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Abstract. One of the most important factors in a humanitarian supply chain during
a disaster is a timely and e�cient response. Delivering emergency commodities to the
a�ected areas is also of signi�cance in reducing consequences. Moreover, transferring
the injured people in the fastest and shortest time period using all available resources
is quite important. To this end, a multi-echelon multi-objective forward and backward
relief network is proposed that considers the location of hospitals, local warehouses, and
hybrid centers which are hospital-warehouse centers in the pre-disaster phase. In the post-
disaster phase, routing the relief commodities should be considered in the forward route.
In the backward route, some vehicles that can transfer the injured people after delivering
commodities, called hybrid transportation facilities, will take the injured to hospitals and
hybrid centers. According to the degree of hardness, a hybrid Non-dominated Sorting
Genetic Algorithm (NSGA-II) with Simulated Annealing (SA) and Variable Neighborhood
Search (VNS) algorithms was proposed to solve the given problems. The results obtained
from this hybrid algorithm were compared with those from NSGA-II and multi-objective
SA-VNS using �ve metrics (i.e., the number of Pareto, mean ideal distance, spacing,
diversity, and time), and it was concluded that the proposed hybrid algorithm outperformed
the two foregoing algorithms.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Natural disasters such as earthquake, ood, and storm
annually inict massive lethal and �nancial damages
upon governments and societies. These disasters can
potentially cause massive crises due to their large
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scope, considerable impacts on the material and human
resources, and disruption of the natural life cycle,
while pre-incident planning can considerably reduce
the casualties resulting from these incidents. In case
of disaster, the reduction in the potentials following
the destruction of the infrastructure promotes the
demand for logistic commodities and services [1]. In
addition, proper and e�ective emergency responses
require large-scale resources including human resources
and commodities. In Search And Rescue (SAR), the
emergency requirements comprise highly diverse and
abundant resources and long periods. In the traditional



H. Madani Saatchi et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 2948{2971 2949

design of emergency service facilities (including the
�re�ghting facilities, emergency and �rst aid stations,
and warehouses), it is extremely di�cult to take actions
because large-scale measures have to be taken as
quickly as possible [2].

Disaster management as one of the major issues
has long been a matter of controversy in most countries
including Iran, and it is considered an important
social and engineering concern around the globe. It
generally refers to a set of rules and regulations on
the prevention of or confrontation with the possible
risks of any natural or human disaster. It predicts and
plans a set of processes before, during, and following a
disaster to prevent or minimize the �nancial and lethal
damages. Every disaster management system follows
a quadripartite cycle consisting of the following four
phases:

1. Prevention: Calculations are performed to pre-
vent the transformation of a hazard into a disaster
or to mitigate its disastrous e�ects. This phase is
one of the most important phases in the disaster
management cycle;

2. Preparedness: In this phase, plans and solutions
are predicted and designed to properly respond
to earthquakes. Examples of these plans and
solutions include positioning of distribution centers,
stock of the relief commodities, and post-disaster
communication modes;

3. Response: In this phase, rescue teams, relief
commodities, and rescue equipment are dispatched
and assigned to the a�ected areas immediately after
the disaster;

4. Rehabilitation: The main objective her is to
restore to the normal and improve the post-disaster
situation. This phase is designed to meet the sec-
ondary and trivial needs of victims. It involves long-
term measures taken to establish and reconstruct
the society following the impact [3].

Given the signi�cance of time and di�erent forms
of costs (i.e., �nancial costs and distances), researchers
have attempted to optimize these parameters. The
signi�cance of time and cost (not solely �nancial costs)
in the rescue and relief of the injured is doubled in
case of disaster, especially during earthquakes and wars
posing constant threats to human life. Moreover, un-
divided attention has been paid to this requirement in
disaster management because equipment logistics can
reduce many of the consequences of crises. Hence, the
roles of routing and logistics in disaster management
should be examined. As the most important and
fundamental treatment institutions at times of disaster,
rescue centers must be adequately prepared before an
incident to be able to quickly and correctly respond
to the subsequent crises. One of the most important

strategies for improving the performance in disasters
revolves around the delivery of the relief commodities
to the victims and transfer of the injured properly
and correctly to the rescue centers via the safest
routes. Further, due to the uncertainty of demand for
commodities in each region and transportation of the
injured at times of disaster, it is substantially impor-
tant to establish e�cient relief methods for reducing
the transportation risks and the costs.

To this end, the present study aims to propose
a multi-echelon multi-product Mixed-Integer Program-
ming (MIP) model for a forward and backward relief
supply chain network that functions before and after
a disaster. In the forward supply chain, emergency
storage is in charge of providing materials to storage
facilities or hospitals. In the backward one, injured
people are returned to hospitals using transportation
facilities. The main objective of this study is to design
an e�cient relief supply chain network to solve the
location-allocation and routing problem considering
the disruption risk. In addition, the "-constraint
method was employed to solve the model in small-
scale problems. Furthermore, several meta-heuristic
algorithms such as Non-dominated Sorting Genetic Al-
gorithm (NSGA-II), MOVNS-SA, and a hybrid meta-
heuristic algorithm made of the NSGA-II, Simulated
Annealing (SA), and Variable Neighborhood Search
(VNS) algorithms were utilized due to the model
complexities. The proposed model o�ers the following
advantages:

� Designing and modeling a multi-echelon relief sup-
ply chain for a disaster;

� Predicting hospitals, storage centers, or a combina-
tion of hospitals and storages;

� Proposing a method for locating the commodity dis-
tribution centers, transporting the relief commodi-
ties to the a�ected areas, transferring the injured
from the a�ected areas, and locating the treatment
centers for the subsequent medical services.

The rest of this paper is organized as follows.
Section 2 presents literature review and research back-
ground. The problem statement and model formulation
are given in Section 3. The proposed algorithms are
discussed in Section 4. The computational results and
those of sensitivity analysis are listed in Section 5.
Finally, the concluding remarks and suggestions for
further study are provided in Section 6.

2. Literature review

Disaster management and its subsets in designing
emergency relief networks are among the most impor-
tant concerns of operations researchers. Operations
research modeling in disaster networks involves two
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phases: the pre-disaster preparedness and post-disaster
response phases. Relief and disaster logistics opera-
tions are classi�ed into two general categories:

1. Facility location;

2. Relief provision and transportation of commodities.

Based on this classi�cation, facility location is ap-
proached from a geographical point of view with the
consideration of some factors such as the cost and time
of the responses in the context of relief logistics. This
is a serious concern in the pre-disaster preparedness
phase for the location of storages and storage of relief
commodities in advance.

Modeling the location of relief facilities gains
signi�cance in the case of large-scale crises; therefore,
the objective function and model details should be
identi�ed with utmost precision. Large-scale disasters
are rare and infrequent; yet, they have massive lethal
and �nancial consequences. One of the oldest studies
on the emergency location problem was carried out
by Toregas et al. [4] who solved a linear programming
model for a coverage problem. Snyder [5] directly ad-
dressed the facility location-allocation problem about
reliability and adopted a new approach to optimization
of a supply chain under uncertain conditions for the
�rst time. He was also the �rst researcher who directly
studied the failure of facilities regarding the reliabil-
ity of facilities in the facility location and allocation
problem. Yi and Kumar [6] suggested the ant colony
optimization algorithm for relief distribution. They
divided the primary relief logistics problems into two
consecutive decision-making phases, namely vehicle
routing, and multi-commodity dispatching. Berkoune
et al. [7] explored a multi-product, multi-storage, and
multi-mode transportation SAR problem. They also
introduced a mathematical model solved by a genetic
algorithm that generated high-quality solutions and
o�ered alternatives to disaster managers in a real-case
disaster.

Emergency relief transportation was for the �rst
time introduced in the 1980s by Knott [8] based
on a routing model. A linear programming model
was presented to determine the number of trips per
camp to meet the demands and minimize the costs.
Hamedi et al. [9] proposed a humanitarian supply
chain transportation scheduling and routing model. A
multi-objective routing algorithm was recommended
for minimizing the travel time and reliability costs.
The problem was then converted into a single-objective
one by introducing a set of weights. The outputs of
the routing algorithm were also routing and scheduling
of the humanitarian truck eet in the transportation
network. In this algorithm, in case a part of the route
was unreliable, that route was not selected due to the
risk incorporated into the weighted objective function.

Hence, it solved the problem through rescheduling. Liu
et al. [10] proposed a framework for the post-disaster
distribution of relief commodities. This framework
consists of two modules:

(a) One for estimating the status and predicting the
relief commodities demand and the delivery time;

(b) The other for relief distribution that determines
the optimal distribution ows.

This model was supposed to minimize the total time
of distribution of the relief commodities to satisfy
the demands considering the uncertainty and decision-
makers' risk.

Salmer�on and Apte [11] developed a two-phase
stochastic optimization model in which budget alloca-
tion was accurately employed to identify the optimal
location of relief assets and decisions that needed to
be taken accurately before an incident. Given that
optimization aims at minimizing the expected casual-
ties, this model consists of two phases. In the �rst
phase, decisions show the distribution of the resources
including the storages and medicinal facilities. In the
second phase, decisions are about the logistics including
the transportation facilities required for evacuation,
delivery of the commodities required by the population,
and transfer of the injured. Rawls and Turnquist [12]
studied the relief requirements location problem to
respond to natural disasters. They attempted to
develop a relief response planning tool that determined
the locations and quantities of di�erent relief require-
ments to solve the location problem under uncertainty
conditions. They proposed a two-phase stochastic MIP
model as a powerful model considering the uncertainty
in demand for the stored commodities and uncertainty
in the post-incident availability of the transporta-
tion network. Mete and Zabinsky [13] suggested a
stochastic optimization model to design the storage and
distribution of medical items in the states of emergency
under the uncertainty associated with demands and
costs. The model primarily aims to determine the
optimal location of the storages and the required stock
before a disaster and reduce the risks posed to the
storages that su�er seismic failures. Bozorgi-Amiri et
al. [14] developed a multi-objective stochastic program-
ming method for relief logistics under uncertainty. In
this method, the demands, commodities, and costs of
procurement and transportation are a�ected by this
uncertainty. In addition, the uncertainty about the
locations that may experience an increase in demand
and possible post-incident destruction of some of the
predicted commodities in the rescue centers as a result
of the incident was taken into account. This model
aimed to minimize the total sum of the expected costs
as well as the variations of the total cost.

Barbaroso�glu and Arda [15] explored the opera-
tional and tactical scheduling of the helicopter activi-
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ties in search and relief operations. They proposed a
zero-level modeling framework centered on the trans-
portation and routing problem during the �rst phase
of the disaster.

Decisions on the helicopter eet, pilot allocation,
and �nal number of tours were o�ered by each he-
licopter to the a�ected areas in the a�ected zone.
�Ozdamar et al. [16] examined a time-dependent dy-
namic transportation problem for the provision of
multiple commodities by the supply centers to the
distribution centers near the a�ected areas. They
formulated a multi-period and multi-commodity net-
work ow model to schedule the delivery and loading
processes plus the amounts of loads delivered to these
routes to gradually minimize the unmet demand. Their
model was repeatedly solved in the given period to
deliver relief commodities. The designed structure
enables them to generate plans based on the variations
in demand, supply, and size of the transportation eet.
Sheu [17] modeled a relief logistic network composed
of suppliers, relief points, and a�ected areas. He
introduced a decision support system consisting of
three phases:

1. Demand prediction in the a�ected areas;
2. Classi�cation of the a�ected areas by the estimated

severity of the damage;
3. Prioritization of the a�ected areas for relief distri-

bution.

Yi and �Ozdamar [18] described an integrated
relief distribution model for logistical coordination and
evacuation in the rescue and response operations. The
logistic plan involves the dispatch of the commodities
(including medicine and food) and SAR teams to
the distribution centers in the a�ected areas as well
as the evacuation and transfer of the injured to the
emergency centers. Location of the medical personnel
in the emergency centers was an integral part of their
plan to protect the injured. Coutinho-Rodrigues et
al. [19] introduced a multi-objective method based on
the identi�cation of the evacuation routes and shelters
in an urban planning model in a location-allocation
problem. This method puts the main focus on the
identi�cation of the number of relief facilities (shelters)
and routes leading to the shelters.

Talarico et al. [20] solved the ambulance routing
problem in a natural disaster emergency response
scenario in which numerous wounded victims were in
need of medical aid simultaneously. In their study,
two mathematical models were de�ned to obtain the
route plans and shorten the waiting time for the
wounded people. A meta-heuristic local search method
was employed in their study under uncertainty with
the consideration of di�erent parameters including the
number of ambulances and hospitals, type of patients,

and eet capacity. Sharif and Salari [21] developed
a comparative random search method to solve the
transportation problem in SAR. In their study, the
demand for a group of customers was met by several
open routes using a limited number of vehicles in the
central warehouse and the customer demands were
met in each visit. The performance of the algorithm
was also examined under di�erent scenarios and its
e�ectiveness was measured.

Gutjahr and Dzubur [22] proposed a two-objective
and two-echelon optimization model to locate distri-
bution centers in humanitarian logistical problems.
They developed an exact algorithm to determine the
Pareto boundary and combine the comparative "-
constraint method, branch-and-bound method, and
Frank-Wolfe's algorithm. Rezaei-Malek et al. [23]
introduced a two-objective model to design a relief
logistic network, taking into account the importance
of perishable commodities. The uncertain nature of
the problem motivated the adoption of a powerful
scenario-based stochastic approach. This model sought
to simultaneously minimize the average response time
and total operating expenses before the disaster as well
as the post-incident penalty of the unmet demand and
unused commodities.

Alem et al. [24] proposed a new two-stage stochas-
tic network ow model to improve the decisions on
rendering humanitarian aids to the victims of disasters.
The practical features of this model include budget
allocation, assessment of di�erent eets, logistics, and
delivery times in a dynamic multi-stage horizon. Ad-
vanced risk-based methods (e.g., Conditional Value at
Risk (CVaR)) were employed to improve the demand
satisfaction policy. Cavdur et al. [25] designed a model
for allocating the temporary emergency facilities to the
transient or short-term SAR operations based on case
studies of the earthquakes in Turkey. A two-stage
stochastic programming approach was also proposed
to solve the problem and minimize the total distance,
unmet demand, and total number of facilities (consider-
ing the potential di�culties in accessing the facilities).
In their method, facility and service allocations were
carried out in the �rst and second phases, respectively.
Five post-disaster scenarios were also formulated (e.g.,
tra�c conditions and timings) and the likelihood of
each scenario was taken into account. Jabbarzadeh et
al. [26] proposed a combinatorial robust-stochastic op-
timization model and a Lagrangian relaxation method
for designing a resilient supply chain that stands the
supply and demand breaks and facility disruptions.
Their technique also reduced the likelihood and impact
of these disruptions through investment. In their
model, the likelihood of disruption was considered to
be an investment factor to spur investment and prevent
any potential disruption under budget limitations.
A disruption might result in complete shutdown of
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facilities or might reduce capacity. The performance
of the proposed model was also analyzed using Monte-
Carlo simulation.

Mohamadi and Yaghoubi [27] suggested a two-
objective stochastic optimization model for the location
of the points of transit and medical commodity distri-
bution centers. In case of disaster, the prioritization
of patients based on the severity of their injuries was
one of the most important medical concerns. To
meet the real-life conditions, the triage system and
failure probability in the distribution centers and the
routes of an urban region in Iran were addressed. The
service level was eventually improved in the backup
distribution centers. Sebatli et al. [28] developed a
simulation-based approach to determine the demand
for relief commodities before the entrance of the state
agencies to the a�ected area. They designed a two-
stage integer model for the allocation of temporary fa-
cilities and distribution of the relief commodities stored
in these temporary facilities. Earthquake case studies
were also carried out on 64 Turkish neighborhoods.
Tavana et al. [29] designed a multiple humanitarian
logistics network for the location of the central storages,
pre-disaster management of the perishable commodi-
ties, and post-disaster routing. They employed the
"-constraint method and the NSGA-II to solve the
model. Cao et al. [30] introduced a multi-objective
mixed-integer linear programming model to design
relief strategies and employed the genetic algorithm
to solve their model. Torabi et al. [31] developed a
two-stage and scenario-based fuzzy stochastic program-
ming model to make arrangements between the relief
commodity suppliers and humanitarian organizations.
Their model considered the location of relief centers
and logistic planning to reduce the costs.

Esfandiyari et al. [32] formulated a non-linear
integer programming model for a �xed-charge location-
allocation problem by hardening the network by pro-
viding backup facilities. The model was solved by a de-
veloped Lagrangian Decomposition Algorithm (LDA),
and the obtained results were compared with CPLEX
to guarantee that the LDA could perform more e�-
ciently to deal with large-scale problems. Gharib et
al. [33] designed a relief distribution network with three
stages to deliver commodities to the a�ected areas.
They clustered the a�ected areas into two parts: Clus-
ter 1 referring to the usable land-routes after a disaster
and Cluster 2 de�nes the route damage caused by the
disaster and only air relief operation is possible. Then,
an Adaptive Neuro-Fuzzy Inference System (ANFIS)
was developed for pre-processing each cluster. Then, a
heterogeneous multi-depot multi-mode vehicle routing
problem was formulated to minimize the transporta-
tion time and maximize the reliability. To solve the
problem, two meta-heuristic algorithms called NSGA-
II and Multi-Objective Firey Algorithm (MOFA) were

proposed to obtain an optimal solution. Shavarani [34]
proposed a multi-echelon facility location problem to
determine the location of relief centers and refuel
stations. In this model, the demand allocation is
done based on the nearest neighborhood method. This
problem was solved by a hybrid genetic algorithm
and the results were examined through a case study.
In their study, drones were considered for delivering
relief commodities and recharge station locations were
the tactical decision variables to increase the coverage
radius of the drones.

A brief summary of the literature review is pre-
sented in Table 1 in which most studies have introduced
a forward or backward model. However, in this study,
a combination of the eet system and service centers
is designed speci�cally. Of note, the system reliability
as the objective function is one of the contributions
of the model. Seraji et al. [35] presented a two-
stage mathematical model to improve post-earthquake
conditions. In the �rst stage, the locations of shelters
for the primary accommodation of people, location
of �rst aid warehouses, and distances travelled by
people from crisis areas to shelters were considered.
The second stage investigated relief and coverage of
demands after accommodating people in shelters. The
mixed-integer linear programming model was solved
using GAMS software and �nally, the results were
discussed.

Mohammadi et al. [36] developed a fuzzy scenario-
based optimization model with the consideration
of location of shelters, relief distribution centers,
and telecommunication towers. A non-linear multi-
objective model was formulated by considering failure
in routes and relief distribution centers. Moreover,
they considered integrated shelters with communica-
tion towers for better management and higher reliabil-
ity. This model was solved using a heuristic method
in conjunction with the Lp-metric method, and it
was implemented on a ood case study in an urban
district in Iran. Sotoudeh-Anvari et al. [37] suggested
a stochastic multi-objective optimization model for
trapped people in regions a�ected by disaster with
uncertainty for the locations in which any survivor may
be found. This model was solved through a stochastic
dynamic programming approach. However, due to
heavy computation, they converted the problem to a
Multi-Criteria Decision Making (MCDM) problem and
employed two e�cient MCDM techniques for solving
the problem, called TOPSIS and COPRAS techniques.
As observed, there was excellent agreement between
these methods in the search problem.

3. Model formulation

Based on the above discussion, the present paper is
an attempt to guide the strategic decisions before
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Table 1. Summary of the related literature review.
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1 Rawls and Turnquist 2010 * * * * * * *
2 Mete and Zabinsky 2010 * * * * * * * *
3 Berkoune et al. 2012 * * * * * *
4 Hamedi et al. 2012 * * * * * * * * *
5 Rodrigues et al. 2012 * * * * * *
6 Bozorgi et al. 2013 * * * * * *
7 Talarico et al. 2014 * * * * * * * *
8 Sharif & Salari 2015 * * * * * *
9 Rezaei-Malek et al. 2016 * * * * * * * *
10 Alem et al. 2016 * * * * * * * * * *
11 Cavdur et al. 2016 * * * * * *
12 Gutjahr et al. 2016 * * * * *
13 Jabbarzadeh et al. 2016 * * * * * * *
14 Mohamadi & Yaghoubi 2017 * * * * * *
15 Sebatli et al. 2017 * * * * * * *
16 Gharib et al. 2017 * * * * * * * * * *
17 Tavana et al. 2018 * * * * * * * * * *
18 Shavarani et al. 2019 * * * * * *

This study * * * * * * * * * * * *

Figure 1. General schema of the logistics network.

and during the states of emergency by providing a
mathematical model. As illustrated in Figure 1, an
integrated forward and reverse supply chain network
was designed in this study. In the forward route,
the central warehouse provides local warehouses or

hospitals with the required materials. In the backward
route, the injured people are returned to the hospitals
through the transportation facilities.

The locations of the a�ected areas and storages
are �xed and predetermined. The proposed model
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predicts hybrid centers; in other words, storage, dis-
tribution, and treatment centers can be constructed in
the same locations. The usage of facilities as hybrid
centers is determined by the �xed costs of construction
and variable costs of transportation. It can be stated
that hybrid centers constitute a variable decision in this
logistic network resulting in cost saving. In addition,
a multi-product model was designed and solved to de-
velop a more realistic situation and increase resiliency
and generalizability. Since a quick response in disaster
situations (e.g., earthquakes) is of signi�cance, the
maximal e�ciency of any transportation facility should
be obtained. One of the most important ways to serve
logistics and relief proposes is aviation. Helicopters are
good examples for sending commodities to the incident
points and at the same time, they have the potential
of transferring injured on the way back. Furthermore,
given the signi�cance of the golden time for survivors,
some trucks on land shipment can be useful for in-
jured collection during a disaster situation. Hence,
two transportation systems are predicted: the �rst
transportation system can simultaneously deliver the
relief commodities to the a�ected areas and collect the
injured people, which is called Hybrid Transportation
Facilities (HTF); the second transportation system
is only capable of collecting the injured people with
di�erent capacities, called an ambulance. Moreover,
justice should be taken into account in the distribution
of relief commodities among the demand points. Par-
ticularly, relief commodities must be distributed among
the points of demand based on their priorities so that
all demand points are equally treated according to their
priorities and levels of emergency; otherwise, social
chaos may erupt in addition to the existing disaster.
Finally, the present study aims to obtain maximized
reliability of the relief services and minimizes operating
and �xed costs.

3.1. Assumptions
The following assumptions are considered in the pro-
posed model:

� The model has three echelons;
� Warehouses are not allowed to transfer commodities

with themselves;
� Each demand point can be supplied by one ware-

house and it can send the injured to one hospital;
� Shortage is allowed;
� Transportation facilities are non-homogenous;
� One central warehouse for safety stock exists;
� All warehouses have a safety stock;
� Transportation facilities are divided into two parts:

i) facilities that can only transfer injured people and
ii) facilities that can dispense relief commodities and
collect injured people on the way back (i.e., HTF).

In the following section, we de�ne the mathematical
factors used in the mathematical model.

3.2. Sets and indices
I Sets of candidate locations for

warehouse, hospital, or hybrid
J Sets of incident points (demand points),

indexed by j and (u = 1; � � � ; J)
K Sets of relief commodities (k =

1; � � � ;K;K + 1), in which the last
index (K + 1) refers to injured

V Sets of HTFs (v = 1; � � � ; V )
W Sets of ambulances, indexed by

(w = 1; � � � ;W )
h Index of central warehouse which is

one central warehouse h = 1
l; i; j Index of incident points and candidate

locations for warehouse, hospital, or
hybrid sets (l; j; i = 1; � � � ; I + J)

3.3. Parameters
Capgv Capacity of HTF type v for transferring

relief commodities
Cappev Capacity of HTF type v for transferring

injured
Capamw Capacity of ambulance type w for

transferring injured

F 1
i Fixed cost of establishing a warehouse

at location i
F 2
i Fixed cost of establishing a hospital at

location i
F 3
i Fixed cost of establishing a hybrid

center at location i
�jk Shortage cost of relief commodity type

k for incident point j

1
ik Capacity of the warehouse at location

i for relief commodity type k

2
i(K+1) Capacity of the hospital at location i

for the injured

3
ik Capacity of the hybrid center at

location i for relief commodity type k
and the injured

djk Demand of incident point j for relief
commodity type k

dj(K+1) Number of the injured at incident
point j after incident

Bu Maximum available budget for
establishing facilities

	 Maximum allowable shortage for relief
commodities at each incident point

!k Space used by relief commodity type k
in HTFs
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R1
i Risk of establishing warehouse at

location i
R2
i Risk of establishing a hospital at

location i
R3
i Risk of establishing a hybrid center at

location i
Rijv Risk of transferring relief commodities

by HTF type v from a warehouse at
location i to incident point j

C1
ljv Cost of transferring relief commodities

from point l to point j by HTF type v
C2
ijw Cost of transferring the injured from

point i to point j by ambulance type w
�ju Maximum justice level di�erence

between each of two incident points j
and u(j 6= u)

Injj 1 if incident point j has got injured; 0,
otherwise

Cah Capacity of central warehouse h
SSik Quantity of relief commodity type k in

the warehouse at location i
Instjv Cost of transferring the injured at

point j on the return way of HTF type
v

relv Minimum expected reliability of
selected route by HTF type v

3.4. Variables
yhik Amount of relief commodity type k

transferred from central warehouse h
to warehouse at location i

xijkv Amount of relief commodity type
k transferred from a warehouse at
location i to incident point j

W 1
ij 1 if incident point j gets commodity

from a warehouse at location i; 0,
otherwise

W 2
ij 1 if injured from incident point j

transferred to a hospital at location i;
0, otherwise

�jk Shortage amount of commodity type k
at incident point j

'j Weighted shortage at incident point j
Mi 1 if location i opens as a warehouse; 0,

otherwise
Ni 1 if location i opens as a hospital; 0,

otherwise
Pi 1 if location i opens as a hybrid center;

0, otherwise
Zijv 1 if HTF type v visits point j after

point i; 0, otherwise
ZIijw 1 if ambulance type w visits point j

after point i; 0, otherwise

LFjlkv The amount of relief commodity type
k transferred by HTF type v point j to
point l

W 3
ij 1 if incident point j gets commodities

from hybrid center i or transferred
injured from point j to hybrid center i;
0, otherwise

ZRjv 1 if the injured at point j is transported
on the return way by the HTF v; 0,
otherwise

3.5. Mathematical model
The proposed mathematical model and its details are
demonstrated as follows:

max Re=
YI

i=1
(1�R1

i )
Mi �(1�R2

i )
Ni �(1�R3

i )
Pi ;

(1)

min C =
IX
i=1

(F 1
i Ni + F 2

i Mi + F 3
i Pi)

+
JX
j=1

KX
k=1

�jk�jk

+
I+JX
j=1

KX
k=1

I+JX
l=1

VX
v=1

C1
ljvLFljkv

+
I+JX
j=1

I+JX
i=1

WX
w=1

C2
ijwZIijw

+
JX
j=1

VX
v=1

InstjvZRjv; (2)

s.t.:�
1�Rljv LFljkv

djk

�
� relv

8 l = 1; � � � ; i+ j; j = 1; � � � ; J;
v = 1; � � � ; V; K = 1; � � � ; k; (3)

I+JX
i=1

VX
v=1

Zijv = 1 8 j = 1; � � � ; J; (4)

IX
i=1

JX
j=1

Zijv � 1 8 v = 1; � � � ; V; (5)

JX
j=1

Zijv �Mi + Pi

8 i = 1; � � � ; I; v = 1; � � � ; V; (6)
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I+JX
i=1

Zijv �
I+JX
i=1

Zjiv = 0

8 j = 1; � � � ; J; v = 1; � � � ; V; (7)

JX
j=1

Zijv �
JX
j=1

Zjiv = 0

8 i = 1; � � � ; I; v = 1; � � � ; V; (8)

VX
v=1

JX
j=1

xijkv � �1
ikMi + 3

ikPi
�

8 i = 1; � � � ; I; k = 1; � � � ;K; (9)

�W 1
ij +

 
JX
u=1

Ziuv +
J+IX
u=1

Zujv

!
� 1

8 i=1; � � � ; I; j=1; � � � ; J; v=1; � � � ; V; (10)

IX
i=1

(W 1
ij +W 3

ij) = 1 8 j = 1; � � � ; J; (11)

xijkv �M:W 1
ij 8 i = 1; � � � ; I;

j = 1; � � � ; J; k = 1; � � � ;K; v = 1; � � � ; V; (12)

I+JX
l=1

LFljkv �
I+JX
l=1

LFjlkv =
IX
i=1

xijkv

8 j=1; � � � ; J; k=1; � � � ;K; v=1; � � � ; V; (13)

JX
j=1

I+JX
i=1

dj(K+1)Zijv
IX

u=1

W 3
uj � Injj � Cappev

8 z = 1; � � � ; V; (14)

IX
i=1

VX
v=1

xijkv + �jk = djk

8 j = 1; � � � ; J; k = 1; � � � ;K; (15)

IX
i=1

F 1
i Mi + F 2

i Ni + F 3
i Pi � Bu; (16)

j'j � 'uj � �ju 8 j; u=1; � � � ; J; u 6=j; (17)

'j =
KX
k=1

�jk�jk 8 j = 1; � � � ; J; (18)

KX
k=1

�jk � 	
KX
k=1

djk 8 j = 1; � � � ; J; (19)

KX
k=1

!kLFijkv � Capgv 8 i = 1; � � � ; I + J;

j = 1; � � � ; J; v = 1; � � � ; V; (20)

Lljkv �M:Zljv 8 l = 1; � � � ; I + J;

j = 1; � � � ; J; v = 1; � � � ; V; k = 1; � � � ;K; (21)

Mi +Ni + Pi � 1 8 i = 1; � � � ; I; (22)

W 2
ij +W 3

ij � Ni + Pi

8 i = 1; � � � ; I; j = 1; � � � ; J; (23)

I+JX
i=1

WX
w=1

ZIijw=Inj �j
IX

u=1

W 2
uj ; 8 j = 1; � � � ; J; (24)

IX
i=1

JX
j=1

ZIijw � 1 8 w = 1; � � � ;W; (25)

JX
j=1

ZIijw � Ni + Pi

8 i = 1; � � � ; I; w = 1; � � � ;W; (26)

I+JX
l=1

ZIijw �
I+JX
l=1

ZIjiw = 0

8 i = 1; � � � ; I; w = 1; � � � ;W; (27)

JX
j=1

ZIijw �
JX
j=1

ZIjiw = 0

8 i = 1; � � � ; I; w = 1; � � � ;W; (28)

JX
j=1

I+JX
i=1

dj(K+1):ZIijw�Capamw 8 w=1;� � �;W; (29)

�W 2
ij +

 
JX
u=1

ZIiuw +
JX
u=1

ZIujw

!
� 1

8 i=1; � � � ; I; j=1; � � � ; J; w=1; � � � ;W; (30)
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JX
j=1

dj(K+1):W 2
ij �

�
2
i(K+1)Ni + 3

i(K+1)Pi
�

8 i = 1; � � � ; I; (31)

IX
i=1

(W 2
ij +W 3

ij) = Injj 8 j = 1; � � � ; J; (32)

JX
j=1

VX
v=1

xijkv � SSik � (Mi + Pi) +
HX
h=1

yhik

8i = 1; � � � ; I; k = 1; � � � ;K; (33)

IX
i=1

KX
k=1

!kyhik � Cah 8 h = 1; (34)

xijk; yhik; qik; �jk; 'j ;LFjlkv � 0;

W 1
ij ;W

2
ij ;W

3
ij ;Mi; Ni; Pi; Zijv;ZIijw;ZRjv2f0; 1g:

(35)

Objective Function (1) shows the maximization of
the system reliability. To determine the reliability of
the entire relief centers in the proposed system, the
reliability of every single center should be multiplied
by one another. Objective Function (2) represents the
second objective function as well as the minimization of
the total cost of the relief logistic system. This phrase
includes �xed costs of warehouses, hospitals and hybrid
centers, shortage costs of relief commodities, trans-
portation costs of commodities and injured people, and
�nally, loading costs at the incident points.

Constraint (3) ensures that the reliability of the
selected routes for each vehicle should be greater than
the minimal one expected by relief forces. Con-
straint (4) guarantees that every demand point is
visited by one vehicle one time. Constraint (5) con�rms
that each vehicle can only get relief commodities from
one warehouse. Constraint (6) states that when the
warehouse at point iis selected for service, it can serve
the demand points. Constraint (7) states that if a
vehicle arrives at a demand point and serves it, it
should exit that point. Constraint (8) ensures that if
the vehicle is taken out of a warehouse point, it returns
to that point at the end.

Constraint (9) is the capacity limit for warehouses
and hospitals. According to Constraints (10){(12), if
demand points open in the service route of a warehouse,
they should get service from that warehouse. Con-
straint (13) shows the number of commodities delivered
to each demand point. Constraint (14) illustrates the
capacity constraint of each vehicle for the injured. Con-
straint (15) shows the demand balance constraint for
each incident point. Constraint (16) demonstrates the
budget constraint. Constraint (17) depicts the level of

justice in the distribution of relief items among demand
points. According to this constraint, the di�erence
between unsatis�ed weighted demands between two
incident points does not exceed the maximum amount
set by the experts. In other words, this constraint
and Constraint (11) trade-o� the distribution of relief
supplies between demand points fairly. In addition,
there is a penalty for unsatis�ed demands de�ned in
Constraint (18) as a measure of justice. The maximum
allowable amount of unsatis�ed demands is also limited
in Constraint (19).

Constraint (27) shows the capacity of vehicles
for commodities. Constraint (21) allows the vehi-
cles to give service to the points on their route.
Constraints (22) and (23) explain the establishment
permission for facilities at location i. In the case
of opening the hospital or hybrid centers, they are
allowed to take the injured people out of incident
points. Moreover, if any of the injured at the inci-
dent points cannot be taken by HTFs, an ambulance
must be sent to that point. This limit is illustrated
in Constraint (24). Constraints (25){(28) show the
routing limits for ambulances, which are similar to
Constraints (5){(8), respectively. Furthermore, the ca-
pacity limit for ambulances is shown in Constraint (29).
According to Constraint (30), the injured people at
each demand point should be transferred to certain
hospital. Moreover, the hospital capacity is demon-
strated in Constraint (31). It is required to make
sure that the injured people are collected by HTFs or
ambulances as guaranteed in Constraint (32). Finally,
in Constraints (33){(34), the balancing of the com-
modities in the system and capacity limit for a central
warehouse are demonstrated, respectively. Finally,
Constraint (35) enforces the binary and non-negativity
restrictions on the corresponding decision variables.

3.6. Linearization
In this section, the non-linear objective function and
constraints as well as their transformations to the linear
ones are discussed:

� Due to the nonlinearity of Objective Function (1),
the following approximation is used to linearize the
�rst objective function:

max Re=ln
YI

i=1
(1�R1

i )
Mi�(1�R2

i )
Ni�(1�R3

i )
Pi :
(36)

Therefore, the above objective function can be
written as follows:

max ln Re =Mi � ln(1�R1
i ) +Ni � ln(1�R2

i )

+ Pi � ln(1�R3
i ): (37)

Consequently, if ln Re is maximal, Re will be maxi-
mized. Therefore, Objective Function (1) is replaced
by:
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max Re �= max ln Re = Mi � ln(1�R1
i )

+Ni � ln(1�R2
i )+Pi: ln(1�R3

i ): (38)

� Constraint (14), which is the product of two binary
decision variables, is nonlinear. To transform it to
its linear counterpart, Constraint (14) is replaced by
the following constraints:

JX
j=1

dj(K+1)ZRjv � Cappev 8 v=1; � � � ; V; (39)

 
I+JX
i=1

Zijv +
IX

u=1

W 2
uj

!
Injj � 1 + ZRjv; (40)

ZRjv � Injj �
I+JX
i=1

Zijv; (41)

ZRjv � Injj �
IX

u=1

W 3
uj : (42)

Constraint (39) indicates the capacity of the vehicle
to return the injured to the hybrid facilities. Con-
straint (40) ensures that if the injured at the demand
point j are to be served by a hybrid center and the
vehicle v visits that demand point, the variable ZRjv =
1 and that point must be considered in the vehicle
capacity. Constraint (41) illustrates that if the demand
point j is not visited by the vehicle v, ZRjv = 0 and the
demand for that point is not considered in the vehicle
capacity. Finally, Constraint (42) guarantees that if the
injured at point j do not receive service from the hybrid
centers, ZRjv = 0 and the demand for that point is not
considered in the capacity of vehicle v.

4. Proposed algorithms

To solve the model, a hybrid meta-heuristic algorithm
consisting of the NSGA-II, SA and VNS algorithms is
proposed. The solutions are also fully described below.

4.1. NSGA-II
The NSGA-II is one of the most e�cient and well-
known multi-objective optimization algorithms, which
was developed by Deb et al. [38]. This algorithm cre-
ates less operational complexity than other algorithms.
In this algorithm, a population of children was �rst
generated by the parent population, and the size of
each population equals N . These two populations are
merged to create a population with 2N members. This
population is also classi�ed based on non-dominated
sorting, and the new N -member population consisting
of the best members is identi�ed. Each population class
is called a front.

4.2. SA
SA algorithm is a local search algorithm that is capable

of avoiding local optima. This algorithm enjoys several
advantages such as high convergence rate, ease of use,
and measures designed, to name a few, to avoid the
local optima that have attracted researchers. The SA
algorithm revolves around the annealing of metals. It
was �rst introduced by Metropolis et al. [39] and then,
it was implemented by Kirkpatrick [40] to solve the
combinatorial optimization problems. The similarities
between the combinatorial optimization problems and
a physical object originate from the following features:

� The possible solutions to the combinatorial opti-
mization problem correspond to the object states;

� The value of the objective function for a possible
solution corresponds to the energy of the object.
Moreover, when we heat an object, it gradually
expands and its energy rises due to the expansion
and heat. In this case, the atoms sound chaotic
but when the object is cooled down gradually, the
arrangement of the atoms becomes less chaotic and
the system is considered to be functioning on a low
energy level. The SA algorithm, often called gradual
freezing process, is inspired by the aforesaid physical
freezing phenomenon.

4.3. VNS
Mladenovic [41] introduced VNS algorithm, widely
used for solving optimization problems. Hansen and
Mladenovi�c [42] introduced the VNS algorithm for the
optimization of the p-median problem. Brimberg et
al. [43] employed this algorithm to solve the multi-
source Weber problem, and Ribeiro and Souza [44]
took the advantage of this algorithm to optimize
the spanning tree problem that is a sub-graph of a
graph. The VNS algorithm generally begins with the
initial solution x 2 S where S is the problem space
solution. Two primary search engines, namely the
shake and local search processes, were also employed
to search the solution space. While the former was
used as a refresher to refresh the local search loop, the
latter carried out the primary extensive search. The
shaking process also increased the solution diversity
by switching from a neighborhood structure to another
neighborhood structure [45]. The functionality of the
VNS algorithm was contingent upon the e�ciency of
the neighborhood structures, which should be selected
with utmost precision. This method is called the VNS
algorithm due to the variations of the neighborhood
structure in the course of the search process.

4.4. Proposed hybrid algorithm
In this study, a new hybrid algorithm was developed
with the combination of NSGA-II, Multi Objective
Simulated Annealing (MOSA), and Multi Objective
Variable Neighborhood Search (MOVNS). The main
structure of the proposed algorithm is based on
NSGA-II; however, solutions produced by crossover
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Figure 2. The proposed pseudo code.

and mutation functions are improved by a neighbor-
hood approach. The neighborhood approach is the
combination of two neighborhood search algorithms,
i.e., MOSA and MOVNS. The annealing and freezing
notions are incorporated into the SA algorithm to
improve the neighborhood generation e�ciency in the
VNS algorithm. In the neighborhood approach of the
proposed algorithm, a new solution is created in the
vicinity of the previous one. In case the new solution
improves the objective function, the new solution is
remained; otherwise, the new solution is rejected,
which may result in permanent entrapment in the local
optimal. However, in SA, the local optimal solutions
are completely avoided by escaping the local optima
region. The algorithm leaves the local optima region
through the possible approval of the bad solutions.
The pseudo code of the hybrid proposed algorithm is
illustrated in Figure 2.

With the consideration of a combination of SA
and VNS in the proposed algorithm, the neighborhood
process is completed for each child generated by the
mutation and crossover operators. It eventually im-

proves the diversity of the solution, thereby avoiding
the local optimal.

4.5. Parameter tuning and speci�cations of
test problems

In the following, the Taguchi design method is used
to perform the parameter tuning for the proposed
algorithms. Test results generally serve to estimate or
analyze the importance of the given factors based on
measurable solutions. In this method, the di�erence in
the test data or the variances of the solution variables
was taken into account. Furthermore, the signal-to-
noise ( SN ) ratio is often used to facilitate this analysis.
The simplest form of the S

N ratio is the ratio of the
mean signal to noise standard deviation, which is the
inverse form of the coe�cient of variation of the system
response. For each parameter, the surface with a
larger S

N value is deemed to have the optimal and
acceptable value. Moreover, the Number Of Pareto
(NOP) solutions was utilized as the measure of the
solution. Four metrics including the number of initial
population size (npop), maximum number of iterations
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(max-it), mutation coe�cient, and crossover coe�cient
are considered in the NSGA-II for parameter tuning,
the results of which are shown in Table 2.

Three factors including the maximum number
of iterations, temperature decrease rate, and initial
temperature were employed in VNS-SA. The initial
temperature equals the objective function resulting
from the �rst iteration for all the objective functions.
Table 3 lists the values of the �rst two parameters.

Six factors called the initial population size, max-
imum number of iterations (max-it), mutation rate,
crossover rate, temperature decreasing rate (mutation),
and initial temperature (crossover) were taken into
account in the NSGA-II. The initial temperature equals
the objective function resulting from the �rst iteration
for both objective functions. Figure 3 presents the S=N
results of the proposed algorithm. Table 4 presents the
optimal parameter values.

Given the novelty of the proposed model and
investigation results, there is no standard sample of the
research problem. In this respect, the randomly gen-
erated sample problems were used and solved. In this
study, 30 problems were solved to generate solutions,
as shown in Table 5. The size of these problems varies
from small to large sizes depending on the problems
given in the research literature, as shown in Table 5.
Moreover, 5 to 100 regions and 2 to 30 potential depots
were selected. The �rst, second, and last 10 problems
are small-, medium-, and large-sized ones, respectively.
In addition, the problem parameters were randomly
generated to assess the performance of the proposed
algorithms, and a uniform distribution function was
employed to generate the numbers. The parameters
of the proposed algorithms were then generated in the
following range based on the related papers. The range
of the parameters used in the test problems is depicted
in Table 6. The budget (Bu) is also considered equal
to 0.75 of the cost to explain the problem in di�erent

Table 2. Non-dominated Sorting Genetic Algorithm
(NSGA-II) parameter tuning results.

Mutation
rate

Crossover
rate

Initial
population

Iteration
number

0.3 0.7 50 200

Table 3. VNS-SA algorithm parameter tuning results.

Cooling rate Iteration number

0.97 800

Figure 3. S=N ratio plot for each level of the factors for
the proposed algorithm.

samples. Finally, the allowable shortage (	) is 0.3 of
the demand at each point of demand.

4.6. Solution representation
The chromosome consists of four parts and each part
is a matrix. The �rst matrix determines the type of
the centers reopened: \1" represents a center reopened
as a depot; \2" stands for a center reopened as a
hospital; \3" is a center reopened as a hybrid center;
and \0" represents a center that has not been reopened.
The second matrix shows the vehicles allocated to the
centers reopened. The number of the cells in this
matrix equals that of vehicles, and the numbers in
each cell show the number of the center allocated.
The third matrix shows the victims assigned to each
vehicle. This matrix has two rows and the number of
its columns equals that of the demand points. The
�rst row shows the data on the shipment of the relief
commodities, while the second row shows the data on
the transfer of the injured. The fourth matrix also
presents the amount of commodities sent from each
node to each point of demand. Figure 4 illustrates the
demonstration of the problem solution.

Figure 4 presents a demonstration of the solution
to a sample problem with six potential centers, seven
points of demand, three products, and six vehicles. As
seen in Section 1, Center 1 is reopened as a depot and
Center 5 is a hospital. Centers 1 and 6 are multi-
purpose centers and Centers 4 and 2 are not reopened.
In the second part of this chromosome, the vehicles are
allocated to di�erent centers. For instance, Vehicles 2
and 3 are assigned to Center 1. In Section 3, di�erent
points of demand are allocated to the vehicles. The
�rst row identi�es each vehicle that delivers the relief
commodities to the victims. The second row shows

Table 4. Parameter tuning results for the proposed algorithm.

Cooling rate Mutation rate Crossover rate Initial population Iteration number
0.95 0.2 0.8 40 125
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Table 5. Size of test problems.

No. Warehouse
points

Demand
points

Emergency
commodities

Transportation
facilities

Ambulance

1 2 5 2 3 2
2 3 6 3 3 3
3 3 7 3 3 3
4 4 7 4 3 5
5 4 8 4 4 7
6 5 9 5 4 8
7 6 10 6 4 9
8 6 12 6 5 10
9 7 12 7 5 12
10 8 15 8 5 12
11 9 15 9 5 12
12 10 18 10 5 15
13 10 20 10 6 15
14 12 22 12 6 18
15 12 25 12 6 20
16 15 28 15 7 25
17 15 30 15 8 25
18 18 35 15 10 30
19 18 40 18 12 30
20 20 45 18 15 30
21 20 50 18 15 35
22 22 55 20 18 35
23 22 60 20 18 35
24 25 65 22 18 40
25 25 70 22 20 40
26 28 75 25 20 45
27 28 80 25 25 45
28 28 85 30 25 45
29 30 90 30 30 50
30 30 100 30 30 50

Table 6. Range of random data of the parameters used in the test problems.

Parameters Scale Parameters Scale

Capgv Uniform (250, 450) C2
ijw Uniform (40, 100)

CapPe
v Uniform (10, 15) Cah Uniform (1000, 1500)

Capam
w Uniform (15, 30) SSik Uniform (J�120, J�150)

F 1
i Uniform (20, 30)�105 !k Uniform (0.8, 1.20)

F 2
i Uniform (50, 60)�105 R1

i Uniform (0.01, 0.10)

F 3
i Uniform (60, 80)�105 R2

i Uniform (0.01, 0.10)

�jk Uniform (200, 350) R3
i Uniform (0.01, 0.10)

1
ik Uniform (0:25�J�80, 0:5�J�80) Rijv Uniform (0.05, 0.30)

3
ik Uniform (0:2�J�70, 0:5�J�70) C1

ljv Uniform (20, 80)

2
i(K+1) Uniform (0:2�J�10, 0:5�J�10) �pq Uniform (30, 50)

djk Uniform (50, 100) relv Uniform (0.7, 0.80)

dj(K+1) Uniform (3, 6) 3
i(K+1) Uniform (0:2�J�8, 0:5�J�8)
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Figure 4. Illustration of solution representation.

Figure 5. Illustration of the crossover operator strategy for parts 1 to 3 of the chromosome.

the vehicles carrying the victims. The injured are
transferred to the hospitals by ambulance and, then,
to multi-purpose centers by vehicles. The fourth part
also presents the relief commodities sent to the victims.

4.7. Generating the initial population
First, a random sequence of the potential centers is
generated:

a) A number between 0 and 3 is randomly assigned to
each center and the type of the centers reopened is
identi�ed;

b) In this phase, the vehicles are allocated to the
centers based on the type of the centers reopened;

c) The quantity of relief commodities allocated to each
victim is randomly determined per commodity;

d) In this step, the victims are allocated to the vehicles
based on the demand met in Step C, the vehicles
allocated to the centers in Step B, and the capacity
limitations;

e) The optimal path for each vehicle is identi�ed
through the algorithm proposed by Clarke and
Wright [46];

f) Finally, the objective functions are calculated.

4.8. Crossover and mutation operators
In this study, the single-point operator serves as a
crossover operator in parts 1{3. This operator is

expressed by:

ch1 =[Paret1(1 : Alpha);Paret2(1 + Alpha : N)]; (43)

ch2 =[Paret2(1 : Alpha);Paret1(1 + Alpha : N)]; (44)

where Paret1 and Paret2 denote the selected parents,
respectively. In addition, Alpha is a cut-o� point
between 1 and the matrix length, and ch1 and ch2
are the children. For instance, the schematic of this
operation for the �rst part of the chromosome is
presented in Figure 5 (Alpha = 3).

A round operator is also used for part 4, as
expressed in the following:

ch1 =round (Paret1�Alpha+Paret2�(1�Alpha)); (45)

ch2 =round (Paret2�Alpha+Paret1�(1�Alpha)); (46)

where Paret1 and Paret2 are the selected parents,
respectively. Alpha varies between 0 and 1 and has the
same dimension as the chromosome matrix. Further,
ch1 and ch2 are the resulting children. Finally, both so-
lutions are rounded to obtain integers. The schematic
of this operation is also depicted in an example in
Figure 6 (Alpha = 0:4).

In this study, for the mutation operator, the
swap operator is used for the �rst three parts of the
chromosome and the insertion operator is used for the
fourth part of the chromosome. To this end, one cell is
selected from the fourth part of the chromosome and
the amount of its commodity changes. The stopping
condition in this algorithm is to set the maximum
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Figure 6. Illustration of the crossover operator strategy for part 4 of the chromosome.

Figure 7. SWAP operator.

Figure 8. Inversion operator.

Figure 9. Insertion operator.

number of iterations. Moreover, tournament selection
method is used for selecting parents from the old
population.

4.9. Methods for neighborhood generation
In this study, three neighborhood generation operators
are used for each of the four solution demonstration
matrices. In other words, a total of 12 neighborhood
generation methods are used to generate the neighbor-
hoods:

a) SWAP operator: For this operator, two cells are
selected and the values of the two cells are swapped.
The performance of the SWAP operator is depicted
in Figure 7;

b) Inversion operator: For this operator, two cells
are selected, and the values between the two cells
are swapped. The performance of the inversion
operator is depicted in Figure 8;

c) Insertion operator: One cell is selected from
each matrix and the number in the selected cell
varies. The performance of the insertion operator
is depicted in Figure 9.

4.10. Performance metrics
There are two groups of metrics (convergence and
dispersion) used for assessing the multi-objective meta-
heuristic algorithms. In this study, six metrics made of
these two groups were used for comparison purposes.

Figure 10. Summary of the performance of the proposed
algorithm in terms of the MID metric.

Figure 11. Summary of the performance of the proposed
algorithm in terms of the Number Of Pareto (NOP).

The �rst group of metrics includes the NOP solutions,
Mean Ideal Distance (MID), and set cover metrics. The
second group of metrics comprises the spacing met-
ric, diversity metric, and maximum expansion metric.
Finally, the algorithm running time metric is used to
compare the calculation requirements [47{50].

5. Computational results

In this paper, 30 randomly generated problems were
solved. The details of the problems were provided in
the previous section. Prior to explaining the metric
results of each algorithm, it should be mentioned that
a higher value for NOP solutions and diversity values
are deemed more optimal. Concerning the MID and
spacing metrics, smaller values are considered to be
more optimal. Shorter problem-solving times are also
considered more optimal. Tables 7 and 8 show the value
for each of these metrics are listed.

Figures 10 to 14 show the graphical presentations
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Table 7. Computational results for the Mean Ideal Distance (MID), Number Of Pareto (NOP), and time metrics.

Test problem
NSGA-II MOVNS-SA Proposed algorithm

MID NOP Time MID NOP Time MID NOP Time
1 0.327 9 11.95 0.480 6 9.92 0.274 9 13.56
2 0.411 10 21.75 0.237 9 14.81 0.247 10 26.47
3 0.445 15 26.99 0.348 11 23.16 0.369 12 34.59
4 0.514 17 30.88 0.238 13 29.34 0.433 20 43.33
5 0.637 12 38.22 0.384 11 35.98 0.325 13 57.81
6 0.676 11 39.27 0.582 14 37.48 0.503 14 67.21
7 0.528 16 48.35 0.422 15 45.76 0.482 17 78.34
8 0.531 16 67.42 0.537 14 50.84 0.407 15 88.60
9 0.598 18 85.81 0.613 17 78.55 0.549 20 101.40
10 0.604 19 105.11 0.591 16 81.83 0.615 23 121.51
11 0.751 19 147.97 0.634 13 102.46 0.447 19 162.26
12 0.683 14 170.60 0.606 15 125.80 0.483 18 198.95
13 0.617 13 195.69 0.596 13 143.10 0.512 16 222.16
14 0.816 16 222.72 0.702 8 153.82 0.509 15 254.16
15 0.679 17 281.88 0.788 9 198.76 0.541 15 307.61
16 0.787 15 323.78 0.738 8 216.34 0.518 15 351.07
17 0.696 13 384.42 0.698 10 281.41 0.654 12 419.47
18 0.603 18 470.83 0.747 14 340.37 0.337 18 494.28
19 0.772 15 533.28 0.642 14 402.26 0.482 18 561.33
20 0.705 14 584.63 0.777 11 492.02 0.394 15 656.76
21 0.797 16 717.16 0.839 15 591.30 0.576 19 837.41
22 0.594 15 883.55 0.644 12 668.06 0.573 17 980.89
23 0.622 14 1068.87 0.698 17 887.63 0.627 20 1273.90
24 0.647 18 1232.54 0.657 16 1,028.78 0.629 21 1502.02
25 0.780 19 1423.22 0.832 16 1,269.50 0.560 22 1861.78
26 0.844 19 1602.05 0.802 17 1,413.74 0.667 21 2122.54
27 0.728 18 1844.75 0.754 14 1,634.82 0.470 18 2489.46
28 0.853 20 2238.28 0.822 15 1,776.97 0.532 18 2,890.76
29 0.918 19 2528.71 0.714 13 2,191.20 0.529 17 3,267.94
30 0.821 23 3022.91 0.898 19 2,650.21 0.786 21 3,787.53

Figure 12. Summary of the performance of the proposed
algorithm in terms of time metric.

of the results of 30 numerical problems solved by
the �ve aforesaid metrics. While the horizontal axis
shows the problem number, the vertical axis shows
the metric value. The �rst diagram illustrates the

Figure 13. Summary of the performance of the proposed
algorithm in terms of spacing metric.

performance of the two algorithms for the MID metric.
As observed, the proposed algorithm outperforms the
other algorithms, thus yielding more optimal results
than the other two algorithms. The NOP solutions
is also given in Figure 11, where the proposed algo-
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Table 8. Computational results for the spacing and diversity metrics.

Test problems NSGA-II MOVNS-SA Proposed algorithm
Spacing Diversity Spacing Diversity Spacing Diversity

1 0.760 1.006 0.900 1.016 0.572 1.062
2 0.816 1.073 0.832 0.931 0.538 1.025
3 0.721 0.909 0.882 0.994 0.657 1.020
4 0.835 0.810 0.850 1.069 0.657 1.146
5 0.698 0.986 0.986 1.050 0.548 1.115
6 0.737 1.048 0.834 0.789 0.631 1.090
7 0.904 0.761 0.838 0.691 0.640 0.938
8 1.012 0.837 0.940 0.890 0.656 0.956
9 0.812 0.865 0.994 0.801 0.736 1.135
10 0.799 0.682 0.808 0.817 0.643 1.017
11 1.066 0.683 0.982 0.788 0.696 0.975
12 0.821 0.863 1.018 0.830 0.722 0.959
13 0.834 0.687 1.010 0.737 0.665 0.896
14 0.683 0.819 1.074 0.895 0.828 0.983
15 0.727 0.789 1.056 0.791 0.713 0.869
16 0.878 0.806 0.924 0.761 0.744 0.943
17 0.842 0.777 1.002 0.653 0.761 1.027
18 1.024 0.651 0.812 0.771 0.657 0.923
19 1.055 0.766 0.998 0.635 0.873 0.972
20 1.042 0.783 0.756 0.740 0.694 0.877
21 1.053 0.605 0.804 0.625 0.735 0.779
22 0.772 0.870 0.866 0.631 0.907 0.740
23 1.071 0.708 0.824 0.785 0.653 0.765
24 1.073 0.791 1.016 0.535 0.669 0.841
25 1.035 0.723 0.900 0.680 0.856 0.856
26 0.958 0.580 0.896 0.595 0.719 0.823
27 0.998 0.662 1.036 0.552 0.765 0.791
28 0.995 0.630 1.010 0.423 0.872 0.671
29 1.137 0.491 1.344 0.448 0.948 0.540
30 1.197 0.412 1.234 0.367 0.995 0.510

Figure 14. Summary of the performance of the proposed
algorithm in terms of diversity metric.

rithm generates more Pareto solutions for most sizes.
Figure 12 depicts the calculation time. According
to this �gure, the calculation time required by the
proposed algorithm is longer due to the simultaneous
use of the operators of mutation, composition, and

neighborhood generation. Figure 13 presents the MID
metric results of the two algorithms. In this �gure,
the spacing of Pareto solutions yielded by the proposed
algorithm is longer and this algorithm results in more
regular solutions. The diversity metric is also given in
Figure 14. As observed, in most sample problems, the
proposed algorithm produced more diverse solutions
due to the diversity of the used operators.

The algorithms should be compared by statis-
tical analyses to obtain a more e�ective analysis.
Therefore, the mean equivalence test and Tukey's
statistical hypothesis test were carried out to examine
the performance of the algorithms more precisely and
�nally assess the performance of the algorithms against
di�erent metrics. Here, the hypothesis test on the
equivalence of the means of three mutual populations
is carried out. In this test, the null hypothesis is
about the equivalence of the means of metrics in three
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Table 9. Statistical hypothesis results for the algorithms.

Metrics
F test NSGA-II MOVNS-SA Proposed algorithm

p-value Mean 95% CI Grouping Mean 95% CI Grouping Mean 95% CI Grouping

Spacing 0.000 0.9118 (0.8646, 0.9591) A 0.9475 (0.9003, 0.9948) A 0.7250 (0.6778, 0.7722) B

Diversity 0.000 0.7689 (0.7096, 0.8283) B 0.7430 (0.6837, 0.8024) B 0.9081 (0.8487, 0.9674) A

MID 0.000 0.666 (0.6134, 0.7189) A 0.634 (0.5813, 0.6868) A 0.501 (0.4482, 0.5537) B

NOP 0.000 15.933 (14.747, 17.120) A 13.167 (11.980, 14.353) B 16.933 (15.747, 18.120) A

Time 0.481 678 (356, 1001) A 566 (244, 888) A 1073 (520, 1165) A

algorithms at a signi�cance level of 95%. In case the
resulting p-value is smaller than 0.05 (i.e., 1{0.95), the
null hypothesis is rejected and the signi�cant di�erence
between the performance assessment metrics of the
three algorithms is con�rmed, and vice versa. The
results of testing the three-population hypothesis using
5 metrics are presented in Table 9. The p-value for
the spacing, diversity, MID, and NOP solution metrics
is smaller than 0.05, hence the rejection of the null
hypothesis. However, the p-value equals 0.481 for the
calculation time. Therefore, the null hypothesis is
not rejected and all three algorithms perform equally
despite the longer calculation time in the proposed
algorithm than the other two algorithms. In the
case of spacing metric, the MOVNS-SA and NSGA-II
algorithms stage equal performances that are grouped
into the same category; however, the proposed algo-
rithm outperforms the other two algorithms. In terms
of diversity and MID metrics, there is no statistical
di�erence between the performances of MOVNS-SA
and NSGA-II algorithms; however, the performance
of the proposed algorithm is signi�cantly di�erent
from that of these two algorithms. With regard to
the NOP solutions, the proposed algorithm and the
NSGA-II algorithm perform equally; however, their
performances are di�erent from that of MOVNS-SA
algorithm, resulting in fewer Pareto solutions than the
other two algorithms. Therefore, it can be concluded
that the proposed algorithm outperforms the other
two algorithms in terms of diversity, spacing, and the
MID. Moreover, the proposed algorithm and NSGA-II
perform equally to the NOP solutions, outperforming
the third algorithm. Although the CPU time for
the proposed algorithm is longer than that for other
algorithms, it is not signi�cant. Figures 15{19 show the
interval graph of algorithms for NOP, MID, spacing,
time, and diversity metrics, respectively.

To evaluate the proposed algorithm, the algo-
rithm is compared with the "-constraint method, which
is coded in GAMS. Considering the NP-hardness of
the model and the non-possibility of solving the model
by the "-constraint method in larger sizes, a Pareto
line is derived from the proposed algorithms with
the "-constraint method for the sample problem 7 of

Figure 15. Interval graph of algorithms for Number Of
Pareto (NOP) metric.

Figure 16. Interval graph of algorithms for Mean Ideal
Distance (MID) metric.

Table 5. First, the problem is solved using the proposed
linear approximation for the �rst objective function,
and in the next step, based on the obtained result,
the value of the �rst objective function is calculated.
Figure 20 shows the Pareto line resulting from the
proposed algorithm and "-constraint method for the
sample problem 7. In this �gure, the horizontal vector
shows the values of the �rst objective function, and the
vertical vector shows the value of the second objective
function. As it is clear from the �gure, the proposed
algorithm o�ers better Pareto solutions than other
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Figure 17. Interval graph of algorithms for spacing
metric.

Figure 18. Interval graph of algorithms for time metric.

Figure 19. Interval graph of algorithms for diversity
metric.

algorithms and the resulting answers are close to the
"-constraint method.

In this section, a sensitivity analysis is carried out
showing how changing the determining parameters can
change the results. To this end, the important param-
eters for the sensitivity analysis, namely the maximum
budget and the maximum shortage percentage, are
selected. In the sensitivity analysis, all the parameters

Figure 20. Pareto line for the "-constraint method and
other algorithms.

Figure 21. Sensitivity analysis of the second objective.

are considered constant. For the sensitivity analysis,
problem 5, shown in Table 5, which has 4 depots, 8
points of demand, and 4 relief commodities, is used.
To this end, the problem is solved using GAMS as
a single-objective problem for the �rst- and second-
objective functions. We change the parameter values
from a current value of 0.6 to a value 1.4 times the
current value and analyze its e�ect on the behavior of
the objective functions. Table 10 shows the sensitivity
analysis results for the above-mentioned parameters.

According to Figure 21 which shows the sensi-
tivity analysis for the second objective function, the
budget variations do not a�ect the quality of the
second objective function, which is the cost objective
function. However, this objective function shows the
sensitivity to the allowable shortage percentage. In
this case, the shortage cost is lower than the other
costs. Hence, the costs grow with an increase in the
allowable shortage coe�cient. If the shortage cost of
commodities increases, this trend is reversed. As a
result, the costs may not decrease with an increase in
the shortage coe�cient.

The results of the sensitivity analysis of the �rst
objective function, shown in Figure 22, also suggest
that the budget variations do not inuence the quality
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Table 10. Sensitivity analysis results.

Max
budget

First
objective function

Second
objective function

Max
shortage

First
objective function

Second
objective function

0:6�Bu Not acceptable Not acceptable 0:1�d {0.1566 4556389
0:8�Bu {0.1566 3121494 0:2�d {0.1566 4591357
Bu {0.1566 3121494 0:4�d {0.1566 1940852
1:1�Bu {0.1566 3121494 0:6�d {0.1053 1938446
1:2�Bu {0.1566 3121494 0:8�d {0.0512 1938446
1:4�Bu {0.1566 3121494 0:9�d {0.0512 1938582

Figure 22. Sensitivity analysis of the �rst objective.

of the �rst objective function (i.e., reliability). How-
ever, this objective function is sensitive to the allowable
shortage. In the proposed model, the system reopens
fewer centers with an increase in the allowable short-
age coe�cient, thereby improving system reliability.
However, after the increase in the allowable shortage,
reliability coe�cient growth stops and this parameter
loses its e�ect on the �rst objective function.

6. Conclusion and future research

In the event of a disaster, organizing victims and
sending essential commodities are the priority actions.
In this respect, this study designed a forward-backward
relief supply chain and developed a multi-objective
model to determine the location of local warehouses
and hospitals. Moreover, to improve the e�cacy of
the system, a multi-mode transportation system was
considered to deliver commodities to the a�ected areas
and take the injured back simultaneously to hospitals
and hybrid centers. In this model, the maximization of
the service level and minimization of the costs were
the main objectives. As this model was NP-hard,
the "-constraint method could not work e�ciently for
large-scale problems. Hence, a hybrid Non-dominated
Sorting Genetic Algorithm (NSGA-II) with Simulated
Annealing (SA) and Variable Neighborhood Search
(VNS) algorithms was developed to solve larger prob-
lems. The results of this algorithm were compared
with those of MOVNS-SA and NSGA-II by �ve metrics,
and the results indicated that the proposed algorithm

outperformed other algorithms. Finally, a sensitivity
analysis was considered for the maximum budget and
the maximum shortage percentage. For future study,
several uncertainties can be considered including the
number of victims and the number of demands. Also,
forming multiple scenarios related to the severity of the
damages for local facilities and routes can be another
suggestion. Using a di�erent solution (e.g., meta-
heuristic and hybrid exact-heuristic solutions) can be
another �eld to be extended.
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