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Abstract. Since skewness plays a vital role in di�erent engineering phenomena, its
accurate measurement gains signi�cance. Several measures have been taken to quantify
the extent of skewness in distributions over the years, but each measure is subject to
some serious limitations. In this regard, the present study aims to propose a new
skewness measuring functional based on distribution function evaluated at mean with
minimal assumptions and limitations. Four well-recognized properties for an appropriate
measure of skewness were veri�ed and demonstrated for the new measure. A comparison
was made between the new measure and the conventional moment-based measure using
both functionals over the range of distributions available in the literature. Furthermore,
the robustness of the proposed measure against unusual data points was explored using
in
uence function. The mathematical �ndings were veri�ed through meticulous simulation
studies; further, they were veri�ed by real data sets derived from diverse �elds of inquiries.
As observed, compared to the classical moment-based measure, the proposed one passed
all the checks with distinction. Given the computational simplicity, applicability in a more
general environment, and preservation of c-ordering of distribution, the proposed measure
may be regarded as an attractive addition to the family of skewness measures.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

As a pioneering e�ort, a study was conducted by
Pearson [1] that introduced the concept of skewness
and proposed a measure for skewness by standardizing
the di�erence between the mean and mode of a dis-
tribution. The comprehension of the idea of skewness
immediately earned a core position in statistics and
allied literature (see [2]), and this concept has been
extensively used in di�erent �elds (e.g., see [3{12]
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and the other cited references). Zwet [13] introduced
the concept of ordering two functions in relevance to
skewness and brought the idea of c-preceding or c-
ordering into the lime light. A number of researchers
have drawn attention to the vibrancy of the concept
of skewness and applied it to (i) develop tests of nor-
mality, (ii) investigate the robustness of the standard
normal theory procedure, and (iii) select a member
of family such as from the Karl Pearson family (see
[14,15]). A number of recent high-pro�le academic
articles including those authored by Aucremanne et
al. [16], Brys et al. [17], Doane and Seward [18],
Hosking [19], and Li et al. [20] from various �elds of
inquiry, witnessed the ongoing glamour of skewness in
research community. It has been widely accepted that
an appropriate measure of skewness, say 
(X), must
satisfy the following characteristics (see [21]):
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i. For a symmetric distribution, 
(X) = 0;

ii. An appropriate skewness measure is insensitive
to linear transformation; in other words, when
dealing with transformation of the form Y =
cX + d, we have 
: (cX + d) = 
: (X), where c and
d are subject to the conditions that c > 0 and
�1 < d < +1;

iii. For Y = �X, 
: (Y ) = �
: (X);

iv. While comparing two distributions with respect to
skewness, if FX (:) c � precedes GY (:), that is, if
FX (:)<cGY (:), then 
: (F ) � 
: (G).

Several skewness functionals and their assessed
performances under di�erent conditions are available
in multidisciplinary research literature. For instance,
Brys et al. [22] remarked the shortcomings of using the
moment-based measures of skewness in the presence
of outliers. They compared several alternative robust
measures of skewness based on quantiles which are less
sensitive to outliers. The authors rather suggested
using the median, double median, and triple median of
actual data points in the range of median and quantiles
to measure skewness of the data. A comparison
revealed that the skewness measure, \medcouple" based
on double median, was less sensitive to other moment
or quantile-based measures of skewness.

Kim and White [23] compared the single-outlier
robust quantile-based and octile-based measures of
skewness using the stock market SP & 500 index
data. The authors, however, ranked their e�ort as
a starting point for measuring skewness in the �nan-
cial market data and further modeling asset prices.
Holgersson [24] proposed a modi�ed version of the
conventional measure of skewness based on the third
central moment. The author suggested considering the
di�erence between the mean and median as a base
for calculating the third central moment instead of
using only the mean (which is extremely sensitive to
outliers). Moreover, Tajuddin [25] extended the study
carried out by Brys et al. [22] and investigated the
medcouple as a robust measure of skewness. However,
mixed results were found regarding the robustness of
the medcouple based on the severity of skewness. Yet,
another evidence of ongoing e�orts based on midrange,
mean, median, and mode can be observed in the
study of Altinay [26], aiming at comparing a simple
class of measures of skewness. Although use of range
and midrange in the proposed skewness coe�cient
guarantees the insensitivity to the changes in location
or scale of the data distribution, the �nal results might
be misleading in the presence of outliers.

For discussion sake, some of the well-known
measures suggested in the literature are listed in the
following:

Sk = (��M) =�; 
1 = E(X � �)3=�3;


0m = (��m) =�; 
m = (��m) =E jX �mj ;

M = 1� 2F (M) :

Under the notion of simplicity, the conventional
notations of �, m, and M stand for mean, median,
and mode of distribution, respectively, and �, Q1, and
Q3 stand for standard deviation and the 1st and 3rd
quartiles, respectively. Despite being premium skew-
ness functionals, their performance was questionable
with respect to certain features. For example, Sk and

0m fail to maintain the feature of c-preceding (see [21]).
Li et al. [20] remarked that in some scenarios, 
1 would
result in misguiding estimates that would alter the
direction of skewness. The mode-based functional, 
M ,
assumes uni-model distribution which limits its utility
in real situations; however, 
m is often not expressible
as a simple function of parameters of distribution.

The present study proposed a new skewness
functional based on cumulative distribution function
(cdf) in relation to the mean of a distribution. The
inspiration behind using distribution function as the
base of the proposed measure is consistent with sta-
tistical intuitions. Ideally, a skewness measure should
be a functional involving parameter(s) that a�ects the
shape of the distribution. Of note, the distribution
function alone can provide us with di�erent dynam-
ics of distribution under consideration. In addition,
the arithmetic mean is a well-celebrated measure of
central tendency owing to its capacity of using all
the available information and amenability to further
mathematical treatments. Furthermore, as a proxy
of central tendency of data, it is also related to the
skewness of data. Therefore, application of a skewness
measure based on the cdf and mean of the distribution
is more appealing since both the mean and cdf of
a distribution may help elaborate the shape of the
distribution. Motivated by the research conducted by
the above-mentioned knowledgeable peers, we intended
to contribute towards the body of skewness-oriented
research in the following sections.

In the following sections, a skewness measure is
proposed and its appropriateness as a valid measure
of skewness is evaluated by mathematically proving
the above-designated characteristics (i){(iv). Full
advantage of available computational facilities should
be taken to carry out the intense simulation-based
investigation and verify the statistical strength of the
new measure. For demonstration purposes, eight
most commonly used distributions (Cauchy, F , T ,
Chi-square, Gamma, Rayleigh, Weibull, and Beta) in
statistical research were considered. The notion of
choosing these distributions gains signi�cance since
they aregeneral enough to o�er a wide range of ap-
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plications spanning from data modeling to asymptotic
theory. They are also essential for hypothesis testing
and some of these distributions of the existing measures
are either not calculable or limitedly applicable. In
addition, performance of the proposed functional was
assessed using the real data set on Algeria's yearly
fatality counts form 1997 to 2017, and the survey
data collected by Pakistan Bureau of Statistics (PBS)
on the respondents' degree of co-operation (non-co-
operation) at district level covering 78,635 households
for the year 2014{2015. For comparison purposes,
the commonly practiced measure 
1 was taken into
account. The superiority of the measure 
1 over the
others is highlighted in the studies of Arnold and
Groeneveld [21] and Zwet [13]. We expect better
performance for the proposed measure than that for

1, thus scaling its utility higher in the literature.

2. The measure

Assume a random variable, X, with the cdf of F (x),
pdf of f(x), and mean of �. We de�ne our functional
as follows:

p = 2F (�)� 1: (1)

One may notice that our proposition of using
the value of cdf at mean as a major component of
skewness quantifying measure stays consistent with the
inherent tendency of mean to slide in the direction of
skewness. To further strengthen the candidature of

p, it is necessary to remark that unlike other family
members of skewness measures, it neither assumes uni-
modality of the distribution nor calculation of the
higher order moments. Only the mean of a distribution
is required. Now, assume that 
p is an appropriate
skewness measure by verifying that it holds all four
properties (i){(iv) mentioned in the studies by Arnold
and Groeneveld [21] and Oja [27]:

i. In the case of symmetry, mean and median will be
positioned at the same place in population which
leads to the fact that F (�) = 0:5. Based on
this argument, it remains trivial to verify that
for symmetric distributions, the proposed skewness
functional, 
p, takes the value equal to zero;

ii. Let Y = cX+d) �y = c�x+d: Now, the skewness
functional in terms of Y is 
p (Y ) = 2F (�y)� 1 =
2Pr [Y < �y] � 1 = 2Pr [cX + d < c�x + d] � 1 =
2Pr [X < �x]� 1 = 
p (X);

iii. Let Y = �X) �y = ��x, the skewness functional
for variable Y is then written as 
p (Y) = 2F (�y)�
1) 
p (Y ) = 2F (��x)�1: It is trivially veri�able
that F (��x) = 1 � F (�x) and by using this
argument, we get 
p (Y ) = 2 [1� F (�x)] � 1 =
� [2F (�x)� 1] = �
 (X);

iv. To prove this property, we need to show that

Figure 1. Display of distribution functions with regard to
the concept of c-ordering of distributions.

G(�y) > F (�x). It is easy to perceive that if GY (:)
is more skewed to the right than FX(:), �y < �x.
Based on what was mentioned, Figure 1 reveals the
following inequalities:
GY (�x)�GY (�y) � GY (�x)� FX(�x);

d
d�y

(GY (�x)�GY (�y))� d
d�y

�
GY (�x)�FX(�x)

�
;

d
d�y

(GY (�x))� d
d�y

(GY (�y)) � d
d�y

(GY (�x))

� d
d�y

(FX(�x)) ;

� d
d�y

(GY (�y)) � � d
d�y

(FX(�x)) ;

d
d�y

(GY (�y)) � d
d�y

(FX(�x)) ;

d
d�y

(GY (�y)) � 0;

which is obvious. Hence, our supposition is true.
In other words, we have GY (�x) � GY (�y) �
GY (�x)� FX(�x); hence GY (�y) � FX(�x): This
implies that 
p (F ) = 2FX (�x) � 1 � 2GY (�y) �
1 = 
p (G) which veri�es the property (iv). Fig-
ure 1 depicts the notion of the mathematical proof.
In addition to the above-mentioned attributes, for

positive skewness, F (�) > 0:5 ) 2F (�) � 1 > 0,
thus ensuring a positive value of the skewness measure,
which can take a value of +1 at its extreme. Likewise,
dealing with negatively skewed distribution, F (�) <
0:5 ) 2F (�) � 1 < 0, thus resulting a negative
value, with {1 indicating the extreme negatively skewed
scenario. This discussion establishes a well-de�ned, in-
terpretable, and comparable skewness functional as we
always have �1 < 
p < +1 and 
p = 0 when symmetry
is witnessed while taking c-ordering of distributions
into account.
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3. Finite sample behavior

This section is dedicated to the assessment of the
behavior of 
p in the �nite sample and veri�cation of the
mathematical facts derived from the aforementioned
section. Here, the sustainability, interpretability, and
comprehension of the proposed skewness functional
were demonstrated through the extensive simulations
study. The notations used in this section are listed
below:
s(�x) Empirical cdf at �x

s(�x) Mean of the 10,000 empirical cdfs at �x

̂p = 2s(�x)� 1 Estimate of 
p
�̂
p Mean of the 10,000 
̂p

̂1 Estimate of 
1

�̂
 Mean of the 10,000 
̂1

We generate 10,000 samples of di�erent sizes (n =
30; 50; 100, and 500) for all the distributions men-
tioned in the introduction section. Under the notion

of generality, di�erent combinations of parameter(s)
driving the extent of skewness are taken into account
to evaluate the performance of the proposed measure
in the situations moderate to extreme skewness. To
document the comparative spirit of 
p, the �nite
sample behavior of the existing measure of skewness,

1, is also presented under the same above-mentioned
environment. Tables 1{8 present the values with
the average of over 10; 000 repetitions, highlighting
the features mathematically established in Section 2.
In addition, the interesting behavior of the estimate
variance of the proposed functional in comparison to
that of 
1 alongside the well-celebrated consistency
remains overwhelming throughout the study.

The results are compiled and interpreted in four
sub-sections assembling the selected distributions with
respect to their inherent attributes.

3.1. The Chi-square and gamma distributions
First, the computational �ndings for Chi-square and
Gamma (both positively skewed) distributions were
documented. To this end, Tables 1 and 2 were used.
Obviously, with an increase in the value of shape

Table 1. The simulated results for Chi-square distribution considering di�erent sample sizes and various combinations of
parameter.

v = 2 v = 3

n 30 50 100 500 n 30 50 100 500

F (�) 0.63212 0.63212 0.63212 0.63212 F (�) 0.60838 0.60838 0.60838 0.60838


p 0.26426 0.26426 0.26426 0.26426 
p 0.21675 0.21675 0.21675 0.21675


1 2.00000 2.00000 2.00000 2.00000 
1 2.00000 2.00000 2.00000 2.00000

s(�x) 0.62739 0.62859 0.62999 0.63196 s(�x) 0.60340 0.60552 0.60715 0.60834

�̂
p
V (
̂p)

0.25477
(0.01310)

0.25718
(0.00775)

0.25999
(0.00385)

0.26392
(0.00078)

�̂
p
V (
̂p)

0.20680
(0.01254)

0.21104
(0.00758)

0.21430
(0.00390)

0.21668
(0.00077)

�̂
1

V (
̂1)
1.47836

(0.40075)
1.64425

(0.37106)
1.77574

(0.29164)
1.95113

(0.110120)

�̂
1

V (
̂1)
1.23580

(0.33692)
1.35429

(0.28965)
1.47863

(0.21244)
1.04440

(0.07322)

v = 5 v = 10

n 30 50 100 500 n 30 50 100 500

F (�) 0.58412 0.58412 0.58412 0.58412 F (�) 0.55951 0.55951 0.55951 0.55951


p 0.16824 0.16824 0.16824 0.16824 
p 0.11901 0.11901 0.11901 0.11901


1 1.26491 1.26491 1.26491 1.26491 
1 0.89443 0.89443 0.89443 0.89443

s(�x) 0.58050 0.58187 0.58284 0.58358 s(�x) 0.55728 0.55739 0.55864 0.55913

�̂
p
V (
̂p)

0.16100
(0.01228)

0.16375
(0.00773)

0.16567
(0.00378)

0.16715
(0.00075)

�̂
p
V (
̂p)

0.11456
(0.01224)

0.11478
(0.00738)

0.11728
(0.00360)

0.11827
(0.00075)

�̂
1

V (
̂1)
0.97527

(0.27722)
1.08051

(0.23096)
1.15893

(0.15366)
1.23948

(0.04363)

�̂
1

V (
̂1)
0.70700

(0.22945)
0.76368

(0.17113)
0.82892

(0.10472)
0.87929

(0.00270)
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Table 2. The simulated results for Gamma distribution considering di�erent sample sizes and various combinations of
parameters.

� = 1; � = 1 � = 3; � = 1
n 30 50 100 500 n 30 50 100 500

F (�) 0.63210 0.63210 0.63210 0.63210 F (�) 0.57681 0.57681 0.57681 0.57681

p 0.26424 0.26424 0.26424 0.26424 
p 0.15362 0.15362 0.15362 0.15362

1 2.00000 2.00000 2.00000 2.00000 
1 1.15470 1.15470 1.15470 1.15470
s(�x) 0.62660 0.62811 0.63011 0.63156 s(�x) 0.57261 0.57565 0.57619 0.57665
�̂
p

V (
̂p)
0.25327

(0.44856)
0.25623

(0.34128)
0.26023

(0.23889)
0.26313

(0.10672)

�̂
p
V (
̂p)

0.14521
(0.77165)

0.15130
(0.56716)

0.15239
(0.40098)

0.15329
(0.17809)

�̂
1

V (
̂1)
1.48760

(0.42324)
1.62557

(0.37028)
1.79768

(0.31140)
1.95260

(0.17114)

�̂
1

V (
̂1)
0.89422

(0.57222)
0.98710

(0.45717)
1.06955

(0.35081)
1.13657

(0.17398)
� = 5; � = 1 � = 10; � = 1

n 30 50 100 500 n 30 50 100 500
F (�) 0.55951 0.55951 0.55951 0.55951 F (�) 0.54207 0.54207 0.54207 0.54207

p 0.11901 0.11901 0.11901 0.11901 
p 0.08414 0.08414 0.08414 0.08414

1 0.89443 0.89443 0.89443 0.89443 
1 0.63246 0.63246 0.63246 0.63246
s(�x) 0.55679 0.55789 0.55856 0.55907 s(�x) 0.53915 0.54692 0.54086 0.54181

�̂
p
V (
̂p)

0.11357
(0.01234)

0.11578
(0.00743)

0.11712
(0.00369)

0.11813
(0.00074)

�̂
p
V (
̂p)

0.07830
(0.01193)

0.08184
(0.00756)

0.08172
(0.00373)

0.08362
(0.00075)

�̂
1

V (
̂1)
0.70666

(0.22842)
0.77100

(0.16788)
0.82664

(0.10347)
0.87852

(0.02648)

�̂
1

V (
̂1)
0.49542

(0.18850)
0.55061

(0.14313)
0.58381

(0.07860)
0.61952

(0.01819)

Table 3. The simulated results for Weibull distribution considering di�erent sample sizes and various combinations of
parameters.

� = 1; � = 1 � = 3; � = 1
n 30 50 100 500 n 30 50 100 500

F (�) 0.63212 0.63212 0.63212 0.63212 F (�) 0.50937 0.50937 0.50937 0.50937

p 0.26424 0.26424 0.26424 0.26424 
p 0.01875 0.01875 0.01875 0.01875

1 2.00000 2.00000 2.00000 2.00000 
1 0.16810 0.16810 0.16810 0.16810
s(�x) 0.62509 0.62843 0.62976 0.63181 s(�x) 0.50834 0.50904 0.50938 0.50934

�̂
p
V (
̂p)

0.25019
(0.01276)

0.25686
(0.00791)

0.25953
(0.00384)

0.26361
(0.00077)

�̂
p
V (
̂p)

0.01668
(0.01164)

0.01808
(0.00709)

0.01876
(0.00345)

0.01868
(0.00070)

�̂
1

V (
̂1)
1.47068

(0.38703)
1.63975

(0.37944)
1.78756

(0.29825)
1.95114

(0.11215)

�̂
1

V (
̂1)
0.13299

(0.12112)
0.15147

(0.07768)
0.16017

(0.03903)
0.16562

(0.00822)
� = 5; � = 1 � = 7; � = 1

n 30 50 100 500 n 30 50 100 500
F (�) 0.47928 0.47928 0.47928 0.47928 F (�) 0.46568 0.46568 0.46568 0.46568

p {0.04143 {0.04143 {0.04143 {0.04143 
p {0.06864 {0.06864 {0.06864 {0.06864

1 {0.25411 {0.25411 {0.25411 {0.25411 
1 {0.46319 {0.46319 {0.46319 {0.46319
s(�x) 0.48058 0.48000 0.47958 0.47919 s(�x) 0.46814 0.46583 0.46609 0.46574

�̂
p
V (
̂p)

{0.03885
(0.01185)

{0.03999
(0.00718)

{0.04084
(0.00354)

{0.04160
(0.00070)

�̂
p
V (
̂p)

{0.06373
(0.01235)

{0.06835
(0.00705)

{0.06782
(0.00359)

{0.06852
(0.00071)

�̂
1

V (
̂1)
{0.22019
(0.13947)

{0.23218
(0.08485)

{0.26071
(0.04296)

{0.25205
(0.0091)

�̂
1

V (
̂1)
{0.38519
(0.16125)

{0.41632
(0.10343)

{0.43781
(0.05672)

{0.45739
(0.01161)
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Table 4. The simulated results for beta distribution considering di�erent sample sizes and various combinations of
parameters.

� = 1; � = 6 � = 4; � = 8

n 30 50 100 500 n 30 50 100 500

F (�) 0.60343 0.60343 0.60343 0.60343 F (�) 0.52744 0.52744 0.52744 0.52744

p 0.20686 0.20686 0.20686 0.20686 
p 0.05488 0.05488 0.05488 0.05488

1 1.28300 1.28300 1.28300 1.28300 
1 0.36422 0.36422 0.36422 0.36422
s(�x) 0.59994 0.60135 0.60226 0.60304 s(�x) 0.52522 0.52609 0.52739 0.52743

�̂
p
V (
̂p)

0.19988
(0.01173)

0.20269
(0.00711)

0.20452
(0.00353)

0.20607
(0.00069)

�̂
p
V (
̂p)

0.05043
(0.01185)

0.05218
(0.00677)

0.05479
(0.00342)

0.05485
(0.00068)

�̂
1

V (
̂1)
1.09389

(0.19773)
1.17331

(0.14388)
1.22600

(0.08005)
1.27160

(0.01750)

�̂
1

V (
̂1)
0.30519

(0.12045)
0.33276

(0.00757)
0.35054

(0.03783)
0.36074

(0.00769)
� = 2; � = 2 � = 5; � = 5

n 30 50 100 500 n 30 50 100 500

F (�) 0.50000 0.50000 0.50000 0.50000 F (�) 0.50000 0.50000 0.50000 0.50000

p 0.00000 0.00000 0.00000 0.00000 
p 0.00000 0.00000 0.00000 0.00000

1 0.00000 0.00000 0.00000 0.00000 
1 0.00000 0.00000 0.00000 0.00000
s(�x) 0.49995 0.49982 0.50018 0.50022 s(�x) 0.49941 0.50020 0.49986 0.50029

�̂
p
V (
̂p)

{0.00010
(0.01067)

{0.00037
(0.00657)

0.00037
(0.00322)

0.000448
(0.00064)

�̂
p
V (
̂p)

{0.00118
(0.01143)

0.00040
(0.00678)

{0.00027
(0.00339)

0.00006
(0.00068)

�̂
1

V (
̂1)
0.00048

(0.07264)
{0.00044
(0.04365)

0.00059
(0.02121)

0.00033
(0.00419)

�̂
1

V (
̂1)
{0.00388
(0.10711)

0.00044
(0.06201)

{0.00084
(0.03098)

{0.00032
(0.00603)

� = 7; � = 3 � = 9; � = 5

n 30 50 100 500 n 30 50 100 500

F (�) 0.46283 0.46283 0.46283 0.46283 F (�) 0.47860 0.47860 0.47860 0.47860

p {0.07434 {0.07434 {0.07434 {0.07434 
p -0.04279 {0.04279 {0.04279 {0.04279

1 {0.48249 {0.48249 {0.48249 {0.48249 
1 {0.28868 {0.28868 {0.28868 {0.28868
s(�x) 0.46467 0.46322 0.46329 0.46301 s(�x) 0.47881 0.47970 0.47875 0.47863

�̂
p
V (
̂p)

{0.07066
(0.01157)

{0.07356
(0.00701)

{0.07341
(0.00339)

{0.07397
(0.00069)

�̂
p
V (
̂p)

{0.04236
(0.01146)

{0.0406
(0.00677)

{0.04060
(0.00677)

{0.4273
(0.00069)

�̂
1

V (
̂1)
{0.41517
(0.12078)

{0.446521
(0.07754)

0.46500
(0.03792)

{0.47825
(0.00808)

�̂
1

V (
̂1)
{0.25137
(0.12244)

{0.26340
(0.07568)

{0.26340
(0.07568)

{0.28528
(0.00797)

parameter, the extent of skewness decreases for both
distributions. Regardless of the extent of skewness,
both functionals (proposed and existing) resulted in
their permissible ranges and remained interpretable.
Further, the signs of estimates were consistent with
the direction of skewness shown in the population.
Aligned with mathematical �ndings of Section 2, the
c-preceding characteristic was maintained by both mea-
sures in every case without exception. An interesting
and distinctive feature of the proposed statistic is

the variability control which becomes more prominent
while increasing the sample size. For more elaboration,
we highlighted the variance of both measures for n =
500. One exception is observed in the case of Gamma
distribution for � = 3 and � = 1.

3.2. The Weibull and beta distributions
The altering e�ect of the parameters on skewness while
working with these two distributions makes them very
informative candidates for assessing the performance
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Table 5. The simulated results for student's t-distribution considering di�erent sample sizes and various combinations of
parameters.

v = 2 v = 3
n 30 50 100 500 n 30 50 100 500

F (�) 0.50000 0.50000 0.50000 0.50000 F (�) 0.50000 0.50000 0.50000 0.50000

p 0.00000 0.00000 0.00000 0.00000 
p 0.00000 0.00000 0.00000 0.00000

1 { { { { 
1 { { { {
s(�x) 0.50127 0.50093 0.50123 0.49994 s(�x) 0.49959 0.50017 0.50057 0.49992

�̂
p
V (
̂p)

0.00253
(0.06263)

0.00187
(0.04547)

0.00246
(0.03114)

{0.00013
(0.00968)

�̂
p
V (
̂p)

{0.00081
(0.02645)

0.00034
(0.01765)

0.00113
(0.00934)

{0.00015
(0.00200)

�̂
1

V (
̂1)
0.01069

(3.67913)
0.04112
(5.3898)

0.06651
(9.99695)

{0.02304
(36.5364)

�̂
1

V (
̂1)
{0.00351
(1.62034)

{0.00785
(2.14600)

0.00568
(2.88789)

{0.04103
(6.22120)

v = 4 v = 5
n 30 50 100 500 n 30 50 100 500

F (�) 0.50000 0.50000 0.50000 0.50000 F (�) 0.50000 0.50000 0.50000 0.50000

p 0.00000 0.00000 0.00000 0.00000 
p 0.00000 0.00000 0.00000 0.00000

1 0.00000 0.00000 0.00000 0.00000 
1 0.00000 0.00000 0.00000 0.00000
s(�x) 0.49966 0.49958 0.50021 0.50024 s(�x) 0.49888 0.50073 0.49966 0.49977

�̂
p
V (
̂p)

{0.00067
(0.01990)

{0.00084
(0.01223)

0.00042
(0.00625)

0.00048
(0.00122)

�̂
p
V (
̂p)

{0.00224
(0.01689)

0.00145
(0.01029)

{0.00069
(0.00503)

{0.00046
(0.00104)

�̂
1

V (
̂1)
{0.00129
(1.00591)

0.00212
(1.10064)

{0.00404
(1.15580)

0.00158
(1.39235)

�̂
1

V (
̂1)
{0.00892
(0.67060)

0.00685
(0.68144)

{0.00975
(0.62416)

{0.01682
(0.44776)

of skewness functionals. The obtained results are
presented in Tables 3 and 4 for Weibull and Beta distri-
butions, respectively. Interpretability and c-preceding
are maintained by both the functionals regardless of the
change direction and extent of skewness. The variance
behavior of the proposed estimator is again appreciable
in comparison with the existing measure.

3.3. The student's t and F distributions
These two distinguished distributions are major players
in hypotheses testing domain of statistics, and their
dynamic nature limits the applicability of 
1 in certain
conditions; for instance, it is only estimable if t-
distribution's df: > 3, F -distribution requires denomi-
nator df: > 6. These inherent functional complexities
provide ideal grounds to test the utility of 
p, thus
con�rming the superiority of this new functional over
the others.

Table 5 presents the simulated results in the case
of t-distribution for di�erent degrees of freedom, dic-
tating the calculability of 
1. For comparison purposes,
we report the �̂
1 based on empirical evaluation even in
the situations, where 
1 does not exist for population.
The deteriorated performance of 
̂1 is evident through
the estimated average value for df: � 3 (highlighted

variances foretell this fact). For df: > 3, our proposed
functional still outperforms the existing one. The
rapid convergence of �̂
p towards its true value is worth
cheering, especially in feasibly large samples.

The F -distribution demands a more elaborative
account. The given discussion of the obtained results
can be elaborated in the light of four motivational
factors: (i) The 
1 is not estimable; (ii) The numerator
and denominator degrees of freedom are equal; (iii)
The numerator d.f. is greater than denominator's d.f.
(v1 > v2); and (iv) vice versa (v2 > v1). In general,
the recommended c-preceding attribute was carried by
both measures in all cases.

In the �rst case, the estimability and closeness of

̂p to its population counterpart 
p are noticeable that
become more obvious as the sample size increases. The
statistical strength can be assessed by comparing the
variances of both functionals at every point.

In the second case, other than variance compar-
ison (which is consistent with the usual �ndings), the
convergence of both functionals towards their respec-
tive population parameters is thought provoking. For
explanatory purposes, consider the case when v1 =
v2 = 7 for n = 500. The true value of 
1 = 10:1559
and its estimated simulated value is 
̂1 = 4:2547, yet
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Table 6. The simulated results for F -distribution considering di�erent sample sizes and various combinations of
parameters.

v1 = 1; v2 = 3 v1 = 3; v2 = 5
n 30 50 100 500 n 30 50 100 500

F (�) 0.81831 0.81831 0.81831 0.81831 F (�) 0.71221 0.71221 0.71221 0.71221

p 0.63662 0.63662 0.63662 0.63662 
p 0.42441 0.42441 0.42441 0.42441

1 { { { { 
1 { { { {
s(�x) 0.67264 0.77583 0.78896 0.80606 s(�x) 0.69118 0.69854 0.70512 0.71062

�̂
p
V (
̂p)

0.52527
(0.02458)

0.55166
(0.01887)

0.57793
(0.01252)

0.61213
(0.00535)

�̂
p
V (
̂p)

0.38237
(0.02064)

0.39708
(0.01464)

0.41024
(0.00852)

0.42122
(0.00215)

�̂
1

V (
̂1)
3.11141

(1.22462)
3.94584

(2.07043)
5.40987

(4.18508)
10.97980

(22.22940)

�̂
1

V (
̂1)
2.38910

(1.06552)
2.93949

(1.63729)
3.80013

(2.94790)
6.42382

(11.93600)
v1 = 7; v2 = 7 v1 = 9; v2 = 9

n 30 50 100 500 n 30 50 100 500
F (�) 0.66588 0.66588 0.66588 0.66588 F (�) 0.64289 0.64289 0.64289 0.64289

p 0.33177 0.33177 0.33177 0.33177 
p 0.28578 0.28578 0.28578 0.28578

1 10.15590 10.15590 10.15590 10.15590 
1 4.39205 4.39205 4.39205 4.39205
s(�x) 0.65367 0.65825 0.66175 0.66494 s(�x) 0.63340 0.63738 0.63941 0.64244

�̂
p
V (
̂p)

0.30733
(0.01899)

0.31650
(0.01164)

0.32351
(0.00634)

0.32989
(0.00134)

�̂
p
V (
̂p)

0.26681
(0.01701)

0.27476
(0.01034)

0.27882
(0.00547)

0.28488
(0.00112)

�̂
1

V (
̂1)
1.97263

(0.92258)
2.36775

(1.23576)
2.90375

(1.90147)
4.25472

(5.08084)

�̂
1

V (
̂1)
1.72144

(0.79281)
2.02557

(0.98828)
2.44363

(1.34279)
3.25094

(12.60029)
v1 = 3; v2 = 7 v1 = 7; v2 = 9

n 30 50 100 500 n 30 50 100 500
F (�) 0.67962 0.67962 0.67962 0.67962 F (�) 0.64551 0.64551 0.64551 0.64551

p 0.35923 0.35923 0.35923 0.35923 
p 0.29103 0.29103 0.29103 0.29103

1 11.00000 11.00000 11.00000 11.00000 
1 4.47214 4.47214 4.47214 4.47214
s(�x) 0.66570 0.67163 0.67554 0.67876 s(�x) 0.63427 0.63970 0.64233 0.64473

�̂
p
V (
̂p)

0.33140
(0.01825)

0.34327
(0.01188)

0.35107
(0.00618)

0.35752
(0.00132)

�̂
p
V (
̂p)

0.26853
(0.01718)

0.27941
(0.01024)

0.28468
(0.00537)

0.28946
(0.00114)

�̂
1

V (
̂1)
2.07855

(0.89883)
2.50569

(1.26351)
3.10938

(1.98945)
4.53298

(5.31268)

�̂
1

V (
̂1)
1.72786

(0.75854)
2.06022

(0.98613)
2.47838

(1.39227)
3.31528

(2.50372)
v1 = 9; v2 = 7 v1 = 11; v2 = 9

n 30 50 100 500 n 30 50 100 500
F (�) 0.66394 0.66394 0.66394 0.66394 F (�) 0.64134 0.64134 0.64134 0.64134

p 0.32790 0.32790 0.32790 0.32790 
p 0.28269 0.28269 0.28269 0.28269

1 10.03800 10.03800 10.03800 10.03800 
1 4.34484 4.34484 4.34484 4.34484
s(�x) 0.65055 0.65631 0.66045 0.66290 s(�x) 0.63189 0.63525 0.63859 0.64076

�̂
p
V (
̂p)

0.30110
(0.01871)

0.31262
(0.01179)

0.32089
(0.00641)

0.32581
(0.00138)

�̂
p
V (
̂p)

0.26378
(0.01677)

0.27049
(0.01051)

0.277184
(0.00543)

0.28152
(0.00112)

�̂
1

V (
̂1)
1.92299

(0.89460)
2.34468

(1.23039)
2.92540

(1.99575)
4.20557

(4.77499)

�̂
1

V (
̂1)
1.6967

(0.76439)
2.00512

(0.96459)
2.41802

(1.32659)
3.2203

(2.4167)
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Table 7. The simulated results for Rayleigh distribution considering di�erent sample sizes and various combinations of
parameter.

� = 5 � = 4

n 30 50 100 500 n 30 50 100 500

F (�) 0.54406 0.54406 0.54406 0.54406 F (�) 0.54406 0.54406 0.54406 0.54406

p 0.08812 0.08812 0.08812 0.08812 
p 0.08812 0.08812 0.08812 0.08812

1 0.63111 0.63111 0.63111 0.63111 
1 0.63111 0.63111 0.63111 0.63111
s(�x) 0.54221 0.54298 0.54341 0.54391 s(�x) 0.54235 0.54292 0.54331 0.54394

�̂
p
V (
̂p)

0.084417
(0.01169)

0.08596
(0.00693)

0.08683
(0.00353)

0.08782
(0.00069)

�̂
p
V (
̂p)

0.08471
(0.01169)

0.08584
(0.00696)

0.08663
(0.00349)

0.08787
(0.00069)

�̂
1

V (
̂1)
0.52539

(0.15383)
0.56564

(0.10240)
0.59762

(0.05665)
0.62406

(0.05665)

�̂
1

V (
̂1)
0.52309

(0.15317)
0.56224

(0.10187)
0.59639

(0.05649)
0.62592

(0.01251)

Table 8. The simulated results for Cauchy distribution considering di�erent sample sizes and various combinations of
parameters.

� = �1; � = 1 � = �1; � = 3
n 30 50 100 500 n 30 50 100 500

F (�) 0.5 0.5 0.5 0.5 F (�) 0.5 0.5 0.5 0.5

p 0 0 0 0 
p 0 0 0 0

1 { { { { 
1 { { { {
s(�x) 0.50711 0.51216 0.49956 0.50136 s(�x) 0.50199 0.50086 0.49752 0.50279

�̂
p
V (
̂p)

0.00227
(0.27918)

0.00243
(0.30180)

{0.00088
(0.31092)

0.00272
(0.32522)

�̂
p
V (
̂p)

0.00387
(0.27905)

0.00172
(0.30271)

{0.00496
(0.31073)

0.00558
(0.32908)

�̂
1

V (
̂1)
0.01604
(10.082)

0.00821
(17.6950)

0.01821
(36.1892)

0.09924
(184.6340)

�̂
1

V (
̂1)
0.02335

(10.06320)
0.02081

(17.7665)
{0.03202
(36.1368)

0.08241
(186.71300)

� = 0; � = 1 � = 0; � = 3
n 30 50 100 500 n 30 50 100 500

F (�) 0.5 0.5 0.5 0.5 F (�) 0.5 0.5 0.5 0.5

p 0 0 0 0 
p 0 0 0 0

1 { { { { 
1 { { { {

s(�x) 0.49684 0.50005 0.49864 0.50400 s(�x) 0.49855 0.50261 0.49649 0.50612

�̂
p
V (
̂p)

{0.00632
(0.27746)

0.00010
(0.29562)

{0.002728
(0.31109)

0.00800
(0.32602)

�̂
p
V (
̂p)

{0.00289
(0.27769)

0.00522
(0.29590)

{0.00701
(0.31254)

0.012239
(0.328688)

�̂
1

V (
̂1)
{0.041012
(10.01940)

0.02998
(17.50450)

{0.037145
(35.98690)

0.18268
(184.9340)

�̂
1

V (
̂1)
{0.01164

(9.974747)
0.04368

(17.4140)
{0.05769
(36.0447)

0.163290
(187.395)

� = 5; � = 1 � = 5; � = 3
n 30 50 100 500 n 30 50 100 500

F (�) 0.5 0.5 0.5 0.5 F (�) 0.5 0.5 0.5 0.5

p 0 0 0 0 
p 0 0 0 0

1 { { { { 
p { { { {
s(�x) 0.49789 0.40452 0.50187 0.49299 s(�x) 0.49689 0.50066 0.49658 0.50047

�̂
p
V (
̂p)

{0.00421
(0.28464)

0.00904
(0.29411)

0.00373
(0.30972)

{0.01401
(0.33416)

�̂
p
V (
̂p)

{0.00623
(0.28457)

0.00131
(0.29544)

{0.00685
(0.31489)

{0.000094
(0.32468)

�̂
1

V (
̂1)
{0.02821

(10.18350)
0.06320

(17.28080)
{0.00185

(36.06790)
{0.34661

(90.82100)

�̂
1

V (
̂1)
{0.02065

(10.27350)
0.02882

(17.5818)
{0.07722
(36.5457)

{0.05429
(186.9300)
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p = 0:3318 and the corresponding 
̂p = 0:3299. This
is yet another evidence in the favor of 
p projecting it as
a serious member of the family of skewness measures.
Similar patterns are observed in the third and fourth
cases; the glimpses of the performance are o�ered by
highlighting the scenarios where v1 = 3; v2 = 7, and
v1 = 9; v2 = 7.

3.4. The Rayleigh and Cauchy distributions
Both of these distributions are interesting members of
our study in case the extent of skewness in Rayleigh
distribution remains unchanged with respect to any
amendment in parameter while Cauchy distribution
does not allow the existence of usual skewness measure,

1, in any circumstances. The �ndings related to
Rayleigh distribution are o�ered in Table 7. In larger
sample sizes, the estimates approach to the population
measures with consistent manner. The variance behav-
ior of 
̂p is again impressive in comparison to 
̂1.

For Cauchy distribution, the true value of 
p is
deducted by replacing F (�) with F (Median) (concep-
tually it is not forbidden because of the symmetry of
the distribution). The evaluation of 
̂p (and resulting
�̂
p) is still based on empirical cdf encapsulating mean
of the data. The results in Table 8 highlight the
superiority of the proposed functional in terms of
stability and interpretability. In every considered
situation, the estimated value of 
̂p remains very close
to population value, projecting inherited symmetry of
the distribution. The behavior of variance is, however,
altered; it increases with increase in sample size (surely,
enormously less than that of 
̂1). This fact at this stage
is attributed to the well-recognized complex functional
form of the Cauchy distribution and is left for future
inquiries.

4. In
uence function comparison

The in
uence function, being the directional derivative
of functional, is usually utilized to compare the extent
of robustness inherent in functionals against unusual
points (see [21]). In its general form, for a functional
T (:), we can write in
uence function as follows:

T (F ;G) = lim
�#0

T (F�)� T (F )
�

;

where F� = �G + (1� �)F and T (F ;G) is the direc-
tional derivative of functional T at F in the direction of

G. Under the assumption of symmetry of distribution,
say F around `0' with di�erentiable density function,
let us consider G (x) = (1=2b�) [x+ (b� a)�], where
�2 is the variance of F and X is bound between
[(a� b)�; (a+ b)�] with �1 < a < 1 and b > 0.
The authors provided the general form of F� Eq. (2) as
shown in Box I. The resultant in
uence functions for

1 and 
p, respectively, are given below:

IF (a; b; F; 
1) = a3 � a �3� b2� ; (3)

and:

IF (a; b; F; 
p) =

8><>:�1; for a > b
�a=b; for � b < a < b
1; for a < �b

(4)

respectively. For comparison purposes, a graphical dis-
play of in
uence functions of both measures is o�ered
in Figure 2, �xing the value of b at 1/2, whereas \a"
can take values over the permissible range. It reveals
that the in
uence function 
p is bounded in contrast to
that of 
1. It is observable that both of the in
uence
functions behave almost identically in the range of
0 < a < 1=2, whereas for a > 1=2, distinctive features
of IF (a; b; F; 
1) and IF (a; b; F; 
p) are witnessed.
The in
uence function of the proposed functional
stays constant and remains negative, highlighting the
resilience against contamination after certain level. On
the other hand, IF (a; b; F; 
1) endorses its reliability
when 0 < a < 1:65 (the upper limit 1:65 can easily

Figure 2. In
uence functions of 
1 and 
p.

F� =

8<: (1� �)F (x) ; ; x < (a� b)�
� (1=2b�) [x+ (b� a)�] + (1� �)F (x) ; (a� b)� � x � (a+ b)�

�+ (1� �)F (x) ; x > (a+ b)�
(2)

Box I
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be veri�ed by putting b = 1=2 in Eq. (3)); however,
after that point, the in
uence function explodes. The
altered behavior of IF (a; b; F; 
1) for a > 1:65 is not
only counter intuitive but also poses serious threats to
the reliability of estimate in the presence of outliers.

5. Applications

5.1. Algeria's fatality count data (1997 {
2017)

This section demonstrates the applicability of the pro-
posed functional by examining yearly data providing
the Algeria's fatality counts from the year 1997 to
2017. The data were derived from the website of Armed
Con
ict Location & Event Data (ACLED) project.
The histogram presented in Figure 3 shows positive
skewness in the data which is rightly projected in the
magnitudes of both estimates (see Table 9).

After estimating the degree of skewness for com-
plete data set, we remove outliers, visible in box plot
(Figure 3), and then estimate 
1 and 
p. Table 9
comprehends the results for readers. The robustness of

p against outliers is self-evident under the heading of
absolute relative percentage change (RC). The results
in Table 9 depict the moderate extent of skewness.

Table 9. Performance comparison of 
̂p and 
̂1 in the
presence of outliers-Algeria data.

Full dataset Reduced dataset RC


̂p 0.3636 0.3000 17.49%

̂1 2.8932 1.1453 60.41%

5.2. PBS data on respondents' extent of
co-operation (non-cooperation) in PSLM
(2014-15) survey

Next, we explore the utility of the proposed measure
in comparison to the usual moment-based measure of
skewness by studying Pakistan Social and Living Stan-
dard Measurements (PSLM) survey (2014{15) data
compiled by PBS. The histogram and box plot given in
Figure 4 present the pictorial display of percentages of
non-cooperative respondents across 114 districts of the
country.

Table 10 documents the robustness of the pro-
posed and commonly used moment-based skewness
measures against existing outliers in the data. We
initiate the skewness estimation, employing 
1 and

p, by �rst considering complete data set and, then,
through the reduced data set (by dropping outliers).
The absolute relative percentage change prominently

Figure 3. Histogram and box plot depicting the yearly fatality counts for Algeria (1997{2017).

Figure 4. Histogram and box plot depicting the respondents' behavior form Pakistan Social and Living Standard
Measurements (PSLM) (2014-15) survey.
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Table 10. Performance comparison of 
̂p and 
̂1 in the
presence of outliers-PSLM data.

Full dataset Reduced dataset RC


̂p 0.2613 0.2294 12.21%


̂1 1.9405 0.8616 55.60%

reveals the robustness of the proposed functional in
comparison to the usual measure. In the case of our
proposition, outliers derive almost 12% change in the
value of the proposed skewness functional, whereas a
change of almost 55% (more than 4 times that of the
proposed functional) is associated with the value of
usual measure when outliers are active. The overall
results given in Table 10 show the greater extent
of skewness in the data. Moreover, the values of
the proposed measure remain comparable over the
consistent range of [�1; 1]. In this respect, Table 9
shows the results related to the Algeria data involving

p = 0:3636 and 
p = 0:2613 for the PBS data in Table
10; it remains plausible to conclude that the Algeria
data reveals a higher extent of skewness (to the right)
than the PBS data.

6. Discussion

In this paper, a new measure of skewness, 
p, was in-
troduced based on the distribution function and mean
of the distribution. The novelty of the contribution
was demonstrated on three fronts: (i) development, (ii)
establishment, and (iii) assessment. Being distinctive
from existing measures, the proposed measure does
not require the knowledge of higher order moments or
uniqueness of mode of distribution. It was shown that

p is proper skewness measuring functional satisfying
all essential characteristics recommended in literature.
De�ned over interpretable range, i.e., `0' projecting
the symmetry of distribution and a value of `+1(�1)'
indicating extreme right (left) skewness, 
p is straight
forward to calculate. Following the spirit of compe-
tition, an intense comparative study was conducted
for 
p which was found the most commonly used and
comprehensive skewness measure among existing ones.
Superiority of the proposed measure was witnessed
without exceptions. The in
uence function exhibited
the resistance of the proposed measure to unusual
points in data. In reasonably large sample sizes, it con-
verged to its population value with a minimal amount
of variability. The computational ease, interpretability,
and rigorous use of available information projected

p as a potential candidate for future research. In
particular, variance behavior for increasing sample
sizes makes it worth studying to develop tests of
skewness exploiting asymptotic theory. Its utility in
high-dimensional data is yet another research venue.

Therefore, it merits attention as a skewness measure
with respect to mean.

Lastly, it is appropriate to recognize some com-
plexities in the case of working with a discrete data
set. Our proposed measure function based on the
empirical evaluation of the cdf at mean, and for discrete
data, the mean may not always be the member of the
data, see for example, the data of Altinay in Table 3
[26]. In this scenario, a cautious use of the proposed
measure is suggested. To our understanding, in the
above given situation, the empirical cdf at mean fails to
e�ciently estimate population cdf at mean, which may
lead to misleading results. It is interesting to explore
the possible amendments in the proposed framework to
handle the aforementioned complication.
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