodology and Response Surface
Methodology (RSM) to study the e�ects of spindle
rotational speed, feed rate, depth of cut, and tool tip
radius on SR properties of Co28Cr6Mo alloy. Kumar et
al. [14] identi�ed the optimal parametric combination
of cutting speed, feed rate, and depth of cut during
CNC machining of AISI 1045 steel material to have the
most preferred values of tool wear rate and MRR. Dur-
ing the CNC turning of AA7075 material, Maheswara
Rao and Venkatasubbaiah [15] concluded that feed and
cutting speed were the most signi�cant parameters
a�ecting SR of the machined components. Klancnik
et al. [16] employed gravitational search algorithm and
non-sorting genetic algorithm-II as the multi-objective
optimization tools for a CNC turning process. Cutting
speed, depth of cut, and feed rate were considered
as the input parameters, and SR, CF, and tool life
were the responses for the said process. Based on
Taguchi experimental design plan, Bilga et al. [17]
studied the e�ects of cutting speed, feed rate, depth
of cut, and nose radius on some energy consumption
responses, like energy e�ciency, power factor, and
active energy consumed during CNC rough turning
operation of EN 353 alloy steel material. Based on
Taguchi's L9 experimental design plan, Kushwaha and
Singh [18] studied the e�ects of cutting speed, feed
rate, and depth of cut on SR and MRR during CNC
turning of Inconel 625 material using coated carbide
tool. Based on a developed model, Nataraj and
Balasubramanian [19] determined the optimal settings
of three CNC turning parameters, i.e. cutting speed,
depth of cut, and feed rate in order to minimize
SR, the intensity of vibration, and work-tool inter-
face temperature. Nayak and Sodhi [20] applied the
RSM technique to evaluate the relationship between
three CNC turning parameters, i.e. depth of cut, feed
rate, and cutting speed, and two responses, i.e. MRR
and SR. The desirability function approach was later
adopted to determine the optimal parametric settings
for the considered process. During CNC turning of
aluminum alloy, Sahoo et al. [21] integrated weighted
principal component analysis with RSM technique to
minimize SR and tool vibration while taking into
account spindle speed, feed rate, and depth of cut as the
input parameters. Based on the developed RSM-based
equations, Mandal et al. [22] determined the optimal
values of spindle speed, feed rate, and depth of cut
for achieving favorable values of MRR, SR, and power
in a CNC turning process. The corresponding Pareto

fronts for the conicting objectives were also proposed.
Suresh et al. [23] determined the optimal settings of
cutting speed, feed rate, tool nose radius, and depth of
cut in a CNC turning operation for having minimum
SR and maximum MRR values.

Akku�s [24] considered cutting speed, feed rate,
and depth of cut as the process parameters in CNC
machining of AISI 1040 steel material and identi�ed
their optimal settings for having minimum SR values.
Bhanu Prakash et al. [25] treated spindle speed, feed
rate, and depth of cut as the input parameters, and
MRR and SR as the responses during CNC turning
operation of AlSi7 Mg material. Taguchi method and
GRA technique were later adopted to optimize the said
process. Gadekula et al. [26] determined the best para-
metric settings for spindle speed, feed rate, and depth
of cut when using the Taguchi method to perform CNC
turning operations on high-carbon and high-chromium
steel workpiece materials. The MRR and SR were the
responses for the considered process. Palanisamy and
Senthil [27] proposed a combined application of the
grey system and fuzzy logic approach to optimize cut-
ting speed, feed rate, and depth of cut in a CNC turning
process for achieving minimum values of SR and power
consumption. Sahoo et al. [28] developed second-order
RSM-based regression models to investigate the e�ects
of three CNC turning parameters, i.e. spindle speed,
feed rate, and depth of cut on two responses, i.e. SR
and tool vibration. Weighted Aggregate Sum Product
Assessment (WASPAS) method was later adopted for
parametric optimization of the considered process.
While performing CNC turning operation on aluminum
alloy, Saravanakumar et al. [29] employed Taguchi
method to determine the optimal settings of feed, speed
and depth of cut to attain minimum values of SR
and roundness error. Using RSM technique, Nataraj
et al. [30] examined the impacts of feed rate, cutting
speed and depth of cut on the work-tool interface zone
temperature and SR during CNC turning operation of
LM6 reinforced metal matrix composites. Vasudevan
et al. [31] combined principal component analysis with
GRA technique to explore the e�ects of feed rate, depth
of cut, cutting speed and tool nose radius on MRR, CF
and di�erent SR parameters during machining of glass
�bre reinforced polymer composites. Rao et al. [32]
performed multi-objective optimization of MRR and
SR during CNC turning of stainless steel 304 work
materials. Cutting speed, feed rate and depth of cut
were taken into account as the input parameters for
the said process. Vijay Kumar et al. [33] endeavoured
to investigate the e�ects of feed rate, depth of cut and
spindle speed on MRR and SR while machining EN 19
stainless steel materials using a CNC turning centre.
Taguchi's L18 orthogonal array was incorporated for
conducting the experimental trials. Arun Vikram
et al. [34] applied Taguchi method to explore the
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interactions between feed rate, depth of cut and spindle
speed, and SR, MRR and tool temperature. Later,
GRA technique was employed to determine the best
parametric condition for attaining better response val-
ues during wet machining of materials with low machin-
ability. Chau et al. [35] integrated Taguchi method,
adaptive neuro-fuzzy inference system and teaching-
learning-based optimization algorithm for parametric
optimization of a CNC turning process.

The existing literature is full of applications of
various mathematical tools and techniques for para-
metric optimization of CNC turning processes. A
great deal of the past researches is dedicated to the
applications of the Taguchi method to identify the best
settings of di�erent turning parameters for attaining
the desired response values. Various multi-criteria
decision-making methods, like GRA, and WASPAS,
have also been proposed for the same purpose. Based
on the experimental data, some researchers have also
attempted to develop the corresponding higher-order
RSM-based regression equations to describe the re-
lationships between various CNC turning parameters
and responses. Metaheuristic algorithms, mainly in the
form of SA, PSO, etc., have been later applied to solve
those equations in order to identify the optimal values
of various input parameters for enhancing the process
performance. But, it is quite interesting to notice that
there is an immense scarcity of the application of any
kind of data mining tool for parametric optimization
of CNC machining processes. In this paper, the
application of a data mining tool in the form of decision
(classi�cation) trees is proposed for the �rst time for
parametric analysis and optimization of a CNC turning
process. Using CART and CHAID-based decision
trees, the corresponding decision rules in the form of
simple and understandable `If-Then' statements are
generated to study the e�ects of each of the considered
CNC turning parameters on the responses. The
relative performance of both these algorithms is also
compared with respect to classi�cation accuracy and
prediction risk.

3. Decision tree

Over the years, decision trees have become one of the
most popular tools in knowledge discovery and data
mining. It mainly deals with exploring large amounts
of data to �nd meaningful patterns [36]. Through
applicating the decision tree algorithm the e�ort takes
place to solve a given problem in the form of tree
representation. It basically employs development of a
training model which can predict class or value of target
variables based on the decision rules generated from
the initial dataset. It belongs to the class of supervised
machine learning algorithm of data mining which has
the capability to solve both regression and classi�cation

problems. It is also a non-parametric approach having
no idea about the pertaining distribution of the data.
The developed decision trees usually follow the human
thinking process and the logic of interpreting the data
is very strong. In a decision tree, the original dataset is
broken down into smaller subsets while incrementally
developing the associated decision tree at the same
time. The �nal decision tree consists of many decision
nodes and leaf nodes. A decision node may comprise
two or more branches and a leaf node denotes a
classi�cation or a �nal decision. The topmost decision
node containing the complete dataset is known as the
root node. This dataset is sequentially split resulting
in child nodes during classi�cation. When no further
splitting is possible, the �nal nodes are termed as
terminal nodes. Similarly, each decision node of a
decision tree relates to an attribute and each leaf node
corresponds to a class label. In a decision tree, a series
of `If-Then' statements can be �nally developed when
tracing the path through the di�erent decision and
leaf nodes, starting from the root node. The decision
trees have several advantages, likeability to deal with
both categorical and numerical data, self-explanatory
and being easy to interpret, scalability with big data,
capability to process datasets having errors or missing
values, the requirement of less computational e�ort,
high predictive accuracy etc.

In this paper, two decision tree algorithms, i.e.
CART and CHAID are applied for parametric analysis
of a CNC turning process. In both the algorithms,
each (non-terminal) node identi�es a split condition
which yields the optimal classi�cation of dependent
variables [37]. The details of these algorithms are
presented here-in-under.

3.1. CART algorithm
It is a recursive partitioning method used for both re-
gression and classi�cation purposes. In this algorithm,
the decision tree is constructed by splitting subsets
of the data using all the predictor variables to create
two child nodes repeatedly, beginning with the initial
dataset. The best predictor variable is chosen based
on a variety of impurity or diversity measures. The
goal is to generate subsets of the data which are as
homogeneous as possible with respect to the target
variable [38]. The procedural steps for this algorithm
are presented as below [39]:

Step 1: The algorithm runs through the entire
dataset D to initiate the classi�cation;

Step 2: If all datasets in D belong to class P , gener-
ate a node P and stop, otherwise, decide a
predictor F and produce a decision node;

Step 3: Split the samples in D into possible subsets
using a predictor selection measure called
`Gini index' which is used in splitting for
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classi�cation to reduce the impurity of a
node. Split at each node occurs only when
it can generate the greatest improvement in
classi�cation accuracy;

Step 4: When selecting predictor variables, deter-
mine the best breakpoint so that the depen-
dent variable can be best divided into two
categories, which are characterized by the
maximum internal uniqueness and external
di�erence;

Step 5: For each split, the predictor variable with the
best score of improvement is selected;

Step 6: Apply the algorithm recursively for all the
subsets in D until all items or samples in
a node have the same class, i.e. split is no
longer possible;

Step 7: The process repeats recursively until one of
the stopping rules is ful�lled:

a) If a node becomes pure, i.e. all cases
in the node have identical values of the
dependent variable;

b) If the current tree depth reaches the user-
speci�ed maximum limit;

c) If the size of a node is less than the user-
speci�ed minimum size;

d) If the split of a node results in a child
node whose node size is less than the
user-speci�ed minimum size.

Step 8: Framing of `If-Then' decision rules, i.e.
rule: (condition) ! Y , where the condition
is a combination of predictor variables and Y
is the class label (decision).

In this algorithm, the measure of the importance of
independent variables (X) in relation to a decision tree
is de�ned as the sum of improvements thatX has across
all the splits in the tree when it is used as a primary or
surrogate splitter. The importance of X is expressed in
terms of a normalized quantity relative to the variable
having the largest measure of importance. It ranges
from 0 to 100, with the variable having the maximum
importance score of 100. Thus, the variable importance
plot is a good indicator that measures the importance
of independent variables (which have already appeared
in the decision tree).

3.2. CHAID algorithm
This algorithm, developed by Kass [40], is a deci-
sion tree development approach, based on the Chi-
squared test, generated by repeatedly splitting the
subsets into two or more child nodes starting with
the initial dataset. Particularly, the predictor having
the strongest relationship with the dependent variable
based on p-value is utilized as the split node. To

determine the best split at a particular node, any
allowable pair of categories of the predictor variables is
merged until there is no statistically signi�cant di�er-
ence within the pair with respect to the target variable.
It is an exploratory data analysis method used to
study the strongest association between a dependent
variable and a large series of possible predictor vari-
ables which themselves may interact. The dependency
measure may be a qualitative (nominal or ordinal) or
a quantitative indicator. For qualitative (categorical)
variables, a series of Chi-squared analyses is conducted
between the dependent and predictor variables. For
quantitative variables (continuous), F -test is used,
where intervals (splits) are optimally determined for
the predictor variables so as to maximize the ability to
explain a dependent measure with respect to variance
components [41]. This algorithm uses the following
steps [40,41]:

Step 1: The �rst step is to create categorical predic-
tor variables from continuous variables by di-
viding the respective continuous distributions
into a given number of categories;

Step 2: In the merging stage, for each dependent
variable, merge non-signi�cant categories. It
determines the pair of categories that is least
signi�cantly di�erent (i.e., most similar) with
respect to dependent variables. The most
similar pair is the pair whose test statistic
provides the largest p-value with respect to
the dependent variable;

Step 3: If the statistical test for the given pair of
predictor categories is not statistically signif-
icant, it will merge the respective predictor
categories and �nd the next pair of cate-
gories which may now include the previously
merged categories;

Step 4: If the statistical test for the given pair of pre-
dictor categories is statistically signi�cant,
the adjusted p-value is computed for the
merged categories by applying the Bonferroni
adjustments;

Step 5: In the splitting stage, the independent or
predictor variable with the lowest signi�cant
p-value (calculated above) is selected as the
best and the group is split on this predictor
(i.e., each of the optimally merged categories
of the predictor is used to de�ne a subdivision
of the parent group into a new subgroup).
If no predictor has a signi�cant p-value, the
group is not split;

Step 6: The above-mentioned steps are repeated un-
til all subgroups have either been analyzed
or contain too few observations or cases.
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The stopping rules are basically the same as
described in the CART algorithm.

4. Decision trees for a CNC turning process

Based on Taguchi orthogonal array design plan, Gupta
et al. [4] conducted 27 experiments considering cutting
speed, feed rate, depth of cut, tool nose radius, and
machining environment as the controllable parame-
ters. On the other hand, Tool Life (TL) (in min),
Power Consumption (PC) (in W), SR (in �m), and
Cutting Force (CF) (in N) were the responses. It is
worthwhile to mention here that among the considered
responses, TL is the only `Larger-The-Better' (LTB)
type of quality characteristic, while, the remaining
three are `Smaller-The-Better' (STB) types. During
experimentation, each of the CNC turning parameters
was set at three di�erent operating levels, as shown
in Table 1. A high-speed CNC machining centre was
utilized for conducting the experiments and AISI P20
tool steel bars (having a diameter of 65 mm and length
275 mm) were chosen as the work material. The results
of the experimental study are provided in Table 2. In
this table, the minimum, maximum, and median values
for each of the responses are also shown.

For parametric analysis of the considered CNC
turning process and investigating the e�ects of various
input parameters on the process outputs (responses),
the corresponding decision trees are developed using
CART and CHAID algorithms in SPSS 16.0 software.
For arriving at the best possible solutions, various
parameters of the adopted decision tree algorithms are
�ne-tuned as follows.

For CART algorithm

- Growing method: CART;
- Categorical dependent variables: TL, PC, SR, and

CF;
- Categorical independent variables: CS, FR, DOC,

NR, and E;
- Validation: Cross-validation;

- Number of sample folds: 3;
- Growth limit: Maximum tree depth = 5;
- Minimum number of cases: Parent node = 3, Child

node = 2;
- Impurity measure: Gini;
- Minimum change in improvement: 0.0001.

For CHAID algorithm

- Growing method: CHAID;
- Categorical dependent variables: TL, PC, SR and

CF;
- Categorical independent variables: CS, FR, DOC,

NR and E;
- Validation: Cross validation;
- Number of sample folds: 3;
- Growth limit: Maximum tree depth = 5;
- Minimum number of cases: Parent node = 3, Child

node = 2.
Signi�cance level for

a) Splitting node = 0.03;
b) Merging categories = 0.05;
c) Chi-square statistic = Pearson;

- Model estimation:
a) Maximum number of iterations = 100,
b) Minimum change in expected cell frequencies =

0.001;
c) Adjust signi�cance values using the Bonferroni

method.

Figure 1 exhibits the decision tree in the form of a
classi�cation tree diagram developed using the CART
algorithm for tool life. In this diagram, tool life is
represented as a dependent variable in the root node.
As tool life is a continuous variable, its median value
(27.66 min) calculated from the experimental dataset
of Table 2 is adopted here for the splitting purpose.
For tool life, which is an LTB quality characteristic, its
values lower than or equal to 27.66 min are termed

Table 1. Computer Numerical Control (CNC) turning parameters and their levels [4].

CNC parameter Symbol Unit
Level

Low Medium High

Cutting Speed CS m/min 120 160 200

Feed Rate FR mm/rev 0.10 0.12 0.14

Depth Of Cut DOC mm 0.20 0.35 0.50

Nose Radius NR mm 0.40 0.80 1.20

Environment E | Dry Wet Cryogenic
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Figure 1. Classi�cation tree for tool life using Classi�cation And Regression Tree (CART) algorithm.

as `low', whereas, values higher than 27.66 min are
designated as `high'. From the root node of the
developed decision tree, it can be noticed that in the
initial dataset, there are 13 experimental observations
with high tool life and 14 observations have low tool life
values. The �rst splitting is performed while taking
the machining environment as the most important

predictor variable. Between the two formed child
nodes, node 2 appears to be a terminal node from where
no further splitting can be possible. It is also identi�ed
as a pure node with no misclassi�cation error. From
node 1, taking cutting speed as the next important
predictor variable, another classi�cation is performed
with the formation of node 4 as a terminal and pure
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Table 2. Experimental data for the Computer Numerical Control (CNC) turning operation [4].

Exp. no.
CNC parameter Response

CS FR DOC NR E TL PC SR CF

1 120 0.10 0.20 0.40 Dry 29.00 1066 1.41 171.30

2 120 0.10 0.35 0.80 Wet 34.00 1560 0.71 147.50

3 120 0.10 0.50 1.20 CRYO 54.67 866 0.60 111.74

4 120 0.12 0.20 0.80 Wet 34.67 1493 0.47 120.30

5 120 0.12 0.35 1.20 CRYO 51.66 987 0.19 180.60

6 120 0.12 0.50 0.40 Dry 27.00 1187 1.18 236.20

7 120 0.14 0.20 1.20 CRYO 50.00 960 0.67 157.70

8 120 0.14 0.35 0.40 Dry 24.66 1134 1.16 214.40

9 120 0.14 0.50 0.80 Wet 28.33 1813 0.92 286.90

10 160 0.10 0.20 1.20 Wet 27.66 1586 0.18 116.37

11 160 0.10 0.35 0.40 CRYO 47.66 1013 0.45 133.33

12 160 0.10 0.50 0.80 Dry 21.66 1240 0.43 191.23

13 160 0.12 0.20 0.40 CRYO 45.66 893 0.58 125.40

14 160 0.12 0.35 0.80 Dry 20.33 1253 0.72 149.43

15 160 0.12 0.50 1.20 Wet 25.66 1773 0.31 212.46

16 160 0.14 0.20 0.80 Dry 20.00 1107 0.66 162.93

17 160 0.14 0.35 1.20 Wet 22.33 1533 0.64 190.23

18 160 0.14 0.50 0.40 CRYO 41.33 1373 0.75 177.76

19 200 0.10 0.20 0.80 CRYO 40.00 1053 0.16 106.23

20 200 0.10 0.35 1.20 Dry 15.67 1373 0.23 208.50

21 200 0.10 0.50 0.40 Wet 21.67 2094 0.67 209.80

22 200 0.12 0.20 1.20 Dry 14.67 1286 0.40 200.20

23 200 0.12 0.35 0.40 Wet 20.33 1866 0.50 178.80

24 200 0.12 0.50 0.80 CRYO 37.66 1613 0.18 168.70

25 200 0.14 0.20 0.40 Wet 18.00 1573 0.64 162.00

26 200 0.14 0.35 0.80 CRYO 34.33 1453 0.31 162.00

27 200 0.14 0.50 1.20 Dry 16.66 1667 0.48 276.16

Minimum 14.67 866 0.16 106.23

Maximum 54.67 2094 1.41 286.90

Median 27.66 1373 0.58 171.30

node. Two nodes, i.e. 5 and 6 now emerge out from
node 3 using tool nose radius as the predictor variable.
Finally, based on feed rate, the last two terminal nodes
are constructed. This entire classi�cation process along
with the related characteristics is provided in Table 3.
The percentages of correct classi�cation at all the nodes
are presented in Table 4. It can be observed that
for tool life, there is no misclassi�cation error in the

decision tree developed using the CART algorithm.
When the decision tree of Figure 1 and classi�cation
characteristics are analyzed in detail, several decision
rules in the form of `If-Then' statements are generated.

CART-based rules for tool life

Rule 1: If environment = cryogenic Then TL is
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Table 3. Classi�cation of tool life based on Classi�cation And Regression Tree (CART).

Classi�cation Node Characteristics

First 2 Cryogenic environment provides higher tool life
Second 1, 4 Dry or wet environment and CS > 140 m/min provide lower tool life

Third 1, 3, 6
Dry or wet environment, CS � 140 m/min and NR > 0.60 mm are responsible for
higher tool life

Fourth 1, 3, 5, 7
Dry or wet environment, CS � 140 m/min, NR � 0.60 mm and FR � 0.11 mm/rev
lead to higher tool life

Fifth 1, 3, 5, 8
Dry or wet environment, CS � 140 m/min, NR � 0.60 mm and FR > 0.11 mm/rev
provide lower tool life

Table 4. Percentages of correct classi�cation of tool life based on Classi�cation And Regression Tree (CART).

Classi�cation

Tool life
Low (� 27.66 min) High (> 27.66 min)

Number of
observations

Percentage Number of
observations

Percentage

1 0 0% 9 100%
2 12 100% 0 0%
3 0 0% 3 100%
4 0 0% 1 100%
5 2 100% 0 0%

(27.66{54.69]:

[P = 100%; Q = 69:23%; C = 33:33%; QTY = 9]

[T = 202:56%]:

Rule 2: If environment = dry or wet and CS >
140 m/min Then TL is [14.67{27.66]:

[P = 100%; Q = 85:71%; C = 44:44%; QTY = 12]

[T = 230:15%]:

Rule 3: If environment = dry or wet, CS �
140 m/min and NR > 0:60 mm, Then TL is (27.66{
54.69]:

[P = 100%; Q = 23:09%; C = 11:11%; QTY = 3]

[T = 134:20%]:

Rule 4: If environment = dry or wet, CS �
140 m/min, NR � 0:60 mm and FR � 0:11 mm/rev
Then TL is (27.66{54.69]:

[P = 100%; Q = 7:70%; C = 3:70%; QTY = 1]

[T = 111:40%]:

Rule 5: If environment = dry or wet, CS �
140 m/min, NR � 0:60 mm and FR > 0:11 mm/rev
Then TL is [14.67{27.66]:

[P = 100%; Q = 14:29%; C = 7:41%; QTY = 2]

[T = 121:70%];

where P is the percentage of objects in the condition
attribute set that corresponds to a rule (a measure of
rule con�dence), Q is the percentage of objects in the
decision attribute set that corresponds to a rule, C is
the percentage of objects that correspond to a rule (a
measure of rule support) and QTY is the number of
objects satisfying a particular rule. In this algorithm,
T (T = P+Q+C) represents the total strength (relative
importance) of a rule [42].

Among these decision rules, Rule 2, having the
maximum total strength of 230.15, states that when
the said CNC turning operation is performed under
a dry or wet environment and the cutting speed is
greater than 140 m/min, the corresponding tool life
would be low. On the other hand, Rule 1 with a total
strength of 202.56 depicts that higher tool life can only
be achievable under a cryogenic (CRYO) machining en-
vironment. It can also be noticed from these rules that
low feed rate and low tool nose radius lead to higher
tool life. The importance plot for tool life, as depicted
in Figure 2, identi�es the machining environment as the
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Figure 2. Importance plot for tool life .

most important CNC turning parameter, followed by
cutting speed. Nose radius, depth of cut, and feed rate
are observed to have the least importance on tool life.
Similarly, the related decision tree for tool life is also
generated using the CHAID algorithm, as exhibited
in Figure 3. The classi�cation characteristics and

percentages of accurate classi�cation at the identi�ed
nodes are provided in Tables 5 and 6 respectively. As
compared to �ve classi�cations in the CART algorithm
for tool life, there are only four classi�cations in the
CHAID algorithm. Here, at the third classi�cation
in node 5, there is a 33.33% misclassi�cation error.
The corresponding rules generated using this algo-
rithm are quite similar to those as developed by the
CART algorithm. Machining environment and cutting
speed are observed to be the two most important
CNC turning parameters a�ecting tool life. While
analyzing both these sets of decision rules, it can be
concluded that for attaining higher tool life, cryogenic
environment, and low values of cutting speed, tool
nose radius and feed rate are always preferred. It
is interestingly revealed that depth of cut appears to
be an insigni�cant parameter having no e�ect on tool
life. Based on analysis of variance (ANOVA) results
for tool life, Gupta et al. [4] also identi�ed machining

Figure 3. Classi�cation tree for tool life using Chi-squared Automatic Interaction Detection (CHAID) algorithm.
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Table 5. Classi�cation of tool life based on Chi-squared Automatic Interaction Detection (CHAID).

Classi�cation Node Characteristics

First 2 Cryogenic environment provides higher tool life.

Second 1,4
Dry or wet environment and medium or high CS (160 m/min or 200 m/min) lead to

lower tool life.

Third 1,3,5
Dry or wet environment, low CS (120 m/min) and low NR (0.40 mm) are responsible

for lower tool life.

Fourth 1,3,6
Dry or wet environment, low CS (120 m/min) and medium NR (0.80 mm) provide

higher tool life.

Table 6. Percentages of accurate classi�cation of tool life based on Chi-squared Automatic Interaction Detection
(CHAID).

Classi�cation

Tool life

Low (� 27.66 min) High (> 27.66 min)
Number of

observations
Percentage Number of

observations
Percentage

1 0 0% 9 100%

2 12 100% 0 0%

3 2 66.7% 1 33.3%

4 0 0% 3 100%

environment as the most important CNC turning
parameter (69.27% contribution), followed by cutting
speed (24.36% contribution). Depth of cut had almost
no contribution (0.19%) on tool life. Using Signal-
to-Noise (S=N) ratio values, it is recommended that
the optimal combination of parameters for achieving a
higher tool life are low cutting speed, low feed rate,
low depth of cut, medium nose radius, and cryogenic
environment which almost matches the combination
proposed by a decision tree.

CHAID-based rules for tool life

Rule 1: If environment = cryogenic Then TL is
(27.66{54.69]:

[P = 100%; Q = 69:23%; C = 33:33%; QTY = 9]

[T = 202:56%]:

Rule 2: If environment = dry or wet and CS =
medium or high Then TL is [14.67{27.66]:

[P = 100%; Q = 85:71%; C = 44:44%; QTY = 12]

[T = 230:15%]:

Rule 3: If environment = dry or wet, CS = low and
NR = low, Then TL is (27.66{54.69]:

[P = 66:70%; Q = 14:28%; C = 7:40%; QTY = 2]

[T = 88:38%]:

Rule 4: If environment = dry or wet, CS = low and
NR = medium, Then TL is [14.67{27.66]:

[P = 100%; Q = 23:07%; C = 11:11%; QTY = 3]

[T = 134:18%]:

The decision tree for power consumption, which is
developed using the CART algorithm, is shown in
Figure 4. When the power consumption is less than or
equal to 1373 W, it is designated as `low' and when it is
greater than 1373 W, its value is `high'. As it is an STB
type of response, its `low' values are always preferred.
The `If-Then' rules extracted from the decision tree
of Figure 4 highlight that dry or cryogenic machining
environment and cutting speed less than or equal to 180
m/min always lead to lower power consumption (Rule 2
with total strength 224.44). Thus, a wet environment is
responsible for higher power consumption (Rule 1 with
total strength 208.33). Low feed rate and low depth
of cut cause lower power consumption. The important
plot of Figure 5 identi�es the machining environment
as the most critical CNC turning parameter a�ecting
power consumption, followed by cutting speed. In-
terestingly, tool nose radius plays no signi�cant role
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Figure 4. Classi�cation tree for power consumption using Classi�cation And Regression Tree (CART) algorithm.

in power consumption. The rules developed from the
decision trees generated using CHAID algorithm (not
shown here due to lack of space) also con�rm these
observations. Combining both the sets of decision
rules from CART and CHAID algorithms, the optimal
parametric mix of dry or cryogenic environment, low
or medium cutting speed, low feed rate, and low nose
radius would always lead to lower power consumption.
Gupta et al. [4] also observed that machining environ-
ment = cryogenic, cutting speed = low, feed rate =
low, depth of cut = low, and nose radius = medium

were responsible for attaining the most desirable value
of lower power consumption in the said CNC turning
centre.

CART-based rules for power consumption

Rule 1: If environment = wet Then PC is (1373{
2094]:

[P = 100%; Q = 75%; C = 33:33%; QTY = 9]

[T = 208:33%]:
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Figure 5. Importance of Computer Numerical Control
(CNC) turning parameters a�ecting power consumption.

Rule 2: If environment = dry or cryogenic and CS �
180 m/min Then PC is [866{1373]:

[P = 100%; Q = 80%; C = 44:44%; QTY = 12]

[T = 224:44%]:

Rule 3: If environment = dry or cryogenic, CS >
180 m/min and FR � 0:11 mm/rev Then PC is [866{
1373]:

[P = 100%; Q = 13:33%; C = 7:40%; QTY = 2]

[T = 120:73%]:

Rule 4: If environment = dry or cryogenic, CS >
180 m/min, FR > 0:11 mm/rev and DOC �
0:28 mm Then PC is [866{1373]:

[P = 100%; Q = 6:67%; C = 3:70%; QTY = 1]

[T = 110:37%]:

Rule 5: If environment = dry or cryogenic, CS >
180 m/min, FR > 0:11 mm/rev and DOC >
0:28 mm Then PC is [866{1373]:

[P = 100%; Q = 25%; C = 11:11%; QTY = 3]

[T = 136:11%]:

CHAID-based rules for power consumption

Rule 1: If environment = wet Then PC is (1373{
2094]:

[P = 100%; Q = 75%; C = 33:33%; QTY = 9]

[T = 208:33%]:

Rule 2: If environment = dry or cryogenic and CS
= low or medium Then PC is [866{1373]:

[P = 100%; Q = 80%; C = 44:44%; QTY = 12]

[T = 224:44%]:

Rule 3: If environment = dry or cryogenic, CS =
high and FR = low Then PC is [866{1373]:

[P = 100%; Q = 13:33%; C = 7:40%; QTY = 2]

[T = 120:73%]:

Rule 4: If environment = dry or cryogenic, CS =
high and FR = medium Then PC is [866{1373]:

[P = 50%; Q = 6:67%; C = 3:70%; QTY = 1]

[T = 60:37%]:

Rule 5: If environment = dry or cryogenic, CS =
high and FR = high then PC is (1373{2094]:

[P = 100%; Q = 16:67%; C = 7:40%; QTY = 2]

[T = 124:07%]:

In Figure 6, the decision tree for SR which is devel-
oped using the CART algorithm is exhibited. The
corresponding `If-Then' rules are also subsequently
generated. In this case, the SR values less than or
equal to 0.58 �m are termed as `low' (satisfactory) and
those with greater than 0.58 �m values are styled as
`high'. Rule 1 with the maximum total strength of
148.40 reveals that when the machining environment is
cryogenic and cutting speed is more than 140 m/min,
the SR of the turned components would be satisfactory
(low). A high nose radius also provides lower SR (Rule
3 with a total strength of 137.52). Similarly, a high feed
rate is responsible for poor SR. The rules extracted
from the decision tree which is developed using the
CHAID algorithm (not shown here due to lack of space)
prove that low or medium feed rate achieves better
SR. In both the sets of rules, depth of cut appears
to be an unimportant CNC turning parameter having
no impact on SR. The importance of each of the
turning parameters on SR is depicted in Figure 7 which
clearly reveals the fact that machining environment and
cutting speed are the two most signi�cant parameters
a�ecting SR. Depth of cut is the least important
turning parameter. Gupta et al. [4] identi�ed that a
parametric combination of cutting speed = high, feed
rate = medium, depth of cut = medium, nose radius
= high, and machining environment = cryogenic would
provide better SR of the turned components.

CART-based rules for SR

Rule 1: If environment = cryogenic and CS >
140 m/min Then SR is [0.16{0.58]:
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Figure 6. Classi�cation tree for Surface Roughness (SR) using Classi�cation And Regression Tree (CART) algorithm.

[P = 83:33%; Q = 42:85%; C = 22:22%; QTY = 6]

[T = 148:40%]:

Rule 2: If environment = cryogenic and CS �
140 m/min Then SR is (0.58{1.41]:

[P = 66:70%; Q = 15:38%; C = 7:40%; QTY = 2]

[T = 89:48%]:

Rule 3: If environment = dry or wet and NR >

1:00 mm Then SR is [0.16{0.58]:

[P = 83:30%; Q = 35:71%; C = 18:51%; QTY = 5]

[T = 137:52%]:

Rule 4: If environment = dry or wet, NR � 1:00 mm
and FR > 0:13 mm/rev Then SR is (0.58{1.41]:

[P = 100%; Q = 30:77%; C = 14:81%; QTY = 4]

[T = 145:58%]:
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Figure 7. Importance plot for Surface Roughness (SR).

Rule 5: If environment = dry or wet, NR �
1:00 mm, FR � 0:13 mm/rev and CS � 140 m/min
Then SR is (0.58{1.41]:

[P = 75%; Q = 23:07%; C = 11:11%; QTY = 3]

[T = 109:18%]:

Rule 6: If environment = dry or wet, NR �
1:00 mm, FR � 0:13 mm/rev and CS > 140 m/min
Then SR is (0.58{1.41]:

[P = 50%; Q = 15:38%; C = 7:41%; QTY = 2]

[T = 72:79%]:

CHAID-based rules for SR

Rule 1: If environment = cryogenic and CS = high
Then SR is [0.16{0.58]:

[P = 100%; Q = 21:43%; C = 11:11%; QTY = 3]

[T = 132:54%]:

Rule 2: If environment = cryogenic, CS = low or
medium and FR = high Then SR is (0.58{1.41]:

[P = 100%; Q = 15:38%; C = 7:41%; QTY = 2]

[T = 122:79%]:

Rule 3: If environment = cryogenic, CS = low or
medium and FR = low or medium Then SR is [0.16{
0.58]:

[P = 75%; Q = 21:43%; C = 11:11%; QTY = 3]

[T = 107:54%]:

Rule 4: If environment = dry or wet, NR = high
and CS = high Then SR is [0.16{0.58]:

[P = 100%; Q = 21:43%; C = 11:11%; QTY = 3]

[T = 132:54%]:

Rule 5: If environment = dry or wet, NR = high
and CS = medium Then SR is [0.16{0.58]:

[P = 66:70%; Q = 14:28%; C = 7:41%; QTY = 2]

[T = 88:39%]:

Rule 6: If environment = dry or wet, NR = low or
medium and FR = high Then SR is (0.58{1.41]:

[P = 100%; Q = 30:77%; C = 14:81%; QTY = 4]

[T = 145:58%]:

Rule 7: If environment = dry or wet, NR = low
or medium and FR = low or medium Then SR is
(0.58{1.41]:

[P = 62:50%; Q = 38:46%; C = 18:52%; QTY = 5]

[T = 119:48%]:

The decision tree for cutting force originated from
CART algorithm is shown in Figure 8. The correspond-
ing `If-Then' rules are subsequently generated from this
decision tree. When the values of cutting force are less
than or equal to 171.30 N, they are denoted as `low'
and when its values are greater than 171.30 N, they are
designated as `high'. An analysis of these rules reveals
that when the machining environment is cryogenic,
cutting speed is less than or equal to 180 m/min and
feed rate is less than or equal to 0.11 mm/rev, and
the achievable cutting force would be low. Similarly,
a high depth of cut leads to higher cutting force. The
rules extracted from the decision tree based on CHAID
algorithm (not presented here) state that cryogenic
environment would always provide lower cutting force.
On the other hand, low depth of cut and low or medium
nose radius are often responsible for attaining lower
cutting force. When the relative importance of all
the considered CNC turning parameters is plotted in
Figure 9, it determines that the depth of cut is the most
important parameter that a�ects the cutting force,
followed by the machining environment and feed rate.
Nose radius appears to be an insigni�cant CNC turning
parameter for cutting force. An optimal parametric
mix of moderate cutting speed, low feed rate, low
depth of cut, moderate nose radius and cryogenic
environment was identi�ed by Gupta et al. [4] for
lower cutting force, which almost corroborates with the
decision trees-based observations.

CART-based rules for cutting force

Rule 1: If environment = cryogenic and CS >
180 m/min Then CF is [106.23{171.30]:

[P = 100%; Q = 21:43%; C = 11:11%; QTY = 3]

[T = 132:54%]:

Rule 2: If environment = cryogenic, CS �
180 m/min and FR � 0:11 mm/rev Then CF
is [106.23{171.30]:
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Figure 8. Classi�cation tree for cutting force using Classi�cation And Regression Tree (CART) algorithm.

[P = 100%; Q = 14:28%; C = 7:41%; QTY = 2]

[T = 121:69%]:

Rule 3: If environment = cryogenic, CS �
180 m/min and FR > 0:11 mm/rev Then CF
is [106.23{171.30]:

[P = 50%; Q = 14:28%; C = 7:41%; QTY = 2]

[T = 71:69%]:

Rule 4: If environment = dry or wet, DOC �
0:28 mm and CS � 180 m/min Then CF is [106.23{
171.30]:

[P = 100%; Q = 28:57%; C = 14:81%; QTY = 4]

[T = 143:38%]:

Rule 5: If environment = dry or wet, DOC �
0:28 mm and CS > 180 m/min then CF is [106.23{
171.30]:
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Figure 9. Importance of Computer Numerical Control
(CNC) turning parameters a�ecting cutting force.

[P = 100%; Q = 7:69%; C = 3:70%; QTY = 1]

[T = 111:39%]:

Rule 6: If environment = dry or wet, DOC >
0:28 mm Then CF is (171.30{286.90]:

[P = 100%; Q = 46:15%; C = 22:22%; QTY = 6]

[T = 168:37%]:

Rule 7: If environment = dry or wet, DOC >
0:28 mm or � 0:42 mm, and CS � 180 m/min Then
CF is [106.23{171.30]:

[P = 50%; Q = 14:28%; C = 7:41%; QTY = 2]

[T = 71:69%]:

Rule 8: If environment = dry or wet, DOC >
0:28 mm or � 0:42 mm, and CS > 180 m/min Then
CF is (171.30{286.90]:

[P = 100%; Q = 15:38%; C = 7:41%; QTY = 2]

[T = 122:79%]:

CHAID-based rules for cutting force

Rule 1: If environment = cryogenic Then CF
is [106.23{171.30]:

[P = 77:80%; Q = 50%; C = 25:92%; QTY = 7]

[T = 153:72%]:

Rule 2: If environment = dry or wet and DOC =
low Then CF is [106.23{171.30]:

[P = 83:30%; Q = 35:71%; C = 18:52%; QTY = 5]

[T = 136:53%]:

Rule 3: If environment = dry or wet, DOC =

medium or high and NR = low or high Then CF
is (171.30{286.90]:

[P = 100%; Q = 61:54%; C = 29:63%; QTY = 8]

[T = 191:17%]:

Rule 4: If environment = dry or wet, DOC =
medium or high and NR = medium Then CF
is [106.23{171.30]:

[P = 50%; Q = 14:29%; C = 7:41%; QTY = 2]

[T = 71:70%]:

In Table 7, a comparison of the classi�cation accuracies
for CART and CHAID algorithms for all the four
responses is provided. From this table, it can be noted
that for tool life and power consumption responses,
CART algorithm can perfectly predict low and high
tool life, and low and high power consumption values.
The classi�cation accuracies for high and low SR are
84.6% and 78.6% respectively. Similarly, using CART
algorithm, high and low cutting forces can be predicted
with accuracies of 85.7% and 76.9% respectively. Thus,
CART algorithm can almost perfectly predict both the
high and low values of all the considered responses,
although it has a slightly greater tendency to accurately
estimate high values of the responses. In case of
CHAID algorithm, it can perfectly predict low values
of tool life, power consumption and cutting force. High
values of tool life and power consumption are predicted
with 92.3% and 91.7% accuracies respectively. It has
prediction accuracies of 84.6% and 71.4% for high and
low SR values respectively. The classi�cation accuracy
for high cutting force is only 61.5%. Thus, it can
be concluded that CHAID algorithm performs better
in predicting low values of the considered responses.
The overall classi�cation accuracies of both these algo-
rithms for the four responses are provided in Table 8.
With respect to overall classi�cation accuracy, CART
algorithm outperforms CHAID in almost exactly pre-
dicting the responses of the CNC turning process under
consideration. The corresponding values of Standard
Error (SE) for CART are also comparatively low as
compared to CHAID algorithm.

In order to visualize the e�ects of changing values
of the responses of the considered CNC turning process
on the prediction performance of CART and CHAID
algorithms, a sensitivity analysis study is performed
here. In this approach, incremental changes are made
in the response values of the experimental dataset
based on the equation:

RN = RO + (2� RAND ()� 1)� E �RO;
where RO is the original response value, RAND () is a
uniform random number generator function between 0



3670 S.S. Dandge and S. Chakraborty/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3653{3674

Table 7. Classi�cation accuracies for Tool Life (TL), Power Consumption (PC), Surface Roughness (SR), and Cutting
Force (CF) using Classi�cation And Regression Tree (CART) and Chi-squared Automatic Interaction Detection (CHAID)
algorithms.

CART CHAID

TL

Predicted Predicted

Response Observed High
(> 27.66 min)

Low
(� 27.66 min)

Percent
correct

High
(> 0.58 �m)

Low
(� 0.58 �m)

Percent
correct

High
(> 27.66 min)

13 0 100% 12 1 92.3%

Low
(� 27.66 min)

0 14 100% 0 14 100%

Overall
percentage

48.1% 51.9 % 100% 44.4% 55.6% 96.2%

PC

Predicted Predicted

Observed High
(> 1373 W)

Low
(� 1373 W)

Percent
correct

High
(> 1373 W)

Low
(� 1373 W)

Percent
correct

High
(> 1373 W)

12 0 100% 11 1 91.7%

Low
(� 1373W)

0 15 100% 0 15 100%

Overall
percentage

44.4% 55.6 % 100% 40.7% 59.3% 95.8%

SR

Predicted Predicted

Observed High
(> 0.58 �m)

Low
(� 0.58 �m)

Percent
correct

High
(> 0.58 �m)

Low
(� 0.58 �m)

Percent
correct

High
(> 0.58 �m)

11 2 84.6 % 11 2 84.6%

Low
(� 0.58 �m)

3 11 78.6 % 4 10 71.4%

Overall
percentage

51.8 % 48.1 % 81.6 % 55.5% 44.4% 78.0%

CF

Predicted Predicted

Observed High
(> 171.30 N)

Low
(� 171.30 N)

Percent
correct

High
(> 0.58 �m)

Low
(� 0.58�m)

Percent
correct

High
(> 171.30 N)

12 1 85.7 % 8 5 61.5%

Low
(� 171.30 N)

4 10 76.9 % 0 14 100%

Overall
percentage

59.2 % 40.8 % 81.3 % 29.6% 70.4% 80.7%

and 1, E is the relative error level and RN is the new
perturbed response value.

The relative error levels are set here as 5, 10, 15,
20, and 25%. The classi�cation accuracies of both
the algorithms at varying errors levels are provided
in Table 9. It can be clearly propounded that the
prediction performance of the CART algorithm is
least a�ected by the changing response values in the
experimental dataset and it is a more robust technique
as compared to the CHAID algorithm.

Over the past few decades, decision tree algo-

rithms, like CART and CHAID, have been in extensive
use for solving predictive analytics problems. As they
are generic models based on e�ective calculation pro-
cedures, they can easily arrive at the optimal solutions
for a given classi�cation/prediction problem. Decision
trees generated by these algorithms are e�cient man-
agerial tools that present all the decisions/outcomes
in the form of a owchart with branches and leaves.
Decision trees thus solve problems of machine learning
by transforming the data into a tree representation.
Each branch of the tree symbolizes a decision option.
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Table 8. Risk of classifying Surface Roughness (SR), Tool
Life (TL), Cutting Force (CF) and Power Consumption
(PC).

Response Method Accuracy Standard error

TL CART 1.000 0.001
CHAID 0.963 0.036

PC CART 1.000 0.001
CHAID 0.958 0.036

SR CART 0.815 0.075
CHAID 0.778 0.080

CF CART 0.818 0.075
CHAID 0.807 0.036

The leaves at the end of the branches show the possible
outcomes. Decision trees can deal with quantitative,
qualitative, or categorical attributes by assigning ob-
jects to a speci�c class in a classi�cation problem. A
decision tree is one of the simplest and most popular
classi�cation algorithms to learn, understand and inter-
pret. They have several advantages, like the require-
ment of less computational e�ort for data preparation
during pre-processing, no need for normalization and
scaling of data, least a�ectability towards the missing
observation in the dataset, provision of explanation
about how a particular decision has been reached etc.
Similarly, they also su�er from some disadvantages, like
the requirement of higher time for training, a small
change in data may cause a large change in the tree
structure causing instability, inability to be applied for
regression, and prediction of continuous variables.

5. Conclusions

This paper deals with the application of a data
mining tool in the form of the development of de-
cision trees using Classi�cation And Regression Tree
(CART) and Chi-squared Automatic Interaction De-
tection (CHAID) algorithms to determine the most

preferable combinations of various machining param-
eters in a Computer Numerical Control (CNC) turning
process. The `If-Then' rules extracted from both
the decision trees would guide the concerned process
engineers in investigating the e�ects of the input
parameters on the considered responses. Based on the
detailed analysis of the corresponding decision trees
and decision rules, the following conclusions can be
derived:

a) For achieving higher tool life, cryogenic environ-
ment, and low values of cutting speed, tool nose
radius and feed rate need to be set. Depth of cut
has almost no e�ect on tool life;

b) A combination of cryogenic environment, low or
medium cutting speed, low feed rate, and low nose
radius are responsible for lower power consumption;

c) To attain lower surface roughness of the turned
components, cryogenic environment, high cutting
speed, low or medium feed rate, and high nose
radius would be the recommended setting for the
said CNC turning process. Depth of cut plays in
signi�cant role on surface roughness;

d) A parametric mix of cryogenic environment, low
cutting speed, low or medium feed rate, low depth
of cut, and low or medium nose radius would
provide lower cutting speed;

e) The CART algorithm supersedes the CHAID algo-
rithm with respect to higher overall classi�cation
accuracy and lower prediction risk. Although, for
some of the responses, CART generates a slightly
more number of decision rules as compared to
CHAID, it can almost perfectly predict high as well
as low values of all the responses;

f) Between these two algorithms, CART has a higher
capacity to predict high values of the responses,
whereas, CHAID performs better for low responses
values;

g) Based on the sensitivity analysis study, the pre-
diction performance of the CART algorithm is
observed to be least a�ected by the perturbed
response values in the experimental dataset as
compared to the CHAID algorithm.

Table 9. Classi�cation accuracies of Classi�cation And Regression Tree (CART) and Chi-squared Automatic Interaction
Detection (CHAID) algorithms at various error levels.

Error level
CART CHAID

Response 5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

TL 100 100 100 92.6 92.6 92.6 92.6 92.6 82.6 85.2
PC 100 100 96.3 96.3 92.6 100 100 92.6 96.3 96.3
SR 88.9 81.5 85.2 85.2 81.5 81.5 80.9 80.45 81.5 79.0
CF 92.6 82.6 92.6 92.6 88.9 88.9 77.8 88.9 88.9 85.2



3672 S.S. Dandge and S. Chakraborty/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3653{3674

The most preferable parametric settings for the consid-
ered CNC turning process are observed to be in close
agreement with those derived by the past researchers
based on Taguchi methodology, which proves the e�-
cacy of the developed decision as revealed clearly by
the study of the material removal mechanism. These
classi�cation algorithms can thus be applied to any
machining process to investigate the e�ects of di�erent
input parameters on the responses and identify the best
machining conditions for enhanced process monitoring
and control.

As the decision rules mainly focus on classi�ca-
tion, they often neglect predicting the interrelation-
ships between the input parameters and responses in
the form of regression. While a continuous variable is
divided into intervals and turned into a classi�cation
problem, there is a high possibility of a loss of valuable
information. Thus, there must be always a trade-o�
between predictive accuracy and computational e�ort
to arrive at the most appropriate set of decision rules.
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