Scientia Iranica E (2021) 28(2), 985-1000

PZIN
N4

SCIENTIA
IRANICA

Sharif University of Technology

Scientia Iranica
Transactions E: Industrial Engineering

http://scientiairanica.sharif.edu

Multi-echelon green open-location-routing problem:

robust-based stochastic optimization approach

R. Vakili®*, M. Akbarpour Shirazi®, and H. Gitinavard®

a. Department of Economic, Kharazmi University, Tehran, Iran.
b. Department of Industrial Engineering and Management Systems, Amarkabir University of Technology, 424 Hafez Ave, Tehran,

Iran.

Received 2 November 2018; received in revised form 13 March 2019; accepted 18 January 2020

KEYWORDS

Open-location-routing
problem;

Green logistic;
Stochastic
programming;

Robust optimization;
Uncertainty.

1. Introduction

Abstract.
mental competence could play an instrumental role in enhancing companies/countries’
industries in terms of sustainable development. In this study, a Green Open Location-
Routing Problem with Simultaneous Pickup and Delivery (GOLRPSPD) is considered
to minimize general costs. In addition to the significance of cost minimization, the
objective function aims at promoting environmental competency in terms of the costs of
CO2 emissions and fuel consumptions.
information could yield unreliable results in which considering uncertainty theories could
prevent data loss. In this respect, this study assumed the pickup and delivery demand
and travel time as probabilistic parameters. To address the issue, a robust stochastic
programming approach was developed to reduce the deviations of imprecise information.
Moreover, the proposed approach was applied based on five scenarios to decide the best
decision in different situations. In addition, a practical example of the multi-echelon open-
location-routing model was provided to represent the feasibility and applicability of the
presented robust stochastic programming approach. Finally, comparative and sensitivity
analyses were carried out to demonstrate the validity of the proposed approach and, also, to
point out the robustness and sensitiveness of the obtained results regarding some significant
parameters.

In recent years, it has been proven that promoting and observing environ-

Meanwhile, in a complex situation, using precise
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resource activities. Increasing CO, causes a criti-
cal problem, namely depleting the ozone layer and

Green location-routing problem covers classic location-
routing with attention to minimizing the cost of fuel
consumption and reducing greenhouse gases in the
atmosphere, particularly COs emitted out by human
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threatening human health. Thus, organizations and
companies are waking up to the necessity of reducing
and assessing the environmental effect of operations
and services [1]. In this respect, some authors have
focused on environmental competencies to solve their
location and routing problems.

Thereby, Schneider et al. [2] developed Green
Vehicle Routing Problems (GVRP) with time windows
to solve green logistics problems in the electric vehicles
industry. Erdogan and Miller-Hooks [3] presented
a novel formulation and conceptualization of GVRP
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regarding the proposed density-based clustering and
modified Clarke and Wright savings heuristic algo-
rithms. Salimifard and Raeesi [4] developed a new
routing problem that accounts for optimization of con-
sumption fuel cost and CO4y emissions by considering
a major and cleaner alternative fuel. Tiwari and
Chang [5] proposed a block recombination model for
the GVRP with the aim of minimizing the distance
traveled from depot to distribution center. Montoya
et al. [6] presented an extension of the green vehicle
routing problem subject to renewable fuel consumption
and duration constraints. Dukkanci and Kara [7]
extended the classical location-routing problem by
considering all of environmental and social side effects
of GHG emissions and fuel consumption into the mixed
integer programming formulations. According to the
importance of environmental issues and presenting an
efficient scheme for locating the depots and routing of
vehicles, Green Open Location-Routing Problem with
Simultaneous Pickup and Delivery (GOLRPSPD) has
become a key element of supply chain management.

In many complex GVRP problems, imprecise-
ness inherent in information leads to defining those
problems based on uncertain theory. For this pur-
pose, uncertainty theories, such as probabilistic theory,
represent powerful tools that can assist managers or
experts on the GVRP with overcoming the uncertain
environment. Therefore, utilizing the probabilistic
theory and their solving tools could be considered
as interesting tools for authors to solve the GVRP
under imprecise information in practice. Furthermore,
assuming probabilistic information using the procedure
of extending the multi-echelon open-location-routing
could suitably deal with possible uncertain situations
in real cases. Meanwhile, a survey of the literature
reveals that the authors have focused on multi-echelon
location-routing problems based on precise and impre-
cise information.

In the field of precise information, Hemmelmayr et
al. [8] proposed a heuristic solution to the two-echelon
vehicle routing problem in two-level transportation
systems of city logistics. Contardo et al. [9] introduced
a branch-and-cut and an adaptive large-neighborhood
search Meta heuristic to solve the two-echelon capac-
itated location-routing problem. Rahmani et al. [10]
presented a mixed integer linear programming for-
mulation for modeling multi-product location-routing
with pick-up and delivery in a two-echelon distribution
scenario. Redi et al. [11] addressed the open vehicle
routing problem with time windows and presented
a heuristic algorithm to solve the problem (VSN).
Marinakis and Marinaki [12] presented an improved
version of the Bumble Bees Mating algorithm for
solving the open vehicle routing problem and tested the
proposed algorithms by using two sets of benchmark in-
stances. Rahmani et al. [13] presented a mathematical

programming model for the two-echelon multi-product
location-outing problem with pick-up and delivery.

To solve the problem, two types of local search
algorithm are presented. Kog et al. [14] extended the
location-routing problem by considering time windows
and heterogeneous fleet and presented mixed integer
programming formulations and solved the problem us-
ing a developed hybrid evolutionary search algorithm.
Tajbakhsh and Shamsi [15] extended a bootstrap data
envelopment analysis framework with undesirable fac-
tors for capacitated facility location problem based on
multi-sourcing constraints which are applied to the
energy sector of the United States. Chen and Chen [16]
presented a model based on the GIS (Geospatial Infor-
mation System) to obtain the approximate amount of
Particular Matter (PM) in the critical part of Tehran.

Capelle et al. [17] modeled the location-routing
problem with pickup and delivery using integer pro-
gramming formulation and validated the model by
implementing the column generation. Brandio [18]
presented the open vehicle routing problem by con-
sidering time concentration and solved the problem
using an iterated local search algorithm. Pichka et
al. [19] addressed mixed-integer linear programming for
the two-echelon open location-routing problem; in this
case, for satisfying the open routes, third-party logistics
providers were considered. Shen et al. [20] proposed
the open vehicle routing problem with time windows
that adopted low-carbon trading policies. Wang et
al. [21] developed a bi-objective model for two-echelon
location-routing problems with time concentration by
a three-step customer clustering-based approach. Dai
et al. [22] proposed two approaches to multi-echelon
location-routing problems and obtained a solution to
two location-routing problems within a shorter span of
time. Ferreira and Queirez [23] proposed two heuristic
algorithms for solving the capacitated location-routing
problem. Hosseini et al. [24] addressed the capacitated
location-routing problem for a company that collected
return products from the customer by designing a
collection network. Zhou et al. [25] introduced the
two-echelon vehicle routing problem of e-commerce
distribution network that happened in the last mile of
delivery option. For solving this problem, an effective
heuristic algorithm was provided.

In the field of imprecise information, Ghaffari
Nasab et al. [26] presented a different stochastic pro-
gramming model for the capacitated location-routing
problem with probabilistic travel times and bi-objective
mathematical programming. Zarandi et al. [27] intro-
duced a location-routing problem with time windows
which assumed that travel times and demands of
customers were fuzzy variables. Bagherinejad and
Dehghani [28] proposed a robust optimization of multi-
objective capacitated location-allocation model and
considered customer demand as an uncertain param-
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eter. Mousavi et al. [29] presented a fuzzy possibilistic-
stochastic programming model for the location of cross-
docking as well as vehicle routing and scheduling. Tajik
et al. [30] addressed a new robust model for pollution
routing problem with time windows and simultaneous
pick-up and delivery by reducing greenhouse emis-
sions and fuel consumption as the objective function.
Cheref et al. [31] applied a new robust optimization
approach to a production scheduling and delivery
routing problem. Schiffer and Walther [32] proposed
a robust approach to the location-routing problem for
strategic network design of electric supply chain fleet by
considering uncertain customer patterns. Shahparvari
and Abbasi [33] proposed robust stochastic modeling
for the vehicle routing and scheduling problem based
on imprecise time windows, evacuee population, and
bushfire propagation in Australia.

Wu et al. [34] proposed integer linear scenario-
based models under uncertainty by considering travel
time as an uncertain parameter and developed a
new robust method for the vehicle routing problem.
Braaten et al. [35] introduced a robust model of
the vehicle routing problem with time windows by
considering travel times as uncertainty parameters.
Nadizadeh and Kafash [36] addressed the capacitated
location-routing with simultaneous pickup and delivery
demands in which the pickup and delivery demands of
the customer were assumed as fuzzy variables. Lu and
Gzara [37] addressed the vehicle routing problem with
time windows in the imprecise environment by con-
sidering only uncertain demand parameter, presented
robust optimization for modeling the problem, and
solved the problem with branch and price and cut.
Hu et al. [38] addressed the vehicle routing problem
by modeling robust optimization based on new route-
dependent uncertainty sets, e.g., demand and travel
time uncertainty. Veysmoradi et al. [39] offered a mixed
integer nonlinear open location-routing model for relief
distribution network in the event of a disaster or other
uncertain situations such as earthquake and flood.

The investigation of the literature indicates that

987

for the importance of the GOLRPSPD, a robust
stochastic model in terms of environmental competen-
cies could deal with imprecise/incomplete information
and there are few papers on the robust optimiza-
tion and stochastic programming approach to the
multi-echelon open-location-routing problem, simulta-
neously. This paper aims to investigate GOLRPSPD
problem closer to the real world; therefore, the GOL-
RPSPD is modeled using stochastic programming and
robust optimization in which travel time and customer
demands consist of pick-up and delivery demands that
are assumed to be probabilistic and it has received
insignificant attention in the location-routing problem
literature. Following a survey of the literature of
location-routing problems, this paper attempts to find
possible gaps.

This paper introduced the objective function of
estimating GOLRPSPD CO; emission cost with re-
spect the total system cost in the model considering
all the costs associated with CQOs emission in one
objective function in order to reduce the amount of
fuel consumptions, although it seems to be applicable
in real world. Also, given that both pick-up and de-
livery demands as well as travel time are probabilistic,
both probabilistic and robust optimizations as solution
methods are applied in the GOLRPSPD. Then, two
models are compared to achieve the best result through
the use of scenario-based concepts so as to deal with
different situations. As shown in Table 1, there is a
gap with respect to the robust stochastic approach to
solving the open location-routing problem in uncertain
situations in terms of environmental concerns. All this
consideration in this paper makes mathematical models
closer to the real world. However, this paper can be
applied to the situations, especially in the distribution
management like perishable commodities.

The remainder of this paper is organized as
follows: In Section 2, the problem definition and
the stochastic and robust mathematical formulations
for GOLRPSPD are presented. Besides, a numerical
example is considered to represent the implementation

Table 1. Categories of studies on the open location-routing.

Ref. Location Routing Single objective Open Green Deterministic Stochastic Robust

[17] v v v v

[18] v v v v

[19] v v v v v

[22] v v v v

[32] v v v v v

[37] v v v v

[38] v v v v
Current v v v v v v v v

research
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procedure of the proposed approach in Section 3.
Moreover, in Section 4, comparative and sensitivity
analyses are carried out to determine the strength of
the proposed robust stochastic approach. Finally, some
concluding remarks and suggestions for future research
are given in Section 5.

2. Multi-echelon open-location-routing model

In this section, the proposed robust stochastic math-
ematical model for the GOLRPSPD is established.
In this respect, the problem description of the multi-
echelon open-location-routing problem is provided.
Then, the assumptions for constructing the proposed
model are expressed. Moreover, the stochastic and ro-
bust mathematical models for the multi-echelon open-
location-routing problem are developed.

2.1. Problem definition
This study focuses on designing the two-echelon open-
location-routing problem including warehouse centers,
customers, and recycling centers. In this respect, the
objective of this research is to optimize the location
of warehouse centers as well as the service routes for
delivery of customer demand. These two decisions are
optimized by minimizing the total routing costs (e.g.,
fuel consummation cost) and the warehouse locations
costs. In the open-location-routing problem, two
customer demands consisting of pick-up and delivery
demand are provided in which delivery demand is the
demand for products shipped from warehouse centers
to customers. Also, each customer has several used
and returned products (e.g., empty soda bottles, etc.)
which should be shipped to the recycling center by
the same vehicle called pick-up demand. Each route
starts from a warehouse center and after supplying the
customer’s delivery demand, the pick-up demands are
loaded from customers for shipping to the recycling
center. In this respect, output of the recycling center
is considered as the materials used in other industries.
On the other hand, the recycling center is provided
and supplied and, in this respect, the open location-
routing problem occurs when a company does not
have its transportation system or when servicing all
customers with its fleet is almost impossible because
of the absence of the fleet of vehicle. Therefore,
these companies usually use the 3PL company to
distribute their commodity due to cost saving and
efficient solution. In this respect, this paper considers
an open route for transportation system that starts
its tour in the depot and does not come back to the
depot after servicing the last customer. Meanwhile,
the delivery and pick-up demand and the travel time
are considered as imprecise parameters.

To address this issue, the robust stochastic pro-
gramming method is employed with emphasis on the

3
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Figure 1. Schematic representation of the open
location-routing problem.

scenario-based approach. Indeed, strategic decisions
such as establishing a warehouse center are consid-
ered in the first stage of the proposed approach and
then, tactical decisions such as routing optimization
are provided in the second stage according to the
scenario-based approach. However, the structure of the
GOLRPSPD problem is given in Figure 1.

2.2. Assumptions
Some assumptions for extending the multi-echelon
open-location-routing model are explained as follows:

The pick-up and delivery demand and the travel time
are uncertain;

The vehicle routing problem is open in which the
output of the recycling center is considered for other
industries;

The supply chain is of two-echelon type that includes
warehouses, customers, and a recycling center;

There is a one-off problem and decisions are taken for
a period in the planning horizon;

The capacity of vehicles is considered different;
Each customer is serviced by only one warehouse;
Warehouses have a limited supplying scope;
Backorder is not allowable;

In each scenario, some customers may not receive
their requested servicing; therefore, the cost of non-
covering is considered;

There is no limitation on travel time;

The pick-up and delivery are considered, simultane-
ously;

Different sequences of future events are considered as
possible scenarios.

2.3. Notations
In this section, the following notations including sets,
parameters, and variables are defined:

Sets
N ={1,--- ,N}Set of all nodes, N =N.UN,UN,

N.(N.CN) Set of customer nodes (j € N¢)
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(i € N,)

Ny (N, CN) Set of recycling center nodes

K ={1,---, K}Set of vehicles

FE =

{(4,7)|i,5 € N} Set of edges

S ={1,---,s} Set of scenarios

Parameters

oF Fixed cost of establishing warehouse
center in location/node 4

Fy Fixed cost of using vehicle k

Ck Transportation cost per unit of time
by vehicle type k

e Cost of CO2 emission per unit of time
by vehicle type k

dis;; The distance between nodes 7 and j

tijs Transportation time in edge (i,7) of
scenario s; t;;s = dis;; X o; where oy
is a balance factor in scenario s

CD; Maximum capacity of warehouse center
in location/node i

Qk Maximum capacity of vehicle type k

Djs Pick-up demand of customer j in
scenario s

djs Delivery demand of customer j in
scenario s

b Number of available vehicles, type k

A Coeflicient of deviation from the
average cost of the second stage in the
robust model

w Robustness as defined by coeflicient of
non-covering the demand

0, Positive deviation from the mean value
of SSC;

Pr, Probability of scenario s

T Cost of non-covering one unit of
delivery demand

7' Cost of non-covering one unit of
pick-up demand

M A large number

Decision variables

Ujks

‘/jks

Z;

The number of products delivered by
vehicle k before serving customer j of
scenario s

The number of products collected by
vehicle k£ before serving customer j of
scenario s

1, if a warehouse center is established
in location/node i; otherwise, 0

Set of possible warehouse center nodes

Yije 1, if the delivery demand of customer
j is fulfilled by warehouse center i of
scenario s; otherwise, 0

Xijks 1, if vehicle k goes from node 7 to node
j in scenario s; otherwise, 0

Covjs 1, if node 7 of scenario s is not fulfilled;
otherwise, 0

T;s Vehicle arrival time to node 7 in
scenario s

SSC Costs of the second stage related to
scenario s

2.4. Stochastic mathematical formulation

One of the most common possibilistic models is the
stochastic programming scenario-based approach. As
its most important feature, this modeling approach
divides decisions into two stages: first, the decision-
maker makes a decision in the first stage and then,
a random event may occur in which the second-
stage decisions are made to compensate the adverse
effects of the first-stage decisions. In this approach,
it is not necessary to make decisions in the first and
second stages at the same time. Indeed, the second-
stage decisions can be postponed until any possible
uncertainties are cleared. Moreover, decisions about
choosing the best route and transportation fleet can
be postponed until one of the considered scenarios
occurs. Therefore, problem formulation is presented
as a stochastic programming in which imprecise pa-
rameters are considered in the form of scenarios in
the model. For example, when traffic, vehicle failure,
climate change, lack of timely delivery by suppliers, and
constant changing of customer’s requirements occur,
the information on travel time and demand imprecise
is affected. These factors represent the source of uncer-
tainty and are considered as the criteria for scenarios.
However, the mathematical model of the multi-echelon
open-location-routing problem is developed regarding
the aforementioned nomenclature as follows:

min Z 0;%; + Z Pr,.S5C;

iEN, sES
+ Z Pry.Covs. (dis.m + pis.m')| (1)
iEN,

where:

S8C. =3 D> D FiXijs

1€EN, JENc kEK

NN Crtie Xijie

i€eN jEN keK

+ Z Z Z Cltijs-Xijks

iEN jEN k€K

VseS, (2)
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subject to:
Z Z Xijrs + Covis =1
JEN kEK
VieNg, i#j, s€S,
Z Xijks — Z Xjiks =0
jEN JEN
VkeK, i€eNg, seS,
inm:o VkeK, ieN, seS,
JEN
ZXiijSS/ijs VieNoa je-/\rca 8657
kEK
> Xijke<biZi VEkeK, i€N, se€S,
JEN.
Z}/ijs—I—COUiS:l VjeN, s€S8,
iE€N,
> d;Yi. <CDZi  Vi€N, s€S,
JEN,
Ujks = Uins + QuXijis + (Qr — dis — djs) Xjins
<Qr—djs + (1 — Xjins — Xijrs). M
Vke K, ji€N. j#1i, s€5,

Viks = Viks + QuXijrs + (Qr — Pis — Djs) Xjiks

<Qr—pjs + (1= Xjiks — Xijrs)- M
Vke K, ji€N., j#1i, S€S,
Ujks + Viks — djs < Qk
VjeEN, keK, se€S,

Viks 2 Dis Z Xijrs + Z D Xjiks
JEN1#£] JENc,1#]
Vi€ N,

ke K, seb,

Uirs 2 dis Z Xijks + Z djs Xijks
JENi#] JEN,j#1

VieN., keK, seS,

Uiks S Qk - (Qk - dzs)

Z Xijks
JENS
Vie N,

ke K, seb,

(10)

(13)

(14)

‘/ilcs S Qk - (Qk _pis)

> Xjiks
JEN,
VieN, kek,

s€S, (16)

T; < Z tiis-Xjiks + Tjs + (1 - Z inks) M

keK keK
VieN,, jEN, j#i, s€S, (17)
T,. =0 VieN, S€S, (18)
Viks, Uins, Tss > 0 VieN, keK, seS,
(19)
Zi,Yijs, Xijks, Covis € {0,1}
Vi, jeEN, keK, seb. (20)

Eq. (1) shows an objective function that minimizes
the cost of establishing warehouse centers as well as
the expected costs in different scenarios. Thereby,
Eq. (2) is established in three parts: routing costs
including fixed cost of using vehicles and transportation
costs, cost of COs emission, and cost of not covering
the customer demands, respectively. Constraint (3)
guarantees that each customer must be serviced exactly
once by vehicle type k. Constraint (4) ensures the
balance between entering and existing edges of each
node.

Constraint (5) ensures that in each scenario, there
is no edge exiting from recycling center and all paths
end in the recycling center. Constraints (6) and (7) for-
bid infeasible routes. On the other hand, Constraint (6)
ensures that each customer is assigned to a warehouse.
Constraint (7) guarantees that if a warehouse is es-
tablished, only the routes between that warehouse and
customers can be activated. Constraint (8) ensures
each customer is assigned to exactly a warehouse. Con-
straint (9) represents the total loading limited to the
maximum capacity of the warehouse. Constraint (10)
implies that supplying customer demands is related to
the warehouse capacity. Constraint (11) ensures that
any vehicle that is assigned to a customer can load
the pick-up demand. Constraint (12) states that the
load of the vehicle must not exceed vehicle capacity.
Constraints (12) to (16) define the domain of vari-
ables associated with pick-up and delivery products.
These constraints along with Constraints (10) and (11)
determine the exact value of pick-up and delivery.
Constraint (17) expresses the arrival time to customers.
Constraint (18) guarantees that arrival time to each
warehouse node is zero. Constraints (19) and (20)
indicate the positive and binary variables, respectively.
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2.5. Robust mathematical model

The robust model carefully examines the planning
risk exposure and mitigates the effect of pessimistic
state on the results of the system. The robustness
ensures that the model results are less sensitive to
the variation of scenario parameters, thus facilitating
the application of this model in practice and real life.
Hence, the robust programming approach developed by
Yu and Li [40] and Leung et al. [41] is considered in
this study. The objective function consists of three
terms: The first term shows the costs of the first-stage
decisions that are independent of the scenario; the
second term minimizes the average costs of the second-
stage decisions regarding the scenario-based approach;
and the last term estimates variation of uncertain
parameters and minimizes deviations from the mean
value to ensure robustness. Moreover, the value of
coefficients in the last term of the objective function
(i.e., coeflicient of the average cost (A) and coefficient
of deviation from the average cost (w)) depends on
experts’ opinions. In fact, there is a trade-off between
robustness and cost saving. Although robustness of
solutions minimizes the variation of uncertainties, while
it increases the total cost of the system. The objective
function of the robust model is provided as follows:

min [Z 0;%; + Z Pr,.S5C,

iEN, seS

SSCy = > Pry.SSCy

+AD Pr. <

)

seS s'€S
+w. Z Prs.Couvgs. (dis.m —l—pis.w')] . (21)
iEN,

As it was proposed by Yu and Li [40], the standard
deviation is replaced by average absolute deviation.
Furthermore, Eq. (21) should be replaced by Egs. (22)
and (23) to linearize the proposed model in which the
considered modifications are represented as follows:

min [Z 0;%; + Z Pr,.S5C,

i€EN, SES

+ A Z Pr,. (5503 - Z Pry.SSCy + 295>

ses s'es
+w. Z Pr,.Covis. (djs.m + pis.ﬂ')] . (22)
iEN,
Subject to:

SSC, — Z Pr..SSC. + 6, >0
s'eS

Vses.  (23)

Constraint (23) states that if SSC; is greater than the
mean value, 8, should be equal to the positive deviation
from the mean value of SSC,. In contrast, if SSC; is
less than the mean value, 6, should be equal to negative
deviation from the mean value of SSC; in Eqgs. (24)
and (25). Finally, the robust mathematical model is
established as follows:

min [Z 0;%; + ZPrS.SSCS

1EN, seS

+A ) Pr.. (sscg - ) Pro.S8C. + 2es>

sES s'eS
+w. Z Couv;s. (djs.m —l—pis.w')] , (24)
i€EN,

where:

58C. =3 > > FiXijs

i€N, jENc kEK

FO 0D Crotija Xijie

iEN jEN keK

+ Z Z Z Cir tijs-Xijhs YV seS.

iEN JEN kEK (25)
Subject to:

Eas. (3)-(20).

3. Experimental example

In this section, an experimental example is provided
to confirm the feasibility and validity of the proposed
robust stochastic approach. In this case, assume that
there are 15 nodes among which nodes 1-6 are possible
locations for establishing warehouse center, nodes 7—
14 belong to customers, and Node 15 is the recycling
center. Furthermore, there are 12 vehicles which are
divided into three types of vehicles used to move large
products and each vehicle is capable of moving one or
two pieces with respect to their capacity. The cost
of failing to meet a demand is denoted by «’ = 7 =
10, and also five different scenarios are considered for
uncertain parameters. It should be noted that the
proposed model can be solved by GAMS CPLEX 10.1
optimization software and the results are obtained us-
ing a computer featuring 3 GHz CPU and 4 GB RAM.
In this respect, the probability of occurrences is defined
as 0.15, 0.2, 0.3, 0.2, and 0.15. Moreover, some other
parameters such as delivery demand, pick-up demand,
and the distance between nodes are represented for
instances in Tables 2 to 4, respectively. In the next
sections, the results of using the stochastic and robust
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Table 2. The amount of delivery demand for each Table 3. The amount of pick-up demand for each
scenario. scenarilo.
Scenarios (S) Scenarios (S)
d;s Pjs
1 2 3 4 5 1 2 3 4 5
7 158 221 414 349 699 7T 219 340 379 431 279
3 337 411 537 542 1044 3 280 199 286 302 275
-§ 9 236 478 288 276 657 —§ 9 199 333 246 325 458
% 10 324 444 500 545 780 E 10 192 231 320 321 422
g 11 278 231 418 605 871 g 11 219 285 314 403 400
% 12 246 386 395 356 721 4% 12 220 218 253 343 289
5 13 207 272 423 384 872 C:) 13 169 213 212 291 378
14 196 216 342 457 1063 14 275 308 307 275 409
approaches to solving the experimental example are In Figure 2, the selected fleet of vehicles in the
reported. Then, Figures 2 and 3 demonstrate the third scenario is shown. As observed earlier, in this
routes of the solutions to different models and compare scenario, by considering the stochastic parameters, two
them. vehicles of type 2 and two other vehicles of type 3

Guidance

Recycling
Center

Figure 2. The routes of the solution to the stochastic model for the 3rd scenario.

Guidance

Recycling

Center

Figure 3. The routes of the solution to the robust model for the 3rd scenario.
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Table 4. Distance between nodes i and j.

Node (7)

dis;j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 121 190 172 96 110 53 71 86 168 141 215 143 156 167
2 121 0 83 107 87 190 162 121 46 51 52 139 137 211 185
3 190 83 0 69 116 227 219 162 128 79 51 76 135 229 183
4 172 107 69 0 78 176 185 122 141 132 55 42 72 168 117
5 96 87 116 78 0 112 107 46 95 135 68 121 57 125 100

6 110 190 227 176 112 0 63 70 176 241 180 213 110 54 97
= 7 53 162 219 185 107 63 0 63 134 212 168 226 135 115 143
—§ 8 71 121 162 122 46 70 63 0 111 172 113 163 75 97 97
Z 9 86 46 128 141 95 176 134 111 0 85 90 179 152 208 194
10 168 51 79 132 135 241 212 172 85 0 81 152 179 260 228
11 141 52 51 55 68 180 168 113 90 81 0 89 100 187 149
12 215 139 76 42 121 213 226 163 179 152 89 0 104 196 140

13 143 137 135 72 57 110 135 75 152 179 100 104 0 96 50

14 156 211 229 168 125 54 115 97 208 260 187 196 96 0 60

15 167 185 183 117 100 97 143 97 194 228 149 140 50 60 0

Table 5. The obtained results of the stochastic approach.

Z* = 16700.9

Total cost of the first stage=9000

SSCs (total cost of S=1 S§=2 S=3 S=4 S=5
the second stage) 3740.6 43059 4906.1 5049.6 5432.6
Cost of CO2 emission 446.9 743.1 769.0 878.4 491.4
Table 6. The obtained results of the robust approach.
Z* = 18036.7 Total cost of first stage=12000
SSCs (total cost of §=1 S§=2 S=3 S=4 S=5
the second stage) 3770.2  4854.3 4997.6 5049.6  6693.6
Cost of CO5 emission 758.7 966.9 798.8 878.4 569.7

are selected for shipment.

Also, it is clear that the

993

considered approaches are analyzed in two stages. In

establishment of depot number 4 incurs additional cost
for the system in the third scenario. As shown in
Figure 3, the selected fleet of vehicles in the third
scenario consists of two vehicles of type 1 and two
other vehicles of type 3. Moreover, depots numbers
2, 4, and 6 offer services to customers, while the depot
number 5 remains inactive. As a result, the selected
routes in Figures 2 and 3 completely differ due to
the lower costs for the system in each model. In
addition, the establishment of depots in two figures
is different from each other for the reasons mentioned
above.

8.1. The results of stochastic approach

In this section, the results of applying the stochastic
approach are represented. In this respect, the total
value of objective function is 16700.9 and nodes 2, 4,
and 6 are considered for establishing the warehouse
centers. In this respect, as explained before, the

the first stage, the total cost of establishing warehouse
centers is 9000 and in the latter one, the total cost is
reported based on the five scenarios given in Table 5.
Meanwhile, the fifth scenario has the highest demand,
and nodes 7 and 12 for customers are not covered
in which the value of objective function increases to
2982. Of note, the total running time for the stochastic
approach is 5.52 minutes.

3.2. The results of robust approach

In this section, the obtained results of the robust
approach application are presented. Meanwhile, the
deviation coeflicient from average cost (A) and robust-
ness (w) is considered to be 2, simultaneously. In
this respect, the value of objective function is 18036.7
and nodes 2, 4, 5, and 6 are allocated to establishing
warehouse centers. Furthermore, the costs of estab-
lishing the warehouse centers in the first and second
stages are reported in Table 6. Moreover, the total
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running time for the robust approach is 45 seconds,
which is less than that for the stochastic approach
implementation.

4. Comparative analysis, validation approach,
and sensitivity analysis

4.1. Comparative analysis

In this section, the results of the robust model are
compared with those of deterministic and stochastic
models so that the validity of this approach can be
proved. Meanwhile, the proposed approach is employed
to determine the value of decision variables for future
practice, in which the most suitable decision has the
highest value in the objective function. Consequently,
the events that are likely to occur in the future are
simulated to validate the proposed model and analyze
the obtained results. As stated in assumptions, the
number of scenarios is considered as different sequences
of events that may occur in the future. Consequently,
the parameters of each scenario can be accurately
determined. Thus, the scenarios with different prob-
abilities are generated for simulating the future and
then, input parameters of the deterministic model are
considered. The deterministic model determines the
cost of making each decision in reality. Indeed, the
first-stage variables are constant and equal to those
decisions that we desire to make. The deterministic
model is presented as follows:

min : Crea. X* + .Y + IR, (26)
Area1~X* + A;eal'y —R> Brea17 (27)
where Creal, C/.. 1, Areal, Al .y and Byea are defined

as the definite values of non-deterministic parameters.
Moreover, X* is the constant value of the first-stage
variables, and Y is the second-stage variable of the
model which is determined when an event occurs. How-
ever, the following steps are considered to implement
the validation procedure:

Step 1. Solve the deterministic, stochastic, and
robust models based on simulation inputs;

Step 2. Store the obtained results of the proposed
models as X7, X3, X3;

Step 3. Select a scenario randomly and consider its
parameters as input data of the deterministic model;

Step 4. Solve the deterministic, stochastic, and
robust models for each X* and store the obtained
value of objective functions;

Step 5. Repeat Steps 3 and 4 definite times (N);

Step 6. Compute the average, variance, and stan-
dard deviation of obtained N values for each objective
function of the proposed model.

The implementation process of the validation approach
is provided, and the simulation results of deterministic,
stochastic, and robust models are reported in Table 7.
As represented in this table, the standard deviation of
the robust model is significantly less than that of the
deterministic and stochastic approaches, which could
confirm the validity of the robust model. Furthermore,
the average of objective functions indicated that the
cost of applying the stochastic model was lower than
that of the robust model. Minimization of the imprecise
information deviation in the system environment incurs
a higher objective function value in the robust model.
As mentioned before, while the stochastic model min-
imizes the average value of costs, the robust model
minimizes the deviation from the average value of costs.
Therefore, the results show that the average value of
costs in the robust model is somewhat higher than that
in the stochastic model. In this respect, the trend of
the validation approach for deterministic, stochastic,
and robust models is given in Figure 4.

The proposed robust-based stochastic model can
appropriately handle uncertain situations in terms of
customer demand and travel time as imprecise parame-
ters. However, the relevant methods used in the studies

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 -9

0.0 Deterministic  Stochastic

0.833846738 0.082742479  0.083410782
0.802811783  0.19480661 0.002381607
0.646384634 0.318407557  0.035207809

Normalized values

Robust
=@= Average
=@ Variance

Standard
deviation

Figure 4. The results of implementation procedure of
validation approach for N = 20.

Table 7. The results of the implementation procedure of the validation approach.

N =20 Deterministic model Stochastic model Robust model

Average 171185.4 16986.7 17123.9

Variance 229131562.7 55600009.8 679737.5
Standard deviation 15137.1 7456.5 824.5
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Table 8. Summarized comparative analysis of the proposed approach vs. Lu and Gzara [37] and Hu et al. [38] approaches.

Parameters of

The results of comparisons

the comparison

Because of considering the robust stochastic-based model, the two methods can handle the

vehicle routing problem in uncertain situations, even though only part of the problem faces

uncertainty. However, the proposed approach is tailored in a scenario-based manner to

appropriately elaborate on possible imprecision and achieves the results close to real life by

The proposed approach was employed to determine the robustness of the stochastic

robust-based model by considering such parameters such non-covered customer demand

and feasible routes in comparison to the deterministic model. The results showed the

higher rate of the robustness for the proposed model by analyzing the standard deviation,

which is less than the other three models. However, the methods proposed by Lu and

Gzara [37] and Hu et al. [38] were compared with the deterministic and robust models by

analyzing the feasibility ratio of the robust model and non-covered customer demand,

respectively. Therefore, the greater robustness of the model over those in other studies

The proposed approach considered the deterministic results and compared those with

stochastic and robust results. Therefore, a chance was presented to reach a promising

Uncertainty
modeling
considering uncertainty under scenarios.
Robustness
of model
cannot be concluded.
Reliability

and appropriate insight. The studies of Lu and Gzara [37] and Hu et al. [38] did not

consider this concept; therefore, the results of the proposed method in this study were

more reliable.

Time complexity is connected to the computational size of the method. Methods of Lu

and Gzara [37] and Hu et al. [38] outperformed the proposed approach. Therefore,

Time complexity

determining the examined factors such as imprecise travel time and demand, time windows,

vehicle capacity, and warehouse capacity and considering these factors through the process

of the proposed scenario-based robust stochastic optimization approach increased the

size of required computation.

of Lu and Gzara [37] and Hu et al. [38] are investigated
in this study to compare their outcomes. Therefore,
the advantages and disadvantages of these approaches
and our methods are comparatively listed in Table 8.

4.2. Validation approach

In this section, to show the viability of the proposed
method and prove its validation in this manuscript,
the method suggested by Lu and Gzara [37] and Hu
et al. [38] is employed to solve the instances in this
manuscript. The obtained results are compared and
reported in Figure 5. As shown in Figure 5, there is no
significant difference between the results of the three
compared models.

As evident in Figure 6, the performance of the
models is similar to each other. Meanwhile, the
standard deviation and variance of the proposed model
are lower than those of the robust model vs. the
methods of Lu and Gzara [37] and Hu et al. [38]. This
finding demonstrates the robustness and reliability of
the proposed stochastic model in comparison to the
methods of Lu and Gzara [37] and Hu et al. [38],
proving the validity of the proposed robust model.

4.3. Sensitivity analysis

In this section, sensitivity analysis of some parameters
is carried out to demonstrate their robustness and
sensitiveness in order to ensure the advantages and
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Table 9. The results of variations in the non-coverage coefficient of demand.

w 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
The value of objective function 13439.7 15264 17055.2 17893.3 18036.7 18036.7 18036.7 18036.7
Number of warehouses 2 2 3 3 4 4 4 4
Number of non-covered nodes 5 4 2 2 0 0 0 0
The results of deterministic models The results of robust models
1.0 1.0
0.9 0.9 ./.\.
2 0.8 § = _ 0.8
B - 3
z 07 Z 07
g 06 i
§~ g 0.6
)
g 0.5 -8 0.5
= N
£ 04 = 04
g 0.3 é 0.3
. 0.
Z
0.2 0.2
0.1 0.1
0.0 The proposed Lu and The proposed Lu and Gzara g, ¢ o1, [38]
model Gzara [37] Hu et al. [38] model [37]
—8— Average 0.833846738  0.802013634 0.812100349 o= Average 0.83420782 088420237 0.799832881
——Variance 0.802811783 0.800116785 0.799367102 =@ Variance 0.002381607 0.031028069 0.003012467
~o— Standard 0.64684634  0.73201665  0.800102235 Standard 0035207809 | 0203280765 | 0.110203245
deviation deviation

Figure 5. Comparative result of the proposed
deterministic model and Lu and Gzara’s model [37] and
Hu et al.’s model [38].

effectiveness of the proposed approach and to offer a
deeper insight. In addition, the performance of the
model is also investigated in terms of robustness and
based on various key parameters which are critical
parameters affecting logistic systems including lead
time, customer demand, fixed costs, COy emission
costs, etc. These parameters are controlled by the
important coefficient of the robust model such as non-
coverage of customer demand w that strongly manages
the robustness of the model. In this respect, Table 9
shows sensitivity analysis under variation of w which
is defined as the coefficient of non-coverage of customer
demand in objective function or robustness coefficient.
In this analysis, the value of w increases to 0.3 in each
epoch. As shown in this table, by increasing the cost of
non-coverage (w), the number of warehouses for serving

Figure 6. Comparative result of the proposed robust
model and Lu and Gzara’s model [37] and Hu et al.’s

model [38].

the customers increases and, also, the number of non-
covered nodes decreases, simultaneously. Furthermore,
for w > 1.2, the number of warehouses, non-covered
nodes, and the value of objective function are fixed.
In addition, a schematic representation of variations of
the non-covered demands is given in Figure 7.

Table 5 shows the outcome of sensitivity analysis
subject to A variation, which is defined as the optimal
robust coeflicient. Meanwhile, the value of A increases
to 0.5 in each epoch. As reported in Table 10 and
depicted in Figure 8, the standard deviation from the
mean value of the second-stage costs decreases upon an
increase in the value of A. In other words, the behavior
of the system is more robust by increasing the value of
A

Moreover, Table 11 shows the sensitivity anal-

Table 10. The results of optimal stability coefficient variation.

A 0.5 1 1.5 2 2.5 3 3.5 4
The value of 172304  17564.0 17859.1 18036.7 18325.0 18548.1 18700.9 18711.4
objective function
Standard deviation of o) o 7194 12813 12645 11784 908.9 21.4 21.3

objective function
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Figure 7. The result of changing the non-covered demands.
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0.20000
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Figure 8. The result of changing the optimal stability coefficient.

0.30000
0.25000
0.20000
0.15000

0.10000

Normalized quantities

0.05000
0.00000
0.7 0.9 1.1 1.3 1.5 1.7 1.9

=@ "The value of objective
function

=@=Number of warehouse 0.26087 0.17391 0.13043 0.13043 0.13043 0.08696 0.08696
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Figure 9. The result of changing the warechouse capacity.

Table 11. The results of warehouse capacity variation (CD;).

CD; 0.7 0.9 1.1 1.3 1.5 1.7 1.9
The value of objective function 26851.4 18317.4 17729.7 15147.8 15096.6 12391.4  12266.2
Number of warehouses 6 4 3 3 3 2 2
ysis under variation of warehouses capacity centers. houses decreases. Consequently, all warehouse cen-
In this respect, the results show that the number ters are available for customers when the role of
of established warehouses is directly related to the warehouse capacity is absent in the decision-making
warehouse capacity in which as the warehouse ca- process. Finally, the obtained results are given in

pacity increases, the number of the established ware- Figure 9.
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5. Conclusions and future directions

In recent years, companies and countries have increas-
ingly looked upon green logistics due to the signif-
icance of environmental competencies in human life.
Consequently, logistics strategies should be sustain-
able and the environmental effects be considered in
distribution and production decisions. In this work,
two different scenario-based mathematical program-
ming formulations were introduced for the green open-
location-routing problem with stochastic travel time
and stochastic pick-up and delivery demand simultane-
ously, which are called probabilistic programming and
robust optimization, respectively. In this respect, the
proposed robust stochastic mathematical model was
applied to an experimental example to represent the
feasibility and applicability of the proposed approach.
Hence, the results showed that the first and fifth
scenarios of the stochastic and robust models achieved
the lowest CO5 emission cost among all the scenarios.
However, although the stochastic model achieved lower
CO» emission cost than the robust model, the standard
deviation of imprecise variables for the robust model
was minimized. Sensitivity analysis was conducted
to investigate the performance of the robust model
with respect to the variation of some key parameters.
The computational results verified the viability of both
stochastic and robust models.

Furthermore, a comparative analysis was con-
ducted based on the deterministic, stochastic, and ro-
bust models to indicate the efficiency of these methods.
Meanwhile, the comparative results based on the values
of objective functions showed that a minimum value
was reached for the stochastic model. In addition, the
robust mathematical model had a lower standard de-
viation for the obtained results than the two other ap-
proaches. However, selecting either stochastic or robust
models depends on the experts who are sensitive to ei-
ther fluctuating results or desiring the minimum cost of
CO; emissions. Due to the difficulties of the problem,
the proposed model could only deal with small-sized
instances, which is the major limitation of this study
and deserves to be addressed in future researches.

By and large, extending the proposed approach
based on inventory decisions could yield realistic re-
sults. Moreover, metaheuristic solving approaches may
be appropriately applied to solve the Green Open
Location-Routing Problem with Simultaneous Pickup
and Delivery (GOLRPSPD) for large-sized problems.
Finally, the proposed approach could be applied to a
wide range of problems associated with the distribution
management of perishable products.
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