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Abstract. Estimation of bridge backwater has been one of the practical challenges of
hydraulic engineering for decades. In this study, Genetic Programming (GP) was employed
to estimate bridge backwater for the �rst time based on the conducted literature review.
Furthermore, two new explicit equations were developed to predict bridge a�ux using
Genetic Algorithm (GA) and hybrid MHBMO-GRG algorithm. The performance of these
models was compared with that of the Arti�cial Neural Network (ANN) and several explicit
equations available in the literature considering both laboratory and �eld data. According
to �ve considered performance evaluation criteria, two new explicit equations outperformed
those available in the literature. Furthermore, GP and ANN achieved the best results with
respect to four out of �ve considered criteria for training and testing datasets, respectively.
To be more speci�c, ANN improved the Mean Square Error (MSE) and R2 values of
the explicit equation developed using GA by 44% and 12% for the testing data while GP
enhanced the corresponding values by 62% and 9% for the training data. Finally, the results
indicated that not only the arti�cial intelligence models considerably improved bridge a�ux
estimations in comparison to the explicit equations but also the suggested equations could
signi�cantly improve the accuracy of the available explicit equations.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Bridges are undoubtedly useful structures across wa-
terways that connect river sides together for transfer
purposes. However, they may con�ne a natural space
for water ow in rivers. Particularly, water surface at
the upstream of bridges built over rivers may rise more
than its normal limit due to the provided con�nement
during ood event. This increase in water level with
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respect to normal water depth is invariantly called
bridge a�ux or backwater.

Since bridge backwater has important impacts
on ood defense schemes as well as river planning
and management projects, searching for methods that
provide better estimation of this phenomenon has been
studied over decades. To this end, many attempts
have been made which can be classi�ed from di�erent
viewpoints. In this respect, in terms of type of
bridges, such research attempts can be regarded as
contributions focusing on bridges with either horizontal
so�t [1] or arch deck [2{4]. From the methodological
point of view, some researchers employed numerical
[5,6], experimental [7,8], and data mining approaches
[3,9{11] to predict bridge backwater. Furthermore,
most of these methods estimating bridge a�ux have
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been basically developed based on �eld or laboratory
datasets. The numerical models can be classi�ed into
di�erent types of methods to predict bridge backwater
including: (1) energy method [12{14], (2) momentum
method [15], (3) WSPRO [16], (4) Yarnell's method
[17], (5) HR method [18], and (6) USBPR method
[19]. Although some of these numerical models have
been implemented in numerical software for simulating
rivers and hydraulic structures, such as ISIS package
[20] and HEC-RAS [12{16], such shortcomings as the
need for calibration, requirement for quite large data
sets, and exible applicability under certain speci�ed
assumptions make these models unable to estimate
backwater for di�erent types of bridges.

Since the present study focuses primarily on
estimating backwater in arched bridges, the relevant
contributions are particularly reviewed in the follow-
ing. Among the studies conducted for this type of
bridge, Biery and Delleur's research [2] is the most
well-known one. They conducted backwater analysis
of single-span arch bridges and proposed an explicit
empirical correlation which attributed bridge a�ux to
the Froude number and opening ratio. Brown [18]
not only conducted numerous experimental studies
on di�erent types of bridge constrictions, but also
collected a variety of bridge backwater �eld data from
1946 to 1983. He �nally proposed HR method that
could estimate backwater for arch bridges using normal
depth, Froude number, and blockage ratio. Later,
this method was used as one of bridge subroutine
approaches in the ISIS package program [20]. Despite
the common applications of explicit equations used
for estimating many variables in di�erent applications
of water resources [21{25], they should be used only
when their background assumption(s) and valid ranges
are applicable. In this regard, the limitations of the
available explicit equations for predicting backwater
depth are that (1) they were not developed by powerful
algorithms and (2) were not accurate enough to be
applied to professional software to analyze rivers and
design hydraulic structures. In order to enhance the ac-
curacy of backwater estimation based on experimental
and �eld databases, Arti�cial Intelligence (AI) models
such as function-based Radial Basis Neural Network
(RBNN), Multi-Layer Perceptron (MLP), Generalized
Regression Neural Networks (GRNN), and Adaptive
Neuro-Fuzzy Inference System (ANFIS) were employed
[3,4,10,11]. Despite all these studies, an accurate ex-
plicit equation, which could take all involved variables
into account and be developed by powerful algorithms
like Genetic Algorithm (GA), has not been proposed
based on the current literature. Although several
AI models, such as ANN, were applied to estimate
the a�ux of arched bridges, Genetic Programming
(GP) successfully used for solving other water-related
problems [23,26,27] has not been utilized yet. Given

that better bridge backwater estimation can yield
more sustainable and reliable schemes for bridge safety
during ood events, developing new explicit equations
with higher accuracy through powerful optimization
algorithms and utilizing other powerful data mining
approaches are still required.

In this paper, two new explicit equations were
developed to estimate bridge a�ux using GA and
Modi�ed Honey Bee Mating Optimization (MHBMO)
and Generalized Reduced Gradient (GRG) Algorithms.
These algorithms have been e�ciently used for solving
di�erent civil and water engineering problems in the
literature [21,22,28{30]. However, to the authors'
knowledge, it is the �rst time that they have been
applied to estimate bridge backwater depth. Moreover,
GP has been used for similar purpose for the �rst time
in the literature. The performances of these three
models are compared with those of Arti�cial Neural
Network (ANN) and three other explicit equations
available in the literature. The obtained results for
a�ux prediction based on the reliable database showed
that these new models could signi�cantly improve the
estimation.

2. Bridge backwater problems

In order to understand this phenomenon better, a
schematic situation of bridge backwater is depicted
in Figure 1. As observed, water suitably ows along
the river and under the bridge with normal depth.
However, a rise in the water surface level would be due
to bridge constriction during ood events. In Figure 1,
dh is bridge backwater andD1 andD3 represent normal
ow depth in Sections 1 and 3, respectively.

According to the previous studies [3,8{10,31], four
parameters have the most signi�cant impacts on bridge
backwater including (1) the ratio of blockage area of
bridge at depth D1 to the ow area in Section 1
upstream of the bridge (J1), (2) ratio of blockage area
of bridge at depth D3 to the ow area in Section 3
downstream of the bridge (J3), (3) Froude number in
Section 3 (F3), and (4) downstream normal depth (D3).
Based on these parameters, bridge a�ux (dh) can be
evaluated for arched bridge constructions in rivers.
Through dimensionless analysis, the bridge backwater
can be determined as follows:

dh
D3

= F (J1; J3; F3); (1)

where F is function. Three empirical formulas for
bridge backwater available in the literature include
Biery and Delleur [2], Multiple Linear Regressions
(MLR) [3], and Multiple Non-Linear Regressions
(MNLR) [3]. The corresponding equations are shown
in Eqs. (2){(4).
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Figure 1. A schematic illustration of bridge backwater caused by bridge constrictions.

dh
D3

= 0:47�
�

F3

1� J3

�2:26

; (2)

dh
D3

= 1:62� J1 � 1:54� J3 + 0:429� F3; (3)

dh
D3

= 1:311
J1:8

1 F 1:23
3

J0:744
3

: (4)

Among these explicit equations, Biery and Delleur's [2]
equation is the most commonly used empirical formula
for bridge backwater. As shown in Eq. (2), although
the impact of J1 is not considered in this equation, it
should be considered as a general function shown in
Eq. (1). According to Biery and Delleur's [2] formula,
bridge backwater increases with an increase in the
Froude number in downstream section and decreases
with a decrease in J3. However, Eqs. (3) and (4) take
into account all the independent parameters involved in
bridge backwater. The main di�erence between Eq. (3)
and Eq. (4) is that the former is linear, while the latter
considers a nonlinear relationship among the involved
parameters.

3. Methods and materials

In this section, �rst, the data considered for bridge
backwater is introduced. Second, the proposed empir-
ical models are presented. Finally, di�erent methods
used for estimating backwater depth in this study are
briey described.

3.1. Bridge backwater database
As mentioned earlier, a majority of the available
methods for backwater estimation have been developed
using laboratory and/or �eld data. Accordingly, the
data considered in this study comprise both experi-
mental and �eld datasets. The experimental data are
originally related to Hydraulic Research Wallingford
experiments conducted based on studies on backwater
estimation. The �eld data include 66 �eld data
observed from 1946 and 1983 [18]. Moreover, the 202-

Table 1. Comparison of the four statistical criteria for
di�erent models.

Parameters J1 J3 F3 dh=D3

Total data

Maximum 0.803 0.742 1.809 1.805
Minimum 0.064 0.047 0.008 0.002
Average 0.452 0.385 0.367 0.253

Train data

Maximum 0.803 0.742 1.809 1.805
Minimum 0.064 0.047 0.008 0.002
Average 0.455 0.388 0.374 0.261

Test data

Maximum 0.746 0.678 1.021 0.685
Minimum 0.099 0.097 0.053 0.008
Average 0.440 0.374 0.340 0.223

laboratory data analysis was carried out on two di�er-
ent rectangular umes incorporating di�erent types of
arched bridges. The J1, J3, F3, and dh=D3 ranges of
these data are summarized in Table 1. Moreover, the
variations of dh=D3 with J1, J3, and F3 are depicted
in Figure 2, according to which most data points
in this database have similar values for J1 and J3
and the amount of F3 is lower than 0.75. Moreover,
Figure 2 shows that the values of dimensionless bridge
backwater depth (dh=D3) are lower than 0.78 for most
data. Since this database has been already utilized
in several studies [3,10,18], it is technically reliable
for developing equations with improved accuracy to
estimate bridge backwater.

3.2. Proposed models for explicit backwater
estimation

According to the presented literature review, an ex-
plicit equation with high precision is still required
to estimate backwater in arched bridges. In this
regard, after examining many di�erent functions to
determine a quali�ed formula, a new structure for
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Figure 2. Variation of dh=D3 with respect to (a) J1 and
F3, (b) J1 and J3, and (c) J3 and F3.

explicit equation was obtained and proposed for a�ux
estimation. This simple-structured model is shown in
the following:

dh
D3

=

(
p1Jp2

1 Jp3
3 F p4

3 for F3 < p9

p5Jp6
1 Jp7

3 F p8
3 for F3 � p9

(5)

where pi for i = 1; 2; :::; 9 are the unknown coe�cients
of the new proposed model.

As shown in Eq. (5), the proposed model, re-
quiring nine coe�cients to be calibrated, divides the
whole dataset into two parts based on the value of the
Froude number of the downstream section (F3). In
each part, bridge backwater may be calculated using a
simple nonlinear equation obtained by multiplying all
the involved parameters. All coe�cients of the new
proposed model were optimized based on the �eld and
laboratory database. Unlike Biery and Delleur's [2]
model (Eq. (2)), the proposed model considers all in-
volved parameters while estimating bridge backwater.

3.3. Arti�cial Neural Network (ANN)
The theory of ANN was presented in a number of
references and applied to a variety of problems in dif-
ferent �elds, particularly hydraulic and water resources
engineering [27,32{34]. A typical ANN includes some
elements invariantly called neurons grouped in layers.
The neurons in the input layer take a vector that
consists of input data. These neurons are responsible
for transmitting the values to the next layer through
connections. Each neuron in a layer is connected to
all other neurons of the next layer while they are
all not connected with each other. The data ow
through these connections from one neuron to another
is multiplied by weights that control the strength of a
passing signal. In case the output layer is grasped in
feed-forward networks, the data process continues while
the data ows exclusively in one direction. However,
the Feed Forward Back Propagation (FFBP) uses one
or more hidden layers while the neurons in this layer
intervene between the external input and the network
output to improve the performance of the network.

The data utilized in this study for backwater
depth estimation have three input parameters, i.e.,
J1, J3, and F3, and one output parameter, dh=D3.
The considered network has input, output, and hidden
layers that consist of three, ten, and one neurons,
respectively. The Levenberg Marquardt optimization
technique was used to train the FFBP. According to
the literature, ANN has already been used for bridge
backwater estimation as well as comparison purposes.

3.4. Genetic Algorithm (GA)
GA is a zero-order search-based optimization algorithm
that mimics the mechanism of natural selection and
evolution. This algorithm is widely used with numer-
ous applications [22]. Three genetic operators such
as crossover, mutation, and selection are commonly
utilized in GA to create new combinations of variables
and �nd better solutions. Not only does the crossover
operator exchange genetic information among selected
population members, but also it combines the informa-
tion of the selected parents to form new strings. This
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combination is made possible probabilistically through
a swapping process. The mutation operator allows
and maintains the diversity of genetic information by
randomly changing the characteristics of the individual
population. Finally, the selection operator, as its name
indicates, chooses the best solutions.

In this study, a population size equal to 300 in
number is adopted. Since the proposed model for
bridge backwater has nine unknown coe�cients, GA
was used to calibrate these nine decision variables.

3.5. Genetic Programming (GP)
GP, a random search heuristic method which is quite
similar to GA, operates on parse trees, whereas GA
considers bit strings. In essence, this technique applies
a wide range of variables and functions to a exible
tree-structured base that inevitably makes GP a pow-
erful tool to �nd the existing relations that best �t the
relation between the input and output variables of a
system.

The main steps of GP include initialization, selec-
tion, reproduction, and termination. First, it consid-
ers an initial population, which consists of randomly
generated programs (equations). These programs are
basically derived from a random combination of in-
put variables, random numbers, and functions. The
considered population is subjected to an evolutionary
process to �nd and select individual programs that best
describe the relation between the input and output
variables. The part of the information between the se-
lected programs is exchanged to create better programs
using genetic operators such as crossover and mutation.
This evolution process is repeated over consecutive
generations until symbolic expressions describing the
data are reached. Further details of GP may be found
in Koza et al. [35] for interested readers. Discipulus [36]
software, used for implementing GP in many studies
[23,26,27], was applied in this research.

3.6. The hybrid MHBMO-GRG algorithm
The hybrid MHBMO-GRG algorithm was �rst sug-
gested by Niazkar and Afzali [28] and was success-
fully applied for solving some problems in the water
engineering �eld [21,22,28{30]. This hybrid algorithm
comprises search-based and deterministic optimization
algorithms used in two consecutive steps.

In the �rst step, a zero-order optimization al-
gorithm, called MHBMO algorithm, commences the
optimization process after evaluating the controlling
parameters of the algorithm. Technically, this algo-
rithm is inspired by the mating process of honey bees.
The basic steps of the MHBMO algorithm are: (1)
starting mating ight where a queen (best solution)
probabilistically selects drones to create broods, (2)
making new broods (trial solutions), (3) searching
locally for new broods (trial solutions) by workers, (4)

improving workers' �tness, and (5) �nding the queen
for the next generation by comparing the queen with
the best brood [37{39]. The details of this algorithm
are comprehensively presented in the literature [40,41]
for interested readers. In this hybrid method, the
MHBMO algorithm precedes the optimization process
for several numbers of iterations and results of the last
iteration will be used as initial guesses for the next step.

In the second step, the problem is put in Excel
spreadsheet. Then, the GRG algorithm, a �rst-order
optimization technique, is utilized to continue the
optimization process. This algorithm is one of the
features embedded in Excel [42{44]. Although the
MHBMO algorithm requires evaluation of �ve control-
ling algorithm parameters, GRG algorithm needs a set
of initial guesses which are the results obtained in the
last iteration of the �rst step in this hybrid method.
The �nal optimum results obtained from the GRG
algorithm highly depend on initial guesses. Therefore,
the possibility of achieving a local optimum and initial
guess requirement are the notable shortcomings of the
MHBMO and GRG algorithms, respectively. However,
the MHBMO-GRG hybrid method overcomes these
drawbacks. It should be mentioned that according
to the successful experience of applying this hybrid
method to solve several problems [21,22,28{30], the
new hybrid method not only enhances the applicability
of the MHBMO algorithm in �nding global optimum
values, but adequately provides a set of initial guesses
for the GRG algorithm.

4. Application and results

4.1. Train and test data
First of all, the considered database was randomly
divided into two categories, namely training and testing
datasets [21]. Since a generic equation is sought for
bridge backwater, both experimental and �eld data
are treated the same in this data-splitting process as
those conducted in the relevant studies [3,4,10]. As
mentioned earlier, the utilized database has 202 and 66
laboratory and �eld data sets, respectively. Of the total
268 data, 80% (161 experimental and 50 �eld data)
were taken into account to calibrate the coe�cients
of the new formula, while the rest (41 experimental
and 16 �eld data) were kept for comparison purpose.
The maximum, minimum, and average values for the
involved parameters and dh=D3 for the total, training,
and test datasets are presented in Table 1, according
to which, for all the parameters, the maximum of the
training dataset is larger than the maximum of the test
dataset and the minimum of the training dataset is
lower than the minimum of the test dataset. In other
words, the range of the training data is wider than that
of the testing data which is indicative of a reasonable
and adequate data division. Furthermore, according
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to Table 1, the new proposed model is applicable to
downstream Froude number varying from 0.0075 to
1.8089.

4.2. Proposed models
In this study, two arti�cial techniques, i.e., ANN and
GP, and two optimization algorithms, i.e., GA and
MHBMO-GRG, were calibrated through the training
dataset. To be more speci�c, the unknown coe�cients
of the explicit proposed model (Eq. (5)) were optimized
based on the training dataset using GA and MHBMO-
GRG. ANN and GP estimate bridge backwater without
using the proposed model. In this regard, the same
objective function was used in the training process for
all these models. It is de�ned as minimizing the Root
Mean Square Error (RMSE) between the computed
and observed a�ux to downstream depth (dh=D3)
ratios. The sole constraint of this optimization process
prevents bridge backwater from gaining a negative
value. The objective function and the sole constraint
are shown in Eqs. (6) and (7), respectively:

Minimize RMSE =vuuut NP
i=1

[( dhD3
)i;observed � ( dhD3

)
i;calculated

]2

N
; (6)

Subjected to
dh
D3

> 0; (7)

where ( dhD3
)i;observed and ( dhD3

)i;calculated are the ob-
served and calculated ratios of backwater to down-
stream water depth for the ith data point and N
denotes the total number of the training dataset.

Since each data point was randomly allocated
to either training or testing dataset, the two arti-
�cial models (ANN and GP) were trained for the
training data and afterwards applied to estimate the
testing data. However, the two utilized optimization
algorithms (GA and MHBMO-GRG algorithm) were
applied to the training dataset to �nd the optimum
values of pi coe�cients. In this regard, the controlling
parameters in the MHBMO algorithm and GA were
considered as the ones used in studies of Niazkar
and Afzali [21] and Niazkar et al. [22], respectively.
As a result, the new explicit equations proposed for
bridge backwater estimation using GA and MHBMO-
GRG algorithm are introduced in Eqs. (8) and (9),
respectively. According to Eq. (8), the parameter J3
has two di�erent impacts on bridge backwater. To
be more speci�c, bridge backwater increases with a
decrease in J3 for F3 < 0:2 and reduces with a decrease
in J3 for F3 � 0:2. Therefore, J3 can have positive
or negative inuence on bridge backwater depending
on the value of Froude number at the downstream.
Additionally, the higher either J1 or F3 becomes, the

Figure 3. Con�dence limits of di�erent models for
calculating bridge backwater for test data.

greater the bridge a�ux will be. Eq. (9) obtained by
GA appears to be applicable to most of the considered
data, while implying that dh=D3 increases upon an
increase in each of J1, J3, or F3.

dh
D3

=

(
2:274J5:328

1 J�0:899
3 F 0:596

3 for F3 < 0:2
5:243J1:102

1 J0:822
3 F 1:523

3 for F3 � 0:2
(8)

dh
D3

=

(
4:49J1:39

1 J0:514
3 F 1:421

3 for F3 < 1:179
4:946J1:519

1 J�0:267
3 F�3:242

3 for F3�1:179 (9)

The con�dence limits of GP, ANN, Eq. (8), and Eq. (9)
computed for the measured and calculated dh=D3
values are given in Figure 3. In Figure 3, the ranges
of bridge backwater values calculated by each model
are compared for the testing data. As shown, the
range of dh=D3 values predicted by GP has the lowest
minimum, average, and maximum values among all the
considered methods, while the ranges achieved by ANN
and Eq. (9) obtained by GA are very close to each
other. Moreover, Figure 3 shows that the proposed
explicit equations achieved by GA and MHBMO-GRG
algorithm can be con�dentially used for estimating
bridge a�ux for dh=D3 placed within [0.165, 0.258] and
[0.158, 0.252], respectively.

4.3. Performance evaluation criteria
In order to compare the performances of di�erent
models for better a�ux estimation, �ve performance
evaluation criteria are adopted from the literature
[3,10,45{47]. These criteria include (1) Mean Square
Error (MSE), (2) Mean Absolute Error (MAE), (3)
Mean Absolute Relative Error (MARE), (4) Average
of Individual Ratios (AIR), and (5) coe�cient of
determination (R2). These criteria are respectively
introduced in Eqs. (10) to (14):

MSE=
1
N

NX
i=1

"�
dh
D3

�
i;observed

�
�
dh
D3

�
i;calculated

#2

;
(10)
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Table 2. Comparison of the performance of di�erent models for the train data.

Methods MSE MAE MARE AIR R2

(a) Explicit equations

Biery and Delleur [2] 0.0806 0.103 56.6 3.143 0.559
MLR [3] 0.0498 0.1505 183 0.742 0.587
MLNR [3] 0.0806 0.1144 63 1.235 0.494
MHBMO-GRG (this study) 0.0358 0.0778 53.2 3.377 0.717
GA (this study) 0.0131 0.0724 63.4 1.507 0.876

(b) Arti�cial intelligence models

GP (this study) 0.0049 0.0346 31 2.079 0.957
ANN 0.0083 0.0427 52.3 1.019 0.922

MAE=
1
N

NX
i=1

������ dhD3

�
i;observed

�
�
dh
D3

�
i;calculated

�����;(11)

MARE =
1
N

NX
i=1

����� ( dhD3
)
i;observed

� ( dhD3
)
i;calculated

( dhD3
)
i;observed

�����
�100; (12)

AIR =
1
N

NX
i=1

"
( dhD3

)
i;observed

( dhD3
)
i;calculated

#
; (13)

Eq. (14) is shown in Box I.

4.4. Comparison results
Through these �ve evaluation criteria, the performance
of di�erent models applied to a�ux estimation was
compared, as shown in Tables 2 and 3, for the training
and testing data sets, respectively. As shown in
Table 2, GP achieved the lowest (best) values for MSE,
MAE, and MARE and the largest (best) values for R2

in comparison with other ones for the training data,
while ANN obtained the best value for AIR criterion in
Table 2. Among the explicit equations listed in Table 2,
Eq. (9) determined by GA outperformed others in
terms of MSE, MAE, and R2, while Eq. (8) developed

by the MHBMO-GRG algorithm achieved the best
MARE for the training data. According to Table 3,
ANN obtained the lowest (best) values for MSE, MAE
and the largest (best) values for R2, while GP scored
the best MARE for the testing data among all the
considered models. Furthermore, the new explicit
equation calibrated using GA outperformed other ones
in Table 3 with respect to MSE, MAE, MARE, and R2

criteria. The results shown in Tables 2 and 3 clearly
demonstrate that the application of available empir-
ical equation, e.g., Biery and Delleur [2], may yield
signi�cant errors in the bridge backwater estimation.
However, the new explicit equations may serve as ade-
quate alternatives as they considerably improve a�ux
estimation in four out of the �ve considered criteria.

Figures 4 and 5 depict measured versus predicted
dh=D3 values calculated by GP, ANN, Eqs. (8), and (9)
for training and testing data sets, respectively. As
shown, R2 values for these models can also be compared
using these �gures. Based on Figures 4 and 5, GP
and ANN achieved the best R2 values for the training
and testing data sets, respectively. Moreover, Figure 6
compares the relative errors calculated by ANN, GP,
GA, and MHBMO-GRG algorithms for the whole data.
As shown, all these four models would make relative
errors close to zero for most of data because most of
the points depicted in Figure 6 are placed near the hor-

R2 =

0BBBBBBBBBB@
NP

i=1

240@� dh
D3

�
i;observed

�
NP
i=1

�
dh
D3

�
i;observed

N

1A0@� dh
D3

�
i;calculated

�
NP
i=1

�
dh
D3

�
i;calculated

N

1A35vuuuut NP
i=1

2640@� dhD3

�
i;observed

�
NP
i=1

�
dh
D3

�
i;observed

N

1A20@� dh
D3

�
i;calculated

�
NP
i=1

�
dh
D3

�
i;calculated

N

1A2375

1CCCCCCCCCCA

2

: (14)

Box I
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Table 3. Comparison of the performance of di�erent models for the test data.

Methods MSE MAE MARE AIR R2

(a) Explicit equations
Biery and Delleur [2] 0.0140 0.0800 39.9 3.296 0.685
MLR [3] 0.0177 0.1156 123 0.689 0.610
MLNR [3] 0.0138 0.0804 39 1.337 0.669
MHBMO-GRG (this study) 0.0083 0.0637 45.5 4.582 0.782
GA (this study) 0.0077 0.0621 41.1 1.456 0.792

(b) Arti�cial intelligence models
GP (this study) 0.0066 0.0504 30.6 2.99 0.842
ANN 0.0043 0.0464 32.9 1.034 0.887

izontal line. According to Figure 6, ANN achieves two
considerable negative relative error values; however,
other models yield several large positive relative errors.
This indicates that ANN signi�cantly underestimates
two data points, while others overestimate bridge
backwater for several data points in the considered data
base. Finally, the maximum and minimum relative
errors are achieved by GA and ANN in Figure 6,
respectively.

In order to determine the percentages of bridge
a�ux calculated within di�erent error ranges and
percentage deviations, the maximum, minimum, and
average values of percentage deviations between the
45-degree line and measured and calculated bridge

backwaters are computed using all seven models and
listed in Table 4. As shown, the average percentage
deviation, i.e.:"

( dhD3
)
i;calculated

� ( dhD3
)
i;observed

( dhD3
)
i;observed

#
� 100;

for the testing data using Biery and Delleur's [2]
equation is {20.57%, while the corresponding value
calculated by the MHBMO-GRG algorithm is {3.81%.
Furthermore, the latter one, which has the lowest
average percentage deviation in Table 4, predicted
more than 7% and 40% of the corresponding bridge
backwater values within �5% and �25% error ranges,

Figure 4. Comparison of R2 values calculated by di�erent models for training data.
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Figure 5. Comparison of R2 values calculated by di�erent models for testing data.

Figure 6. Comparison of relative errors calculated by di�erent models.



582 M. Niazkar et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 573{585

Table 4. Comparison of percentages of error ranges and deviation calculated by di�erent models for the test data.

Percentages of calculated dh=D3

in error ranges
Percentage deviation

Methods �5%
errors

�10%
errors

�15%
errors

�20%
errors

�25%
errors

Max Min Average

(a) Explicit equations
Biery and Delleur [2] 3 6 9 14 20 66.07 {97.99 {20.57
MLR [3] 4 5 6 7 10 580.62 {44.45 112.55
MLNR [3] 3 5 9 15 21 142.90 {84.57 0.28
MHBMO-GRG (this study) 4 10 18 21 23 219.76 {99.15 {3.81
GA (this study) 3 10 17 23 27 163.15 {86.28 6.34

(b) Arti�cial intelligence models
GP (this study) 9 17 25 31 33 69.52 {98.21 {17.08
ANN 6 13 19 24 27 139.09 {70.39 12.26

respectively. However, Biery and Delleur's [2] formula
achieved more than 5% and 35% of a�ux testing data
within �5% and �25% error ranges, respectively. This
comparison also demonstrates that the suggested equa-
tions are capable of estimating bridge backwater values
within better accuracy range than the available explicit
ones. Furthermore, GP predicts bridge backwater
values with the highest percentage within �5% and
�25% error ranges for the testing data.

The explicit equations, like those developed by
GA or the hybrid MHBMO-GRG algorithm in this
study, do not require calibration and may be applicable
to whatever situation that �ts within the ranges of
the dataset used for its development. Therefore,
these empirical equations may be implemented using
river engineering software to estimate bridge backwater
depth. Furthermore, AI models, like ANN and GP,
give a better estimation of bride backwater depth than
all the explicit equations while they need a training
process using a reliable dataset. However, once they
were trained, they could be exploited for scenarios
whose parameters are within the corresponding ranges
of the training data. Therefore, the explicit equations
and AI models have a valid range of applications, which
may be considered as their limitation or disadvantages.
Obviously, the wider the range of the training data,
the more situations they can be used for estimation
of bridge a�ux. As a result, the applied model not
only performs much better than the available explicit
formulas for estimating bridge a�ux values but also can
be alternatively used in practice within its applicable
range of validity.

5. Conclusions

Bridge backwater has been always an inevitable chal-
lenge for the safety and management of bridge and
channels sides particularly during ood events. Con-

sequently, the necessity of performing more accurate
estimation of bridge a�ux has provided an active �eld
of research area in the hydraulic structure engineering
�eld. According to the literature, various models have
been recommended based on experimental and �eld
data sets for this purpose. Additionally, the literature
review reveals lack of availability of accurate explicit
equations developed by applying powerful optimization
algorithms like Genetic Algorithm (GA). Furthermore,
even though several AI models have been already
applied to predicting a�ux for arched bridges, genetic
programming was utilized for this purpose for the �rst
time in this study to the authors' knowledge. In
this paper, seven models including Arti�cial Neural
Network (ANN), Genetic Programming (GP), Genetic
Algorithm (GA), and hybrid MHBMO-GRG algorithm
and three explicit equations available in the literature
were compared for backwater prediction. The two
optimization algorithms were used to develop two new
accuracy-improved explicit equations. Comparing the
performance of these seven models using �ve evaluation
criteria obviously indicates that the new explicit equa-
tions outperform the ones available in the literature
while GP and ANN perform as the two best models
among all the considered ones. To be more speci�c,
GP achieved R2 value equal to 0.957 and 0.842 for
the training and testing data, respectively, while ANN
obtained 0.922 and 0.887 values for the corresponding
criterion. Because of this precision improvement, the
applied models may be con�dentially altered with the
current explicit ones available in the literature for
backwater estimation within its range of applicability.

References

1. Hunt, J., Brunner, G.W., and Larock, B.E. \Flow
transitions in bridge backwater analysis", J. Hydraul.
Eng., 125(9), pp. 981{983 (1999).



M. Niazkar et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 573{585 583

2. Biery, P. and Delleur, J. \Hydraulics of single span
arch bridge construction", J. Hydraul. Eng., 88(2), pp.
75{108 (1962).

3. Mamak, M., Seckin, G., Cobaner, M., et al. \Bridge
a�ux analysis through arched bridge constrictions us-
ing arti�cial intelligence methods", Civ. Eng. Environ.
Syst., 26(3), pp. 279{293 (2009).

4. Pinar, E., Paydas, K., Seckin, G., et al. \Arti�cial
neural network approaches for prediction of backwa-
ter through arched bridge constrictions", Adv. Eng.
Softw., 41(4), pp. 627{635 (2010).

5. Biglari, B. and Sturm, T.W. \Numerical modeling of
ow around bridge abutments in compound channel",
J. Hydraul. Eng., 124(2), pp. 156{164 (1998).

6. Seckin, G., Haktanir, T., and Knight, D. \A simple
method for estimating ood ow around bridges", P.
I. Civil Eng-Wat. M., 160, pp. 195{202 (2007).

7. Seckin, G., Yurtal, R., and Haktanir, T. \Contraction
and expansion losses through bridge constrictions", J.
Hydraul. Eng., 124(5), pp. 546{549 (1998).

8. Seckin, G. and Atabay, S. \Experimental backwater
analysis around bridge waterways", Can. J. Civil Eng.,
32(6), pp. 1015{1029 (2005).

9. Seckin, G., Akoz, M.S., Cobaner, M., et al. \Ap-
plication of ANN techniques for estimating backwa-
ter through bridge constrictions in Mississippi river
basin", Adv. Eng. Softw., 40(10), pp. 1039{1046
(2009).

10. Pinar, E., Seckin, G., Sahin, B., et al. \ANN ap-
proaches for the prediction of bridge backwater using
both �eld and experimental data", Int. J. of River
Basin Manag., 9(1), pp. 53{62 (2011).

11. Seckin, G., Cobaner. M., Ozmen-Cagatay, H., et al.
\Bridge a�ux estimation using arti�cial intelligence
systems", P. I. Civil Eng-Wat. M., 164, pp. 283{293
(2011).

12. Schneider, V. and Arcement, G. \Guide for selecting
manning's roughness coe�cients for natural channels
and ood plains", Available from the US Geological
Survey, Books and Open-File Reports Section, Box
25425, Federal Center, Denver, CO 80225-0425. Water-
Supply Paper 2339, 1989. 38 p, 22 g, 4 tab, 23 ref
(1989).

13. Hydrologic Engineering Center, HEC-2 Water Surface
Pro�les User's Manual, Hydrologic Eng. Ctr., Davis,
CA: US Army Corps of Engineers (1991).

14. Hydrologic Engineering Center, HEC-RAS River Anal-
ysis System, Hydrologic Eng. Ctr., Davis, CA: US
Army Corps of Engineers, version 3.1, beta Edn.
(2002).

15. Hydrologic Engineering Center, HEC-RAS River Anal-
ysis System, Hydrologic Eng. Ctr., Davis, CA: US
Army Corps of Engineers, version 1.0, Edn. (1995)

16. Sherman, J. \User's manual for WSPRO. A computer
model for water surface pro�le computation", US
Geological Survey, Reston, Va. Report No. FHWA-IP-
89-027 (1990).

17. Yarnell, D.L., Bridge Piers as Channel Obstructions,
(No. 442), US Dept. of Agriculture (1934).

18. Brown, P. \A�ux at arch bridges", Tech. Rep. Report
SR 182, HR Wallingford (1988).

19. Bradley, J.N., Hydraulics of Bridge Waterways, 2nd
Edn., Series No. 1, Washington DC: O�ce of Engi-
neering, US Department of Transportation, Federal
Highway Administration (1978).

20. Hallcrow, S.W. and Wallingford, H.R., ISIS Flow User
Manual, Version 2.1., Sir William Halcrow & Partners
and HR Wallingford Ltd., Wallingford, UK (2002).

21. Niazkar, M. and Afzali, S.H. \Developing a new
accuracy-improved model for estimating scour depth
around piers using a hybrid method", IJST-T Civ.
Eng., 43(2), pp. 179{189 (2018).

22. Niazkar, M., Rakhshandehroo, G., and Afzali, S.H.
\Deriving explicit equations for optimum design of a
circular channel incorporating a variable roughness",
IJST-T Civ. Eng., 42(2), pp. 133{142 (2018). DOI
10.1007/s40996-017-0091-y

23. Niazkar, M. \Revisiting the estimation of colebrook
friction factor: A comparison between arti�cial in-
telligence models and C-W based explicit equations",
KSCE J. Civ. Eng., 23(10), pp. 4311{4326 (2019).

24. Niazkar, M., Talebbeydokhti, N., and Afzali, S.H.
\Relationship between Hazen-William coe�cient and
Colebrook-White friction factor: Application in water
network analysis", European Water, 58, pp. 513{520
(2017).

25. Niazkar, M. and Talebbeydokhti, N. \Comparison
of explicit relations for calculating Colebrook fric-
tion factor in pipe network analysis using h-based
methods", Iranian Journal of Science and Technology,
Transactions of Civil Engineering, 44(1), pp. 231{249
(2020). DOI: 10.1007/s40996-019-00343-2

26. Sivapragasam, C., Maheswaran, R., and Venkatesh, V.
\Genetic programming approach for ood routing in
natural channels", Hydrol. Process, 22(5), pp. 623{628
(2008).

27. Niazkar, M., Talebbeydokhti, N., and Afzali, S.H.
\Novel grain and form roughness estimator scheme
incorporating arti�cial intelligence models", Water
Resour. Manag., 33(2), pp. 757{773 (2019).

28. Niazkar, M. and Afzali, S.H. \Application of new hy-
brid optimization technique for parameter estimation
of new improved version of Muskingum model", Water
Resour. Manag., 30(13), pp. 4713{4730 (2016).

29. Niazkar, M. and Afzali, S.H. \Parameter estimation of
an improved nonlinear Muskingum model using a new
hybrid method", Hydrol. Res., 48(4), pp. 1253{1267
(2017).

30. Niazkar, M. and Afzali, S.H. \Application of new
hybrid method in developing a new semicircular-weir
discharge model", Alexandria Eng. J., 57(3), pp. 1741{
1747 (2017).



584 M. Niazkar et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 573{585

31. Cobaner, M., Seckin, G., and Kisi, O. \Initial assess-
ment of bridge backwater using an arti�cial neural
network approach", Can. J. Civil Eng., 35(5), pp. 500{
510 (2008).

32. Govindaraju, R.S. \Arti�cial neural networks in hy-
drology. I: Preliminary concepts", Journal of Hydro-
logic Engineering, 5(2), pp. 115{123 (2000).

33. Samet, K., Hoseini, K., Karami, H., et al. \Comparison
between soft computing methods for prediction of
sediment load in rivers: Maku dam case study", IJST-
T Civ. Eng., 43(1), pp. 93{103 (2019).

34. Vaghe�, M., Mahmoodi, K., and Akbari, M. \Detec-
tion of outlier in 3D ow velocity collection in an open-
channel bend using various data mining techniques",
IJST-T Civ. Eng., 43(2), pp. 197{214 (2019).

35. Koza, J.R., Bennett, F.H., and Sti�elman, O. \Genetic
programming as a Darwinian invention machine", In:
European Conference on Genetic Programming, pp.
93{108. Springer (1999).

36. Francone, F.D. \Discipulus owner's manual", Ma-
chine Learning Technologies, Inc., Littleton, Colorado
(1998).

37. Afzali, S.H., Darabi, A., and Niazkar, M. \Steel frame
optimal design using MHBMO algorithm", Int. J. Steel
Struct., 16(2), pp. 455{465 (2016).

38. Niazkar, M. and Afzali, S.H. \New nonlinear variable-
parameter Muskingum models", KSCE J. Civ. Eng.,
21(7), pp. 2958{2967 (2017).

39. Niazkar, M. and Afzali, S.H. \Closure to assessment
of modi�ed honey bee mating optimization for param-
eter estimation of nonlinear Muskingum models", J.
Hydrol. Eng., 23(4), 07018003 (2018).

40. Niazkar, M. and Afzali, S.H. \Assessment of modi�ed
honey bee mating optimization for parameter estima-
tion of nonlinear Muskingum models", J. Hydrol. Eng.,
20(4), 04014055 (2015).

41. Niazkar, M. and Afzali, S.H. \Optimum design of lined
channel sections", Water Resour. Manag., 29(6), pp.
1921{1932 (2015).

42. Niazkar, M. and Afzali, S.H. \Streamline performance
of Excel in stepwise implementation of numerical
solutions", Comput. Appl. Eng. Educ., 24(4), pp. 555{
566 (2016).

43. Niazkar, M. and Afzali, S.H. \Analysis of water dis-
tribution networks using MATLAB and Excel spread-
sheet: h-based methods", Comput. Appl. Eng. Educ.,
25(1), pp. 129{141 (2017).

44. Niazkar, M. and Afzali, S.H. \Analysis of water dis-
tribution networks using MATLAB and Excel spread-
sheet: Q-based methods", Comput. Appl. Eng. Educ.,
25(2), pp. 277{289 (2017).

45. Niazkar, M., Talebbeydokhti, N., and Afzali, S.H.
\Development of a new ow-dependent scheme for
calculating grain and form roughness coe�cients",
KSCE J. Civ. Eng., 23(5), pp. 2108{2116 (2019).

46. Motaman, F., Rakhshandehroo, G.R., Hashemi, M.R.,
et al. \Application of RBF-DQ method to time-
dependent analysis of unsaturated seepage", Transport
in Porous Media, 125(3), pp. 543{564 (2018).

47. Niazkar, M., Talebbeydokhti, N., and Afzali, S.H.
\One dimensional hydraulic ow routing incorporating
a variable grain roughness coe�cient", Water Resour.
Manag., 33(13), pp. 4599{4620 (2019).

Biographies

Majid Niazkar received his BS degree in Civil En-
gineering (2012), MS degree in Hydraulic Structures
(2014), and PhD degree in Water Resources all from the
Department of Civil and Environmental Engineering,
Shiraz University, Shiraz, Iran. He is currently a
research assistant at the Department of Civil and Envi-
ronmental Engineering, Shiraz University, Shiraz, Iran.
He has published 18 ISI papers, one ISC paper, and 30
papers in international and national conferences. His
research interests include hydrology (speci�cally, ood
modeling and routing), hydraulic engineering (specif-
ically, open-channel hydraulics and channel design),
water distribution networks, optimization, numerical
modeling, water resources management, critical infras-
tructure protection, groundwater, soft-computing tech-
niques (ANN and genetic programming) for hydrologic
modeling, river engineering and sediment transport,
bed roughness prediction, and assessing the impacts of
climate change. He also has reviewed some papers for
several ISI journals including Water Resources Man-
agement, Urban Water Journal, Arabian Journal for
Science and Engineering, and Computer Applications
in Engineering Education.

Nasser Talebbeydokhti received his PhD degree in
Water Resources and Hydraulic Engineering (1984)
from the Department of Civil and Environmental En-
gineering, Oregon State University, Corvallis USA. He
is a Professor of Civil and Environmental Engineering
with 40 years of teaching, research, and consulting
activities that cover broad areas of water resources and
environmental engineering. He is currently the Editor-
in-Chief of Iranian Journal of Science & Technology,
Transactions of Civil Engineering. He is a member
of Academy of Sciences of Iran. He also received
a distinguished award for the best teaching professor
in Iran in 2018. His research interests include envi-
ronmental engineering; Strategic environmental assess-
ment; spatial planning; hydrology; river hydraulics,
watershed engineering, sediment transport and channel
morphology; hydraulic structures; hydropower; envi-
ronmental impact assessment and mitigation; HSE;
water resources planning; water quality management
and monitoring; integrated watershed management;
coastal and estuarine sediment; and river resource



M. Niazkar et al./Scientia Iranica, Transactions A: Civil Engineering 28 (2021) 573{585 585

planning and management. He is the author of more
than 312 papers in national and international journals
and conference proceedings. Also, 19 PhD theses have
been defended under his supervision and he served as
an advisor in more than 30 PhD theses.

Seied Hosein Afzali received his BS degree from the
Department of Civil and Environmental Engineering,
Shiraz University, Shiraz, Iran in 1986 and the MSc de-
gree from the Department of Civil Engineering, Amirk-
abir University of Technology, Tehran, Iran, in 1988.

His PhD is in Hydraulic Structures (2008) from the
Department of Civil and Environmental Engineering,
Shiraz University, Shiraz, Iran. Dr. Afzali is currently
an Associate Professor of Civil Engineering at Shiraz
University, Shiraz, Iran. His research interests include
groundwater, hydraulic structures, river engineering,
optimization problems, and uid mechanics. He is
the author of more than 77 papers in national and
international journals and conference proceedings. He
is also the �rst author of a textbook about open channel
hydraulics translated in Persian.




