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Abstract. This study proposes optional Randomized Response Technique (RRT) models
in a binary response situation. The application of the proposed optional RRT models
under strati�cation is also explored. Gupta et al. [1] introduced an ingenious idea of
optional RRT model in which a question may appear sensitive to one respondent while being
not sensitive to another. This study focuses on estimating �, the prevalence of sensitive
attribute, !, the sensitivity level of the underlying sensitive question when the proportion of
unrelated innocuous attribute �x is unknown. A new multi-question approach is proposed
for estimation of parameters (�; !). A comparison between the proposed optional RRT
models and the corresponding full RRT models is carried out numerically under simple
and strati�ed random sampling.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Respondents usually either distort the truth or refuse
to answer when potentially sensitive questions such
as illegal use of drugs, tax evasion, homosexuality,
cheating in exams, extra marital a�airs, illegal income,
or domestic violence are included in surveys. Non-
response or false response produces biased estimates;
therefore, Randomized Response Technique (RRT) is
useful for reducing the bias and procuring reliable
data. Warner [2] suggested an ingenious method of
RRT to estimate the unknown population prevalence of
sensitive attribute (�). In Warner's model, a randomly
selected proportion p of respondents is asked a sensitive
attribute, say A, and the remaining proportion (1� p)
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of respondents are asked complement of the sensitive
attribute Ac. The researcher does not know the
respondents' answers, whether they are of sensitive
question or its complement. Greenberg et al. [3]
extended the Warner's model by introducing unrelated
innocuous attribute say X as a replacement of Ac in
their RRT model. Some other developments in RRT
result from Chaudhuri and Mukerjee [4], Mahmood
et al. [5], Perri [6], Hussain and Shabbir [7], Lee
et al. [8], Abdelfatah and Mazloum [9], Tanveer and
Singh [10,11], Blair et al. [12], Singh and Gorey [13],
Bose [14], and Abid et al. [15].

RRT models can be categorized as full, partial,
and optional. In full RRT model, a Randomization
Device (RD) is provided to respondents who are
requested to respond to the question (i.e., sensitive
or non-sensitive) occurring on RD. The element of a
truthful response is incorporated in partial RRT model
by adding the additional stage or RD. For example, in
the two-stage RRT model, the �rst RD has two options:
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(i) Do you belong to the sensitive group?

(ii) Go to the second RD with known probabilities T
and (1� T ).

The second RD is exactly the same as that provided
in the full RRT model. In the optional RRT model,
respondents are requested to provide truthful responses
if they consider the question non-sensitive and use the
RD if they consider the sensitive question and provides
the response after using it. Mangat and Singh [16] and
Gupta et al. [1] introduced the partial RRT model and
optional RRT model, respectively. The characteristics
of optional RRT models were discussed further by
Gupta and Shabbir [17], Gupta et al. [18{20], and
Chhabra et al. [21]. The purpose of all RRT models
is to protect privacy and promote cooperation among
respondents.

Researchers remain mostly interested in investi-
gating both the prevalence of sensitive attribute and
sensitivity level of the question. To this end, Gupta
et al. [22] described a two-step approach to estimating
the mean of a sensitive variable and sensitivity level. In
this approach, the respondents are asked two separate
questions:

- Question 1 is the auxiliary question about whether
or not the main research question is sensitive enough
for the respondent to opt for a scrambled response;

- Question 2 is the main research question that the
respondent answers using an additive optional RRT
model.

Sihm et al. [23], Chhabra et al. [21], and Narjis and
Shabbir [24] discussed some improvement on a two-step
approach.

Motivated by Sihm et al. [23], we propose optional
RRT models for the randomized devices that consist
of three types of statements and three techniques
proposed by Mahmood et al. [5]. We propose a multi-
question approach to estimate the prevalence of sensi-
tive attribute and sensitivity level when an unrelated
innocuous attribute is unknown. The basic purpose of
this study is to obtain the truthful responses from some
proportion of people and promote the e�ciency of the
models. This paper is organized as follows: Section 2
presents RRT models given by Mahmood et al. [5]. Sec-
tion 3 introduces a multi-question approach to estimate
the parameters of the proposed optional RRT models
under Simple Random Sampling With Replacement
(SRSWR) and numerically compares it with the RRT
models proposed by Mahmood et al. [5]. Section 4
proposes optional RRT models under strati�cation and
numerically compares them with the mentioned RRT
models. Finally, Section 5 concludes the paper.

2. Some existing RRT models

This section discusses RRT models from Mahmood et
al. [5]. Mahmood et al. [5] introduced three binary
unrelated question models to estimate the prevalence
of sensitive attribute:

Technique-I: The RD consists of three types of
statements:

(i) I belong to group A;
(ii) I belong to group Xc;
(iii) I belong to group X with probabilities p1, p2, and

p3, such that
P3
i=1 pi = 1.

The proportion of the unrelated question �x is un-
known; thus, to estimate �x, another sample of size
n2 is required such that (n1 +n2) = n. The probability
of a \Yes" response in the �rst sample of size n1
respondents is given as follows:

�M1 = �p1 + p2(1� �x) + p3�x: (1)

In the second independent sample of n2 respondents,
the question is asked only on the unrelated question X
to estimate the proportion �x of the unrelated innocu-
ous attribute. An unbiased estimator for population
proportion � is given by:

�̂M1 =
�̂M1 � p2 (1� �̂x)� p3�̂x

p1
; (2)

taking �̂M1 � B(n1; �M1) and �̂x � B(n2; �x). The
minimum variance of �̂M1 is given by:

Var (�̂M1)min

=

hp
�M1(1��M1) + (p2�p3)

p
�x(1��x)

i2
np2

1
:
(3)

The ratio of optimal sample sizes n1 and n2 for the two
independent samples is given by:�

n1

n2

�
opt

=

s
�M1 (1� �M1)

(p2 � p3)2�x(1� �x)
: (4)

Technique-II: The statement (ii) from Technique-
I is simply replaced with \Try once again". The
respondents are advised to repeat the process if the
selected card shows \Try once again" statement. In the
second draw, if statement \Try once again" reappears,
then respondents are asked to say \Yes" irrespective of
their actual status. The probability of a \Yes" response
in the �rst sample of size n1 respondents is given as
follows:

�M2 = (1 + p2)(p1� + p3�x) + p2
2: (5)
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In the second independent sample of n2 respondents,
the question is asked only on the unrelated question X
to estimate the proportion �x of the unrelated charac-
ter. An unbiased estimator of population proportion �
is given by:

�̂M2 =
�̂M2 � p2

2 � p3(1 + p2)�̂x
p1(1 + p2)

; (6)

taking �̂M2 � B(n1; �M2) and �̂x � B(n2; �x). The
minimum variance of �̂M2 is given by:

Var (�̂M2)min

=

hp
�M2(1��M2)+p3(1+p2)

p
�x(1��x)

i2
nfp1(1 + p2)g2 :

(7)

The ratio of optimal sample sizes n1 and n2 for the two
independent samples is given by:�

n1

n2

�
opt

=

s
�M2(1� �M2)

fp3(1 + p2)g2�x(1� �x)
: (8)

Technique-III: This Technique di�ers from
Technique-I in the sense that the second statement
\I belong to group Xc" is simply replaced by the
statement \I belong to group Ac". The probability
of a \Yes" response in the �rst sample of size n1
respondent is determined as follows:

�M3 = �p1 + p2(1� �) + p3�x: (9)

In the second independent sample of n2 respondents,
the question is asked only on the unrelated question X
to estimate the proportion �x of the unrelated charac-
ter. An unbiased estimator for population proportion
� is given by:

�̂M3 =
�̂M3 � p2 � p3�̂x

p1 � p2
; (10)

taking �̂M3 � B(n1; �M3) and �̂x � B(n2; �x). The
minimum variance of �̂M3 is given by:

Var (�̂M3)min

=

hp
�M3(1��M3)+p3

p
�x(1��x)

i2
n(p1 � p2)2 : (11)

The ratio of optimal sample sizes n1 and n2 for the two
independent samples is given by:�

n1

n2

�
opt

=

s
�M3(1� �M3)
p2

3�x(1� �x)
: (12)

In the next section, a new multi-question approach
to estimating the prevalence of sensitive attribute
and sensitivity level of modi�ed binary optional RRT
models is proposed.

3. Multi-question approach

The main motivation of the multi-question approach is
to avoid split sample approach to parameter estimation
which requires a larger sample size. To estimate the
parameters of RRT models, i.e., unrelated innocuous
attributes (�x; �y), sensitivity level (!), and preva-
lence of sensitive attribute (�) in the multi-question
approach, each respondent is asked more than two
separate questions. In the multi-question approach,
the Direct Question (DQ) method is applied �rst
to estimate the proportion of unrelated innocuous
attributes (�̂x; �̂y) used in RRT models and, then, to
apply two RDs, denoted by R1 and R2, to estimate
the proportion of sensitivity level (!̂) and sensitive
attribute (�̂), respectively.

3.1. Estimation of sensitivity level
The question about sensitivity is asked via R1. In
this randomization process, the sensitive question is
\Is the main research question sensitive?" It is asked
along with an unrelated innocuous question. We use
R1 device proposed by Greenberg et al. [3]. The
probability of getting a \Yes" response to R1 is:

�! = !p+ (1� p)�y: (13)

An unbiased estimator of population proportion ! is
given by:

!̂ =
�̂! � (1� p)�̂y

p
; (14)

where �̂! and �̂y are the proportion of \Yes" answer
reported by n respondents through R1 and DQ method
in the sample, taking �̂!�B(n; �!) and �̂y�B(n; �y).
It is easy to prove that !̂ is unbiased for ! with the
following variance:

Var (!̂) =
1
p2

�
�!(1��!)

n
+ (1�p)2�y(1��y)

n

�
:
(15)

3.2. Estimation of prevalence of the sensitive
attribute

In this section, we propose three binary optional RRT
models to estimate the prevalence of the sensitive
attribute. Each respondent is given the option to
answer the sensitive question directly if they consider
question insensitive or provide the response after using
device R2.

Technique-I: Optional RRT model
The probability of getting \Yes" response from the
proposed binary optional RRT model of Technique-I
or the main research question is measured as follows:

�1 = (1� !)� + ! fp1 � + p2(1� �x) + p3�xg : (16)
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Solving Eq. (16) for �, we have an estimator of � as
follows:

�̂JS1 =
�̂1 � !̂ fp2 � (p2 � p3)�̂xg

f1� !̂(1� p1)g ; (17)

where !̂ is obtained from Eq. (14) and �̂1 and �̂x
are the proportions of \Yes" answers reported by n
respondents through R2 and DQ method in the sample,
taking �̂1 � B(n; �1) and �̂x � B(n; �x). After
applying �rst-order Taylor's expansion to Eq. (17), we
have:

�̂JS1 �

266666666666666664

�1 � !fp2 � (p2 � p3)�xg
f1� !(1� p1)g

+
�̂1 � �1

f1� !(1� p1)g

+
!(p2 � p3) (�̂x � �x)
f1� !(1� p1)g

+
�1 (!̂ � !)

f1� !(1� p1)g2

377777777777777775
; (18)

where:

�1 = (p2 � p3)�x + (1� p1)�1 � p2:

Theorem 3.1. The estimator �̂JS1 is unbiased for �
with variance as given below:

Var (�̂JS1) =
�1(1� �1) + !2(p2 � p3)2�x(1� �x)

nf1� !(1� p1)g2

+
�2

1f�!(1� �!) + (1� p)2�y(1� �y)g
np2f1� !(1� p1)g4 : (19)

Proof. Taking expected value on both sides of
Eq. (18), we have:

E (�̂JS1) �

2666666666666666664

�1 � !fp2 � (p2 � p3)�xg
f1� !(1� p1)g

+
E
�
�̂1

�� �1

f1� !(1� p1)g

+
!(p2 � p3) (E (�̂x)� �x)
f1� !(1� p1)g

+
�1 (E (!̂)� !)
f1� !(1� p1)g2

3777777777777777775
: (20)

Given that E(�̂1) = �1, E(�̂x) = �x, E(�̂!) = �!, and
E(�̂y) = �y, Eq. (20) becomes:

E (�̂JS1) � �1 � !fp2 � (p2 � p3)�xg
f1� !(1� p1)g = �: (21)

Thus, �̂JS1 is approximately an unbiased estimator of
�. Now, applying variance on both sides of Eq. (18),
we have:

Var (�̂JS1) =

24Var
�
�̂1

�
+ !2(p2 � p3)2Var (�̂x)

f1� !(1� p1)g2

+
�2

1Var (!̂)
f1� !(1� p1)g4

�
: (22)

Using the fact that Var (�̂1) = �1(1��1)
n and Var (�̂x) =

�x(1��x)
n and substituting the values of Var (!̂) given

in Eq. (15), we have Eq. (19) that completes the proof.

Technique-II optional RRT model
In R2, the respondent has an option to answer the
sensitive question directly or using Technique-II of
Mahmood et al. [5]. Under R2, the probability of
getting \Yes" response is:
�2 =(1�!)�+!

�
(1+p2)(p1�+p3�x)+p2

2
	
: (23)

Solving Eq. (23) for �, we have an estimator of � as
follows:

�̂JS2 =
�̂2 � !̂ �p2

2 + p3(1 + p2)�̂x
	

[1� !̂f1� p1(1 + p2)g] ; (24)

where !̂ is obtained from Eq. (14) and �̂2 and �̂x
are the proportions of \Yes" answers reported by n
respondents through R2 and DQ method in the sample
by taking �̂2 � B(n; �2) and �̂x � B(n; �x).

After applying �rst-order Taylor's expansion to
Eq. (24), we have:

�̂JS2 �

2666666666666666664

�̂2 � !̂fp2
2 + p3(1 + p2)�xg

[1� !̂f1� p1(1 + p2)g]

+

�
�̂2 � �2

�
[1� !f1� p1(1 + p2)g]

� !p3(1 + p2) (�̂x � �x)
[1� !f1� p1(1 + p2)g]

+
�2 (!̂ � !)

[1� !f1� (1 + p2)p1g]2

3777777777777777775
; (25)

where:
�2 = �2 � �(1 + p2)(p3�x + �2p1) + p2

2
	
:

Theorem 3.2. The estimator �̂JS2 is an unbiased
one for � with variance, as given by:

Var (�̂JS2)=
�2(1��2)+!2fp3(1+p2)g2�x(1��x)

n[1� !!f1�p1(1+p2)g]2

+
�2

2f�!(1��!)+(1�p)2�y(1��y)g
np2[1�!f1�p1(1+p2)g]4 : (26)

Proof. The proof is analogous to that of Theorem 3.1.
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Technique-III optional RRT model
The probability of getting \Yes" response from the
proposed binary optional RRT model is:

�3 = (1� !)� + ! fp1� + p2(1� �) + p3�xg : (27)

Solving Eq. (27) for �, we have an estimator of � as:

�̂JS3 =
�̂3 � !̂(p2 + p3�̂x)
f1� !̂(1� p1 + p2)g ; (28)

where !̂ is obtained from Eq. (14) and �̂3 and �̂x
are the proportions of \Yes" answers reported by n
respondents through R2 and DQ method in the sample
by taking �̂3 � B(n; �3) and �̂x � B(n; �x). After
applying �rst-order Taylor's expansion to Eq. (28), we
have:

�̂JS3 �

266666666666666664

�3 � !(p2 + p3�x)
f1� !(1� p1 + p2)g

+
�̂3 � �3

f1� !(1� p1 + p2)g

� !p3 (�̂x � �x)
f1� !(1� p1 + p2)g

+
�3 (!̂ � !)

f1� !(1� p1 + p2)g2

377777777777777775
; (29)

where:

�3 = �3(1� p1 + p2)� �xp3 � p2:

Thus, we have the following theorem and its proof is
similar to that of Theorem 3.1.

Theorem 3.3. The estimator �̂JS3 is an unbiased
one for � with variance as given by:

Var (�̂JS3) =
�3(1� �3) + !2p2

3�x(1� �x)
nf1� !(1� p1 + p2)g2

+
�2

3
�
�!(1� �!) + (1� p)2�y(1� �y)

	
np2f1� !(1� p1 + p2)g4 : (30)

3.3. Privacy protection
Lanke [25] proposed a measure of privacy protection
based on the idea that a person belonging to the sen-
sitive group A might be reluctant to reveal the actual
group, whereas a member of the complementary group
Ac is expected to be quite willing to announce so. Thus,
membership in A may be embarrassing, except for that
in Ac. Thus, the higher the conditional probability
P (AjR), R 2 f\Yes"; \No"g of belonging to A given
a certain answer R, the greater the embarrassment

caused by giving that response. The Lanke measure
(hereafter L-measure) is:

L = maxfP (AjY es); P (AjNo)g: (31)

However, it takes L = P (AjY es) when:

P (AjY es)�P (AjNo)=
�[P (Y esjA)�P (Y es)]
P (Y es)[1�P (Y es)]

> 0;

that is when:

P (Y esjA)� P (Y es) = (1� �)[P (Y esjA)

� P (Y esjAc)] > 0:

This is true for all the considered RRT models. There-
fore, for these randomization procedures, L-measure
reduces to:

L =
�P (Y esjA)
P (Y es)

: (32)

The L-measure for the RRT models is given below:

LM1 =
� [p1 + p2(1� �x) + p3�x]
�p1 + p2(1� �x) + p3�x

; (33)

LM2 =
�
�
(1 + p2)(p1 + p3�x) + p2

2
�

(1 + p2)(p1� + p3�x) + p2
2
; (34)

and:

LM3 =
�[p1 + p3�x]

�p1 + p2(1� �) + p3�x
: (35)

The L-measure for the proposed optional RRT models
is given by:

LJS1 =
� [(1�!)+!fp1+p2(1��x)+p3�xg]
(1�!)�+!fp1�+p2(1��x)+p3�xg ; (36)

LJS2 =
�
�
(1�!)+!f(1+p2)(p1+p3�x)+ p2

2g�
(1�!)�+!f(1+p2)(p1�+p3�x)+ p2

2g ; (37)

and:

LJS3 =
�[(1� !) + !fp1+p3�xg]

(1� !)�+!fp1� + p2(1� �) + p3�xg : (38)

Based on the two RRT models, the model with the
smaller value of Lanke [25] privacy measure will be
more protective than the other.

If the inequality given below holds true, then
the proposed optional RRT models are more protected
than competitor models, respectively.

LJSi � LMi < 0; (39)

where i = 1; 2; 3.
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Figure 1. Measure of privacy protection of Technique-I
optional RRT model with respect to Mahmood et al. [5]
when ! = 0:9, �x = 0:35, p1 = 0:7, p3 = 2(1� p1)=3, and
p2 = (1� p1 � p3).

Inequality (39) under LJS1 and LM1 is:

(1� !)(1� �)fp2 � (p2 � p3)�xg < 0; (40)

Inequality (39) under LJS2 and LM2 is:

(1� !)(1� �)fp2
2 + p3(1 + p2)�xg < 0; (41)

Inequality (39) under LJS3 and LM3 is:

(1� !)(1� �)fp2 + p3�xg < 0: (42)

Privacy of the respondents and gain in e�ciency are
two alternating measures. The e�ciency of the RRT
model decreases when the degree of protection to the
respondents increases, and vice versa. Theoretically,
we observe that the proposed optional RRT models are
less protective than competitor RRT models. However,
as seen in Figure 1, we observe that for a highly
sensitive question (! = 0:9), the proposed Technique-I
optional RRT model and competitor model are equally
protected at di�erent values of design parameters. In
the case of Technique-II and Technique-III, the same
conclusion can be drawn. Chhabra et al. [21] also
highlighted that when the asked question is highly
sensitive, the proposed optional models achieved the
same protection level as the corresponding RRT model.
Our conclusion is consistent with that of Chhabra et
al. [21].

3.4. Simulation study
In this section, the theoretical and empirical results
of the proposed estimators �̂JSi(i = 1; 2; 3) and !̂ are
presented. The parameters !, �y, p1, p2 = (1 � p1 �
p3), and p3 = 2(1 � p1)=3 were allowed to vary, while
all others were �xed, � = 0:45, �x = 0:85, p = 0:7,
n = 1000, and 10,000 trials per simulation. For the
simulation of �̂JSi and !̂, the value of ! varies from
0.1 to 0.9 with the increment of 0.2. Similarly, the
value of p1 varies from 0.2 to 0.8 with the increment of
0.2. Moreover, �y values are chosen as 0.35 and 0.65,
respectively.

The simulated results of �̂JSi(i = 1; 2; 3) and !̂
of optional RRT models are obtained using the multi-
question approach which provides a strong support

for our earlier �ndings that �̂JSi and !̂ are unbiased
estimators of � and !, respectively. As shown in Ta-
bles 1{3, the simulated values of E(�̂) and Var (�̂) are
very close to the corresponding true parameter values
of � and theoretical values of Var (�̂), respectively.
The �rst-order Taylor's approximation was used to
calculate the theoretical values for Var (�̂). Similarly,
simulated values of E(!̂) and Var (!̂) are very close
to the corresponding true parameter values of ! and
theoretical value of Var (!̂), respectively. The results
presented in Tables 1{3 indicate that the proposed
optional RRT models of the multi-question approach
are more e�cient than competitor RRT models. The
results of each model with respect to their competitor
RRT models are discussed below:

(i) The �ndings in Table 1 indicate that Technique-
I, i.e., proposed optional RRT model, is more
e�cient than that proposed by Mahmood et
al. [5]. For example, the results in Table 1 for ! =
0:5, p1 = 0:6, and �y = 0:35 show the empirical
variance of Var (�̂) = 0:0004 and theoretical
variance of Var (�̂) = 0:0004 for the proposed
optional RRT model, respectively. However,
the empirical and theoretical variances for the
model of Mahmood et al. [5] include Var (�̂) =
0:0007 and Var (�̂) = 0:0006, respectively, which
demonstrate greater variance than that for the
proposed optional RRT model. Similar e�ciency
patterns are observed at di�erent values of !, p1,
and �y;

(ii) The results given in Table 2 show that for ! = 0:5,
p1 = 0:6, and �y = 0:35, empirical variance
of Var (�̂) = 0:0003 and theoretical variance of
Var (�̂) = 0:0004 for the Technique-II optional
RRT model are achieved. However, the empir-
ical and theoretical variances of Technique-II of
Mahmood et al. [5] are Var (�̂) = 0:0005 and
Var (�̂) = 0:0008, respectively, which demon-
strate that the Technique-II optional RRT model
is more e�cient than the competitor model. The
e�ciency pattern remains similar for di�erent
values of !, p1, and �y;

(iii) Table 3 demonstrates that for !=0:5, p1, and
�y = 0:35, the empirical and theoretical vari-
ances of Technique-III optional RRT model are
Var(�̂)=0:0004 and Var(�̂)=0:0004, respectively.
The result shows that Technique-III optional
RRT model is more e�cient than the competi-
tor Technique-III of Mahmood et al. [5]. The
empirical and theoretical variances of Technique-
III of Mahmood et al. [5] are Var (�̂) = 0:0011
and Var (�̂) = 0:0016, respectively, indicating
to its lower e�ciency than that of the proposed
optional RRT model. The same variance patterns
are observed at di�erent values of !, p1, and �y.
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Table 1. Simulation results for � = 0:45 when trials = 10; 000, n = 1000, �x = 0:85, �y = 0:35, 0.65, p = 0:7 and at
various choices of !, p1, p3 = 2(1� p1)=3, and p2 = (1� p1 � p3).

p1

Technique-I
Mahmood
et al. [5]

Technique-I optional RRT model
�y = 0:35 �y = 0:65

! !
0:1 0:3 0:5 0:7 0:9 0:1 0:3 0:5 0:7 0:9

0.2

Empirical mean (�̂) 0.4499 0.4382 0.4469 0.4594 0.4763 0.5037 0.4218 0.4289 0.4394 0.4540 0.4799
Empirical var (�̂) 0.0059 0.0003 0.0004 0.0006 0.0009 0.0014 0.0004 0.0005 0.0008 0.0012 0.0021
Theoretical var (�̂) 0.0040 0.0003 0.0004 0.0007 0.0014 0.0033 0.0003 0.0005 0.0007 0.0013 0.0033
Empirical mean (!̂) 0.1000 0.3002 0.5002 0.7002 0.9002 0.1002 0.3000 0.5000 0.7000 0.8999
Empirical var (!̂) 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0003
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.4

Empirical mean (�̂) 0.4495 0.4417 0.4480 0.4563 0.4665 0.4788 0.4305 0.4359 0.4435 0.4528 0.4641
Empirical var (�̂) 0.0015 0.0003 0.0004 0.0005 0.0006 0.0008 0.0004 0.0004 0.0006 0.0007 0.0010
Theoretical var (�̂) 0.0011 0.0003 0.0004 0.0005 0.0008 0.0012 0.0003 0.0004 0.0005 0.0008 0.0012
Empirical mean (!̂) 0.1001 0.3003 0.4997 0.7002 0.8999 0.0999 0.3000 0.4998 0.7002 0.8999
Empirical var (!̂) 0.0003 0.0004 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0004 0.0002
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.6

Empirical mean (�̂) 0.4501 0.4447 0.4488 0.4539 0.4593 0.4655 0.4377 0.4416 0.4464 0.4515 0.4574
Empirical var (�̂) 0.0007 0.0003 0.0003 0.0004 0.0004 0.0005 0.0003 0.0004 0.0004 0.0005 0.0006
Theoretical var (�̂) 0.0006 0.0003 0.0003 0.0004 0.0005 0.0006 0.0003 0.0003 0.0004 0.0005 0.0006
Empirical mean (!̂) 0.1000 0.2997 0.5000 0.7002 0.9001 0.0999 0.3000 0.5003 0.7004 0.9001
Empirical var (!̂) 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 0.0003
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.8

Empirical mean (�̂) 0.4499 0.4475 0.4494 0.4515 0.4538 0.4566 0.4443 0.4462 0.4482 0.4504 0.4532
Empirical var (�̂) 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004
Theoretical var (�̂) 0.0004 0.0003 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0004
Empirical mean (!̂) 0.1001 0.2998 0.4998 0.7000 0.9000 0.1002 0.2996 0.4998 0.7002 0.8998
Empirical var (!̂) 0.0002 0.0004 0.0005 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 0.0002
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

While comparing the results of the proposed optional
RRT models with competitor RRT models, one should
keep in mind that optional models simultaneously
estimate the prevalence of sensitive attribute (�) and
sensitivity level (!). The proposed optional RRT
models are characterized by their own merits and
demerits; therefore, di�erent models can be used under
di�erent scenarios.

4. Strati�ed random sampling scheme

In this section, the applications of RRT models pro-
posed by Mahmood et al. [5] and the suggested optional
RRT models under strati�ed random sampling are
discussed; in this regard, the population consists of

L number of strata and the size of each stratum Nh
is known. Let the population of size N be divided
into disjoint L strata of size Nh(h = 1; 2; � � � ; L) and
Wh = (NhN ) is the known proportion of population
units falling in the hth stratum. Let nh(

PL
h=1 nh =

n) respondents be selected by SRSWR and asked to
answer \Yes" or \No" according to the RDs.

4.1. The strati�ed Technique-I of Mahmood et
al. [5]

Each respondent in stratum h is provided an RD that
consists of three types of statements:

(i) I belong to group Ah;

(ii) I belong to group Xc
h;
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Table 2. Simulation results for � = 0:45 when trials = 10; 000, n = 1000, �x = 0:85, �y = 0:35, 0.65, p = 0:7 and at
various choices of !, p1, p3 = 2(1� p1)=3, and p2 = (1� p1 � p3).

p1

Technique-II
Mahmood
et al. [5]

Technique-II optional RRT model
�y = 0:35 �y = 0:65

! !
0:1 0:3 0:5 0:7 0:9 0:1 0:3 0:5 0:7 0:9

0.2

Empirical mean (�̂) 0.6501 0.4290 0.4634 0.5092 0.5721 0.6643 0.3924 0.4249 0.4690 0.5319 0.6294
Empirical var (�̂) 0.0019 0.0003 0.0004 0.0005 0.0006 0.0007 0.0004 0.0005 0.0006 0.0008 0.0010
Theoretical var (�̂) 0.0070 0.0003 0.0005 0.0007 0.0013 0.0026 0.0003 0.0005 0.0007 0.0012 0.0025
Empirical mean (!̂) 0.1000 0.3002 0.5002 0.7002 0.9002 0.1002 0.3000 0.5000 0.7000 0.8999
Empirical var (!̂) 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0003
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.4

Empirical mean (�̂) 0.5660 0.4385 0.4662 0.4995 0.5394 0.5886 0.4156 0.4428 0.4759 0.5160 0.5663
Empirical var (�̂) 0.0008 0.0003 0.0003 0.0004 0.0004 0.0005 0.0003 0.0004 0.0004 0.0005 0.0006
Theoretical var (�̂) 0.0018 0.0003 0.0004 0.0005 0.0007 0.0009 0.0003 0.0004 0.0005 0.0007 0.0009
Empirical mean (!̂) 0.1001 0.3003 0.4997 0.7002 0.8999 0.0999 0.3000 0.4998 0.7002 0.8999
Empirical var (!̂) 0.0003 0.0004 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0004 0.0002
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.6

Empirical mean (�̂) 0.5227 0.4448 0.4642 0.4859 0.5096 0.5362 0.4318 0.4511 0.4729 0.4967 0.5236
Empirical var (�̂) 0.0005 0.0003 0.0003 0.0003 0.0004 0.0004 0.0003 0.0003 0.0004 0.0004 0.0004
Theoretical var (�̂) 0.0008 0.0003 0.0003 0.0004 0.0004 0.0005 0.0003 0.0003 0.0004 0.0004 0.0005
Empirical mean (!̂) 0.1000 0.2997 0.5000 0.7002 0.9001 0.0999 0.3000 0.5003 0.7004 0.9001
Empirical var (!̂) 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 0.0003
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.8

Empirical mean (�̂) 0.4857 0.4487 0.4587 0.4692 0.4802 0.4921 0.4431 0.4531 0.4637 0.4747 0.4867
Empirical var (�̂) 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
Theoretical var (�̂) 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
Empirical mean (!̂) 0.1001 0.2998 0.4998 0.7000 0.9000 0.1002 0.2996 0.4998 0.7002 0.8998
Empirical var (!̂) 0.0002 0.0004 0.0005 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 0.0002
Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

(iii) I belong to group Xh with probabilities ph1 , ph2 ,
and ph3 , respectively, such that

P3
i=1 phi = 1.

The proportion of the unrelated question �xh is un-
known; therefore, estimating �xh needs another sample
of size nh2 such that (nh1 +nh2 = nh). The probability
of a \Yes" response in the �rst sample of size nh1

respondents is given by:

�Mh1
= �hph1 + ph2(1� �xh) + ph3�xh : (43)

In the second independent samples of nh2 respondents,
the question is asked only on the unrelated question
Xh to estimate the proportion �xh of the unrelated
character. An unbiased estimator for the population

proportion �̂M1(st)
is given below:

�̂M1(st)
=

LX
h=1

Wh

"
�̂Mh1

� ph2 (1� �̂xh)� ph3 �̂xh
ph1

#
:
(44)

The variance of �̂M1(st)
is measured as follows:

Var
�
�̂M1(st)

�
=

LX
h=1

W 2
h

nh
VM1 ; (45)

where:

VM1=

hq
�Mh1

(1��Mh1
)+(ph2�ph3)

p
�xh(1��xh)

i2
p2
h1

:
(46)



G. Narjis and J. Shabbir/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 2851{2867 2859

Table 3. Simulation results for � = 0:45 when trials = 10; 000, n = 1000, �x = 0:85, �y = 0:35, 0.65, p = 0:7 and at
various choices of !, p1, p3 = 2(1� p1)=3, and p2 = (1� p1 � p3).

p1

Technique-III
Mahmood
et al. [5]

Technique-III optional RRT model

�y = 0:35 �y = 0:65

! !

0:1 0:3 0:5 0:7 0:9 0:1 0:3 0:5 0:7 0:9

0.2

Empirical mean (�̂) 0.4493 0.4276 0.4440 0.4705 0.5187 0.6337 0.3944 0.4051 0.4237 0.4629 0.6006

Empirical var (�̂) 0.0401 0.0004 0.0006 0.0009 0.0017 0.0042 0.0005 0.0008 0.0013 0.0031 0.0140

Theoretical var (�̂) 0.0959 0.0003 0.0005 0.0008 0.0014 0.0032 0.0003 0.0005 0.0008 0.0014 0.0032

Empirical mean (!̂) 0.1000 0.3002 0.5002 0.7002 0.9002 0.1002 0.3000 0.5000 0.7000 0.8999

Empirical var (!̂) 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0003

Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.4

Empirical mean (�̂) 0.4484 0.4343 0.4462 0.4630 0.4865 0.5216 0.4123 0.4219 0.4359 0.4565 0.4892

Empirical var (�̂) 0.0052 0.0003 0.0004 0.0006 0.0009 0.0013 0.0004 0.0005 0.0008 0.0011 0.0019

Theoretical var (�̂) 0.0098 0.0003 0.0004 0.0005 0.0008 0.0012 0.0003 0.0004 0.0005 0.0008 0.0012

Empirical mean (!̂) 0.1001 0.3003 0.4997 0.7002 0.8999 0.0999 0.3000 0.4998 0.7002 0.8999

Empirical var (!̂) 0.0003 0.0004 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0004 0.0002

Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.6

Empirical mean (�̂) 0.4501 0.4401 0.4477 0.4574 0.4685 0.4824 0.4270 0.4338 0.4426 0.4529 0.4659

Empirical var (�̂) 0.0011 0.0003 0.0004 0.0004 0.0005 0.0007 0.0003 0.0004 0.0005 0.0006 0.0008

Theoretical var (�̂) 0.0016 0.0003 0.0003 0.0004 0.0005 0.0006 0.0003 0.0003 0.0004 0.0005 0.0006

Empirical mean (!̂) 0.1000 0.2997 0.5000 0.7002 0.9001 0.0999 0.3000 0.5003 0.7004 0.9001

Empirical var (!̂) 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 0.0003

Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

0.8

Empirical mean (�̂) 0.4498 0.4454 0.4490 0.4530 0.4574 0.4625 0.4395 0.4429 0.4467 0.4510 0.4560

Empirical var (�̂) 0.0005 0.0003 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.0004 0.0004

Theoretical var (�̂) 0.0006 0.0003 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0004

Empirical mean (!̂) 0.1001 0.2998 0.4998 0.7000 0.9000 0.1002 0.2996 0.4998 0.7002 0.8998

Empirical var (!̂) 0.0002 0.0004 0.0005 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 0.0002

Theoretical var (!̂) 0.0003 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 0.0003

4.2. The strati�ed Technique-II of Mahmood
et al. [5]

The RD provided in each stratum consists of three
types of statements:

(i) I belong to group Ah;
(ii) Try once again;

(iii) I belong to group Xh with probabilities ph1 , ph2 ,
and ph3 , respectively, such that

P3
i=1 phi = 1.

If the statement \Try once again" appears on the
second trial, then the respondent is requested to
report \Yes" irrespective of his/her actual status. The
proportion of the unrelated question �xh is unknown;
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thus, estimating �xh needs another sample of size nh2

such that (nh1 +nh2 = nh). The probability of a \Yes"
response in the �rst sample of size nh1 respondents is
assessed below:

�Mh2
= (1 + ph2)(ph1�h + ph3�xh) + p2

h2
: (47)

In the second independent sample of nh2 respondents,
the question is asked only on the unrelated question Xh
to estimate the proportion �xh of the unrelated char-
acter. An unbiased estimator of population proportion
�̂M2(st)

is given by:

�̂M2(st)
=

LX
h=1

Wh

"
�̂Mh2

�p2
h2
�ph3(1+ph2)�̂xh

ph1(1 + ph2)

#
:
(48)

The variance of �̂M2(st)
is estimated as follows:

Var
�
�̂M2(st)

�
=

LX
h=1

W 2
h

nh
VM2 ; (49)

where:

VM2=

hq
�Mh2

(1��Mh2
)+ph3(1+ph2)

p
�xh(1��xh)

i2
fph1(1 + ph2)g2 :

(50)

4.3. The strati�ed Technique-III of Mahmood
et al. [5]

Each respondent in stratum h provided with an RD
that consists of three types of statements:

(i) I belong to group Ah;
(ii) I belong to group Ach;
(iii) I belong to group Xh with probabilities ph1 , ph2 ,

and ph3 , such that
P3
i=1 phi = 1.

The proportion of the unrelated question �xh is un-
known; thus, estimating �xh needs another sample of
size nh2 such that (nh1 + nh2 = nh). The probability
of a \Yes" response in the �rst sample of size nh1

respondents is given by:

�Mh3
= �hph1 + ph2(1� �h) + ph3�xh : (51)

In the second independent sample of nh2 respondents,
the question is asked only on the unrelated question Xh
to estimate the proportion �xh of the unrelated char-
acter. An unbiased estimator of population proportion
�̂M3(st)

is given by:

�̂M3(st)
=

LX
h=1

Wh

"
�̂Mh3

� ph2 � ph3 �̂xh
ph1 � ph2

#
: (52)

The variance of �̂M3(st)
is assessed as follows:

Var
�
�̂M3(st)

�
=

LX
h=1

W 2
h

nh
VM3 ; (53)

where:

VM3 =

hq
�Mh3

(1��Mh3
) + ph3

p
�xh(1��xh)

i2
(ph1 � ph2)2 :

(54)

4.4. A strati�ed multi-question approach
To estimate the parameters of RRT models, i.e.,
unrelated innocuous characteristics (�x; �y), sensitivity
level (!), and prevalence of sensitive characteristic (�)
in the multi-question approach, each respondent in
stratum h is asked more than two separate questions.
In the multi-question approach, DQ method is applied
�rst to estimate the proportion of unrelated innocuous
characteristics (�̂xh ; �̂yh) used in RRT models and,
then, apply two RDs, denoted by Rh1 and Rh2 , to
estimates the proportion of sensitivity level (!̂h) and
sensitive characteristic (�̂h) respectively.

4.4.1. Estimation of sensitivity level under
strati�cation

The question about sensitivity is asked via Rh1 in
stratum h. In this randomization process, the sensitive
question is \Is the main research question sensitive?"
It is asked along with an unrelated innocuous question.
We use the deviceRh1 suggested by Greenberg et al. [3].
The probability of getting \Yes" response to the Rh1

is:
�!h = !hph + (1� ph)�yh : (55)

The estimator for !h is given by:

!̂h =
�̂!h � (1� ph)�̂yh

ph
; (56)

where �̂!h is the proportion of \yYs" answer reported
by n respondents in the sample �̂!h � B(nh; �!h)
and �̂yh � B(nh; �yh). An unbiased estimator for
population proportion ! is given by:

!̂(st) =
LX
h=1

Wh

"
�̂!h � (1� ph)�̂yh

ph

#
: (57)

It is easy to prove that !̂(st) is unbiased for ! with
variance:

Var
�
!̂(st)

�
=

LX
h=1

W 2
hVar (!̂h); (58)

where:

Var (!̂h) =
1
p2
h

�
�!h(1� �!h)

nh

+(1� ph)2�yh(1� �yh)
nh

�
: (59)
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Now, the respondents are given an option to answer
the sensitive question directly if they consider question
insensitive or provide the response after using device
Rh2 .

4.4.2. Estimation of sensitive attribute
Each respondent in stratum h is given the option to
answer the sensitive question directly if they consider
the question insensitive or provide the response after
using device Rh2 .

Technique-I optional RRT model under strati�cation
The probability of getting \Yes" response in stratum
h of the proposed binary optional RRT model of
Technique-I is:

�h1 =(1�!h)�h+!hf�hph1 +ph2(1��xh)+ph3�xhg:
(60)

Solving Eq. (60) for �h, we have an estimator of �h as:

�̂JSh1
=
�̂h1 � !̂h fph2 � (ph2 � ph3)�̂xhgf1� !̂h(1� ph1)g ; (61)

where !̂h is obtained from Eq. (56) and �̂h1 is the pro-
portion of \Yes" answers reported by nh respondents
in the sample, �̂h1 � B(nh; �h1) and �̂xh � B(nh; �xh).
After applying the �rst-order Taylor's expansion to
Eq. (61), we have:

�̂JSh1
�

266666666666666664

�h1 � !fph2 � (ph2 � ph3)�xhgf1� !h(1� ph1)g

+
�̂h1 � �h1

f1� !h(1� ph1)g

+
!h(ph2 � ph3) (�̂xh � �xh)
f1� !h(1� ph1)g

+
�h1(!̂h � !h)

f1� !h(1� ph1)g2

377777777777777775
; (62)

where:

�h1 = (ph2 � ph3)�xh + (1� ph1)�h1 � ph2 :

The strati�ed estimator �̂JS1(st)
is given by:

�̂JS1(st)
=

LX
h=1

Wh�̂JSh1
: (63)

Theorem 4.1. The estimator �̂JS1(st)
is unbiased for

� with variance, as given by:

Var
�
�̂JS1(st)

�
=

LX
h=1

W 2
h

nh
VJS1 ; (64)

where:

VJS1 =
�h1(1� �h1) + !2

h(ph2 � ph3)2�xh(1� �xh)
f1� !h(1� ph1)g2

+
�2
h1
f�!h(1��!h)+(1�ph)2�yh(1��yh)g

p2
hf1� !h(1� ph1)g4 :

(65)

Proof. Taking expectation on both sides of Eq. (63),
we have:

E
�
�̂JS1(st)

�

�
LX
h=1

Wh

2666666666666666664

�h1 � !fph2 � (ph2 � ph3)�xhgf1� !h(1� ph1)g

+
E
�
�̂h1

�� �h1

f1� !h(1� ph1)g

+
!h(ph2�ph3) (E (�̂xh)��xh)

f1� !h(1� ph1)g

+
�h1 (E (!̂h)� !h)
f1� !h(1� ph1)g2

3777777777777777775
:

(66)

Using the fact that E(�̂h1) = �h1 , E(�̂xh) = �xh ,
E(�̂!h) = �!h , and E(�̂yh) = �yh . Eq. (66) becomes:

E
�
�̂JS1(st)

�
�

LX
h=1

Wh

�
�h1�!hfph2�(ph2�ph3)�xhgf1� !h(1� ph1)g

�
=�:

(67)

Thus, �̂JS1(st)
is approximately an unbiased estimator

of �. Now, applying variance on both sides of Eq. (63),
we have:

V
�
�̂JS1(st)

�
=

LX
h=1

W 2
h

24V ��̂h1

�
+ !2(ph2 � ph3)2V (�̂xh)

f1� !h(1� ph1)g2

+
�2
h1
V (!̂h)

f1� !h(1� ph1)g4
#
: (68)

Using the fact that Var (�̂h1) = �h1 (1��h1 )
nh and

Var (�̂xh) = �xh (1��xh )
nh and substituting the values of

Var (!̂h) given in Eq. (59), we have Eq. (64) which
completes the proof.

Technique-II optional RRT model under strati�cation
The probability of getting \Yes" response in stratum
h of the proposed binary optional RRT model of
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Technique-II is:

�h2=(1�!h)�h+!hf(1+ph2)(ph1�+ph3�hx)+p2
h2
g:
(69)

Solving Eq. (69) for �h, we have an estimator of �h as
follows:

�̂JSh2
=
�̂h2 � !̂h �p2

h2
+ ph3(1 + ph2)�̂xh

	
[1� !̂hf1� ph1(1 + ph2)g] ; (70)

where !̂h is obtained from Eq. (56) and �̂h2 is the
proportion of \Yes" answers reported by nh respon-
dents in the sample, �̂h2 � B(nh; �h2) and �̂xh �
B(nh; �xh). After applying �rst-order Taylor's expan-
sion to Eq. (70), we have:

�̂JSh2
�

2666666666666666664

�̂h2 � !̂hfp2
h2

+ ph3(1 + ph2)�xhg
[1� !̂hf1� ph1(1 + ph2)g]

+

�
�̂h2 � �h2

�
[1� !hf1� ph1(1 + ph2)g]

� !hph3(1 + ph2) (�̂xh � �xh)
[1� !hf1� ph1(1 + ph2)g]

+
�h2 (!̂h � !h)

[1� !hf1� (1 + ph2)ph1g]2

3777777777777777775
; (71)

where:

�h2 = �h2 � f(1 + ph2)(ph3�xh + �h2ph1) + p2
h2
g:

The strati�ed estimator �̂JS2(st)
is obtained as follows:

�̂JS2(st)
=

LX
h=1

Wh�̂JSh2
: (72)

Theorem 4.2. The estimator �̂JS2(st)
is unbiased for

� with variance as given by:

Var
�
�̂JS2(st)

�
=

LX
h=1

W 2
h

nh
VJS2 ; (73)

where:

VJS2 =
�h2(1��h2)+!2

hfph3(1+ph2)g2�xh(1��xh)
[1� !hf1� ph1(1 + ph2)g]2

+
�2
h2
f�!h(1��!h)+(1�ph)2�yh(1��yh)g
p2
h[1� !hf1� ph1(1 + ph2)g]4 :

(74)

Proof. The proof is analogous to that of Theorem 4.1.

Technique-III optional RRT model under strati�cation
The probability of getting \Yes" response in stratum
h of the proposed binary optional RRT model of
Technique-III is:

�h3 =(1�!h)�h+!fph1�h+ph2(1��h)+ph3�xhg:
(75)

Solving Eq. (75) for �h, we have an estimator for �h as
follows:

�̂JSh3
=
�̂h3 � !̂h (ph2 + ph3 �̂xh)
f1� !̂h(1� ph1 + ph2)g ; (76)

where !̂h is obtained from Eq. (56) and �̂h2 is the
proportion of \Yes" answers reported by nh respon-
dents in the sample, �̂h3 � B(nh; �h3) and �̂xh �
B(nh; �xh). After applying �rst-order Taylor's expan-
sion to Eq. (76), we have:

�̂JSh3
�

266666666666666664

�h3 � !(ph2 + ph3�xh)
f1� !h(1� ph1 + ph2)g

+
�̂h3 � �h3

f1� !h(1� ph1 + ph2)g

� !hph3(�̂xh � �xh)
f1� !h(1� ph1 + ph2)g

+
�h3 (!̂h � !h)

f1� !h(1� ph1 + ph2)g2

377777777777777775
; (77)

where:
�h3 = �h3(1� ph1 + ph2)� �xhph3 � ph2 :

The strati�ed estimator �̂JS3(st)
is given by:

�̂JS3(st)
=

LX
h=1

Wh�̂JSh3
: (78)

Thus, we have the following theorem and its proof is
similar to that of Theorem 4.1.

Theorem 4.3. The estimator �̂JS3(st)
is unbiased for

� with variance, as given by:

Var
�
�̂JS3(st)

�
=

LX
h=1

W 2
h

nh
VJS3 ; (79)

where:

VJS3 =
�h3(1� �h3) + !2

hp2
h3
�xh(1� �xh)

f1� !h(1� ph1 + ph2)g2

+
�2
h3
f�!h(1��!h)+(1�ph)2�yh(1��yh)g

p2
hf1� !h(1� ph1 + ph2)g4 :

(80)

Corollary 4.1. In proportional allocation, the size
of each stratum is nh = n(NhN ) and the variances of
�̂JSi(st) and �̂Mi(st)

are respectively given below:

Var
�
�̂JSi(st)

�
=

1
n

LX
h=1

WhVJSi ; (81)

and:
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Var
�
�̂Mi(st)

�
=

1
n

LX
h=1

WhVMi ; (82)

for i = 1; 2; 3:::

4.5. Relative e�ciency
The Relative E�ciency (RE) of the proposed optional
RRT models with respect to the RRT models of Mah-
mood et al. [5] under strati�cation using proportional
allocation method is de�ned as:

RE (i) =
Var

�
�̂Mi(st)

�
Var

�
�̂JSi(st)

� ; i = 1; 2; 3: (83)

To calculate it empirically, we have chosen n = 1000
with two strata having stratum weights (W1 = 0:3,
W2 = 0:7) and (W1 = 0:7, W2 = 0:3) for di�erent
values of �1 and �2. The design parameters are de�ned
as p1 = p11 = p12, p2 = p21 = p22, p3 = p31 = p32,
! = !1 = !2, �y = �y1 = �y2 , �x = �x1 = �x2 , and
p = p1 = p2, respectively. The results of each model
with respect to their competitor models are discussed
as follows:

(i) Table 4 shows that RE (1) > 1 decreases when
p1 and ! values increase from 0.2 to 0.8 and
from 0.1 to 0.9 by increment of 0.2, respectively.

Table 4. Relative e�ciency of the proposed Technique-I optional RRT over Technique-I RRT when n = 1000, �x = 0:85,
p = 0:7 and at various choices of !, p1, p3 = 2(1� p1)=3, and p2 = (1� p1 � p3).

p1 �1 �2 W1 W2

�y = 0:35 �y = 0:65
! !

0:1 0:3 0:5 0:7 0:9 0:1 0:3 0:5 0:7 0:9

0.2

0.08 0.13 0.3 0.7 18.71 9.15 4.80 2.40 0.98 17.17 8.86 4.80 2.46 1.03
0.7 0.3 19.64 9.22 4.77 2.37 0.96 17.82 8.91 4.77 2.43 1.02

0.28 0.33 0.3 0.7 14.02 8.75 5.18 2.74 1.12 13.68 8.65 5.18 2.76 1.15
0.7 0.3 14.25 8.76 5.14 2.70 1.11 13.86 8.65 5.14 2.74 1.14

0.48 0.53 0.3 0.7 13.16 8.95 5.57 2.99 1.21 13.12 8.93 5.57 3.00 1.22
0.7 0.3 13.13 8.90 5.53 2.97 1.21 13.08 8.88 5.53 2.98 1.21

0.68 0.73 0.3 0.7 15.07 9.90 5.96 3.10 1.22 15.03 9.89 5.96 3.11 1.22
0.7 0.3 14.70 9.76 5.92 3.10 1.22 14.67 9.75 5.92 3.10 1.23

0.88 0.93 0.3 0.7 25.34 12.51 6.37 3.01 1.12 24.12 12.29 6.37 3.05 1.15
0.7 0.3 23.23 12.11 6.33 3.03 1.14 22.33 11.93 6.33 3.06 1.16

0.4

0.08 0.13 0.3 0.7 6.36 3.60 2.21 1.38 0.84 6.00 3.53 2.21 1.41 0.86
0.7 0.3 6.81 3.69 2.22 1.37 0.83 6.36 3.60 2.22 1.40 0.86

0.28 0.33 0.3 0.7 4.36 3.10 2.16 1.45 0.91 4.29 3.08 2.16 1.46 0.92
0.7 0.3 4.45 3.13 2.16 1.44 0.90 4.38 3.10 2.16 1.45 0.91

0.48 0.53 0.3 0.7 3.94 2.99 2.18 1.50 0.94 3.93 2.99 2.18 1.50 0.94
0.7 0.3 3.95 2.99 2.17 1.49 0.94 3.94 2.99 2.17 1.49 0.94

0.68 0.73 0.3 0.7 4.34 3.21 2.28 1.53 0.94 4.33 3.21 2.28 1.53 0.94
0.7 0.3 4.25 3.17 2.27 1.53 0.94 4.25 3.17 2.27 1.53 0.94

0.88 0.93 0.3 0.7 7.33 4.24 2.57 1.54 0.89 7.10 4.19 2.57 1.56 0.90
0.7 0.3 6.65 4.05 2.52 1.54 0.89 6.48 4.01 2.52 1.56 0.91

0.6

0.08 0.13 0.3 0.7 3.43 2.28 1.62 1.18 0.87 3.32 2.26 1.62 1.19 0.89
0.7 0.3 3.73 2.38 1.64 1.18 0.86 3.59 2.34 1.64 1.19 0.88

0.28 0.33 0.3 0.7 2.29 1.84 1.47 1.16 0.91 2.27 1.83 1.47 1.17 0.91
0.7 0.3 2.34 1.86 1.48 1.16 0.90 2.32 1.86 1.48 1.17 0.91

0.48 0.53 0.3 0.7 2.07 1.74 1.43 1.16 0.92 2.07 1.74 1.43 1.16 0.92
0.7 0.3 2.07 1.74 1.43 1.16 0.92 2.07 1.74 1.43 1.16 0.92

0.68 0.73 0.3 0.7 2.20 1.82 1.47 1.17 0.91 2.20 1.82 1.47 1.18 0.91
0.7 0.3 2.17 1.80 1.47 1.17 0.91 2.17 1.80 1.47 1.17 0.92

0.88 0.93 0.3 0.7 3.52 2.41 1.70 1.22 0.88 3.46 2.39 1.70 1.23 0.89
0.7 0.3 3.19 2.28 1.66 1.21 0.89 3.15 2.27 1.66 1.22 0.89

0.8

0.08 0.13 0.3 0.7 2.00 1.61 1.32 1.11 0.94 1.98 1.60 1.32 1.11 0.94
0.7 0.3 2.17 1.69 1.36 1.12 0.94 2.14 1.68 1.36 1.12 0.94

0.28 0.33 0.3 0.7 1.45 1.31 1.18 1.06 0.95 1.45 1.31 1.18 1.06 0.95
0.7 0.3 1.47 1.32 1.18 1.06 0.95 1.47 1.32 1.18 1.06 0.95

0.48 0.53 0.3 0.7 1.36 1.25 1.14 1.04 0.95 1.36 1.25 1.14 1.04 0.95
0.7 0.3 1.36 1.25 1.14 1.04 0.95 1.36 1.25 1.14 1.04 0.95

0.68 0.73 0.3 0.7 1.40 1.27 1.16 1.05 0.95 1.40 1.27 1.16 1.05 0.95
0.7 0.3 1.39 1.27 1.15 1.05 0.95 1.39 1.27 1.15 1.05 0.95

0.88 0.93 0.3 0.7 1.93 1.58 1.31 1.10 0.93 1.92 1.58 1.31 1.10 0.93
0.7 0.3 1.79 1.50 1.28 1.09 0.93 1.78 1.50 1.28 1.09 0.93
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Table 5. Relative e�ciency of the proposed Technique-II optional RRT over Technique-II RRT when n = 1000, �x = 0:85,
p = 0:7 and at various choices of !, p1, p3 = 2(1� p1)=3, and p2 = (1� p1 � p3).

p1 �1 �2 W1 W2

�y = 0:35 �y = 0:65
! !

0:1 0:3 0:5 0:7 0:9 0:1 0:3 0:5 0:7 0:9

0.2

0.08 0.13 0.3 0.7 30.92 15.04 8.39 4.74 2.45 28.05 14.54 8.39 4.86 2.57
0.7 0.3 32.29 15.16 8.36 4.72 2.45 29.03 14.63 8.36 4.84 2.58

0.28 0.33 0.3 0.7 23.47 14.35 8.66 4.89 2.35 22.45 14.07 8.66 4.99 2.46
0.7 0.3 23.89 14.38 8.63 4.88 2.36 22.76 14.08 8.63 4.98 2.47

0.48 0.53 0.3 0.7 21.72 14.60 9.07 4.98 2.20 21.31 14.45 9.07 5.06 2.30
0.7 0.3 21.72 14.53 9.02 4.98 2.22 21.26 14.36 9.02 5.06 2.32

0.68 0.73 0.3 0.7 24.48 16.21 9.68 4.99 2.00 24.35 16.15 9.68 5.04 2.08
0.7 0.3 23.89 15.95 9.61 4.99 2.02 23.74 15.88 9.61 5.05 2.11

0.88 0.93 0.3 0.7 43.83 21.59 10.70 4.84 1.73 43.81 21.59 10.70 4.87 1.80
0.7 0.3 39.34 20.67 10.57 4.86 1.76 39.33 20.66 10.57 4.89 1.83

0.4

0.08 0.13 0.3 0.7 10.40 5.86 3.78 2.59 1.80 9.78 5.74 3.78 2.62 1.85
0.7 0.3 11.12 6.00 3.81 2.58 1.79 10.38 5.86 3.81 2.62 1.84

0.28 0.33 0.3 0.7 6.98 5.01 3.63 2.61 1.84 6.82 4.96 3.63 2.64 1.87
0.7 0.3 7.16 5.07 3.64 2.61 1.84 6.97 5.01 3.64 2.64 1.87

0.48 0.53 0.3 0.7 6.05 4.71 3.56 2.60 1.80 6.00 4.69 3.56 2.61 1.82
0.7 0.3 6.09 4.72 3.57 2.60 1.81 6.03 4.70 3.57 2.62 1.83

0.68 0.73 0.3 0.7 6.30 4.84 3.56 2.50 1.65 6.29 4.83 3.56 2.51 1.67
0.7 0.3 6.21 4.80 3.56 2.51 1.67 6.19 4.79 3.56 2.52 1.69

0.88 0.93 0.3 0.7 9.93 5.89 3.63 2.23 1.33 9.93 5.89 3.63 2.23 1.34
0.7 0.3 9.03 5.69 3.62 2.27 1.37 9.03 5.69 3.62 2.27 1.38

0.6

0.08 0.13 0.3 0.7 5.08 3.34 2.41 1.84 1.45 9.78 5.74 3.78 2.62 1.85
0.7 0.3 5.54 3.47 2.45 1.84 1.44 10.38 5.86 3.81 2.62 1.84

0.28 0.33 0.3 0.7 3.26 2.67 2.20 1.82 1.51 6.82 4.96 3.63 2.64 1.87
0.7 0.3 3.35 2.71 2.22 1.83 1.51 6.97 5.01 3.64 2.64 1.87

0.48 0.53 0.3 0.7 2.82 2.44 2.10 1.79 1.50 6.00 4.69 3.56 2.61 1.82
0.7 0.3 2.84 2.46 2.11 1.79 1.51 6.03 4.70 3.57 2.62 1.83

0.68 0.73 0.3 0.7 2.82 2.42 2.05 1.71 1.41 6.29 4.83 3.56 2.51 1.67
0.7 0.3 2.80 2.42 2.06 1.72 1.42 6.19 4.79 3.56 2.52 1.69

0.88 0.93 0.3 0.7 3.90 2.75 2.00 1.47 1.09 9.93 5.89 3.63 2.23 1.34
0.7 0.3 3.62 2.68 2.01 1.52 1.14 9.03 5.69 3.62 2.27 1.38

0.8

0.08 0.13 0.3 0.7 2.52 1.98 1.62 1.37 1.17 2.50 1.98 1.62 1.37 1.18
0.7 0.3 2.74 2.07 1.66 1.37 1.16 2.72 2.07 1.66 1.37 1.17

0.28 0.33 0.3 0.7 1.76 1.60 1.47 1.34 1.23 1.76 1.60 1.47 1.34 1.23
0.7 0.3 1.79 1.62 1.47 1.35 1.23 1.79 1.62 1.47 1.35 1.23

0.48 0.53 0.3 0.7 1.59 1.50 1.41 1.32 1.24 1.59 1.50 1.41 1.32 1.24
0.7 0.3 1.60 1.50 1.41 1.32 1.24 1.60 1.50 1.41 1.32 1.24

0.68 0.73 0.3 0.7 1.58 1.48 1.38 1.28 1.19 1.58 1.48 1.38 1.28 1.19
0.7 0.3 1.57 1.48 1.38 1.29 1.20 1.57 1.48 1.38 1.29 1.20

0.88 0.93 0.3 0.7 1.88 1.57 1.33 1.13 0.97 1.88 1.57 1.33 1.13 0.97
0.7 0.3 1.80 1.55 1.34 1.17 1.02 1.80 1.55 1.34 1.17 1.02

So, we conclude that the e�ciency of Technique-
I optional RRT model may either increase or
decrease in the case of di�erent combinations of
design parameters;

(ii) According to Table 5, when the value of p1
increases from 0.2 to 0.8, RE (2) > 1 decreases.
Similarly, an attenuating pattern is observed at

�xed values of p1, �1, and �2 when ! values in-
crease from 0.1 to 0.9. Overall, result shows that
Technique-II optional RRT model is more e�cient
than the competitor Technique-II of Mahmood et
al. [5];

(iii) In Table 6, we observe that the proposed
Technique-III optional RRT model is more e�-



G. Narjis and J. Shabbir/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 2851{2867 2865

Table 6. Relative e�ciency of the proposed Technique-III optional RRT over Technique-III RRT when n = 1000,
�x = 0:85, p = 0:7 and at various choices of !, p1, p3 = 2(1� p1)=3, and p2 = (1� p1 � p3).

p1 �1 �2 W1 W2

�y = 0:35 �y = 0:65
! !

0:1 0:3 0:5 0:7 0:9 0:1 0:3 0:5 0:7 0:9

0.2

0.08 0.13 0.3 0.7 284.72 104.30 34.06 6.01 0.01 247.11 98.45 34.06 6.47 0.02
0.7 0.3 288.25 102.15 32.86 5.73 0.01 247.32 96.15 32.86 6.18 0.01

0.28 0.33 0.3 0.7 271.81 129.41 49.25 9.91 0.02 256.50 125.51 49.25 10.48 0.03
0.7 0.3 271.49 126.56 47.45 9.40 0.02 254.58 122.44 47.45 9.97 0.03

0.48 0.53 0.3 0.7 295.26 163.00 70.69 17.01 0.06 291.40 161.60 70.69 17.48 0.07
0.7 0.3 291.03 159.16 68.33 16.13 0.05 286.35 157.52 68.33 16.63 0.07

0.68 0.73 0.3 0.7 376.31 208.71 93.33 25.64 0.28 375.92 208.64 93.33 25.67 0.32
0.7 0.3 363.71 203.46 91.41 24.99 0.23 363.55 203.43 91.41 25.05 0.27

0.88 0.93 0.3 0.7 663.16 271.75 101.25 24.76 0.35 626.90 266.05 101.25 25.25 0.40
0.7 0.3 609.25 264.49 101.56 25.43 0.42 583.22 259.98 101.56 25.83 0.46

0.4

0.08 0.13 0.3 0.7 44.21 20.85 10.11 4.44 1.45 39.76 19.96 10.11 4.66 1.66
0.7 0.3 46.30 20.99 10.00 4.34 1.40 41.14 20.03 10.00 4.57 1.62

0.28 0.33 0.3 0.7 33.58 20.28 11.35 5.48 1.93 32.41 19.90 11.35 5.63 2.10
0.7 0.3 34.11 20.26 11.21 5.37 1.88 32.77 19.85 11.21 5.53 2.05

0.48 0.53 0.3 0.7 32.04 21.38 12.92 6.66 2.51 31.81 21.28 12.92 6.72 2.59
0.7 0.3 31.91 21.18 12.75 6.54 2.45 31.62 21.06 12.75 6.61 2.55

0.68 0.73 0.3 0.7 37.91 25.07 15.07 7.78 3.00 37.88 25.06 15.07 7.78 3.01
0.7 0.3 36.80 24.51 14.82 7.68 2.97 36.79 24.51 14.82 7.69 2.98

0.88 0.93 0.3 0.7 70.42 36.03 18.32 8.46 3.04 67.90 35.52 18.32 8.56 3.11
0.7 0.3 63.30 34.20 17.92 8.42 3.06 61.60 33.82 17.92 8.50 3.12

0.6

0.08 0.13 0.3 0.7 9.63 5.78 3.67 2.37 1.52 9.04 5.63 3.67 2.43 1.61
0.7 0.3 10.43 6.00 3.73 2.38 1.52 9.69 5.83 3.73 2.45 1.61

0.28 0.33 0.3 0.7 6.26 4.61 3.33 2.33 1.57 6.16 4.57 3.33 2.36 1.61
0.7 0.3 6.42 4.67 3.35 2.33 1.56 6.29 4.63 3.35 2.36 1.61

0.48 0.53 0.3 0.7 5.59 4.36 3.29 2.38 1.62 5.57 4.36 3.29 2.39 1.63
0.7 0.3 5.60 4.36 3.29 2.37 1.62 5.58 4.35 3.29 2.38 1.63

0.68 0.73 0.3 0.7 6.20 4.79 3.57 2.54 1.71 6.20 4.78 3.57 2.54 1.71
0.7 0.3 6.06 4.70 3.52 2.52 1.70 6.06 4.70 3.52 2.52 1.70

0.88 0.93 0.3 0.7 11.29 7.18 4.65 2.98 1.85 11.09 7.13 4.65 3.00 1.87
0.7 0.3 10.04 6.68 4.45 2.91 1.83 9.91 6.65 4.45 2.93 1.85

0.8

0.08 0.13 0.3 0.7 3.60 2.78 2.20 1.77 1.45 3.53 2.75 2.20 1.79 1.47
0.7 0.3 3.98 2.97 2.30 1.83 1.48 3.88 2.93 2.30 1.84 1.50

0.28 0.33 0.3 0.7 2.32 2.02 1.75 1.52 1.30 2.31 2.02 1.75 1.52 1.31
0.7 0.3 2.37 2.05 1.77 1.53 1.31 2.36 2.05 1.77 1.53 1.32

0.48 0.53 0.3 0.7 2.09 1.86 1.65 1.45 1.26 2.08 1.86 1.65 1.45 1.27
0.7 0.3 2.09 1.87 1.65 1.45 1.27 2.09 1.87 1.65 1.45 1.27

0.68 0.73 0.3 0.7 2.19 1.94 1.70 1.48 1.28 2.19 1.94 1.70 1.48 1.28
0.7 0.3 2.16 1.92 1.69 1.47 1.28 2.16 1.92 1.69 1.47 1.28

0.88 0.93 0.3 0.7 3.43 2.72 2.18 1.76 1.42 3.41 2.71 2.18 1.76 1.43
0.7 0.3 3.10 2.53 2.07 1.70 1.39 3.08 2.52 2.07 1.70 1.40

cient than the competitor Technique-III of Mah-
mood et al. [5]. The value of RE (3) is higher than
1 for all combinations of design parameters.

5. Concluding remarks

According to the numerical comparison, the proposed
optional Randomized Response Technique (RRT) mod-

els estimated by using the multi-question approach
were more e�cient than the corresponding Techniques
of Mahmood et al. [5]. It was demonstrated that
for a higher sensitive question, the proposed optional
RRT model and the competitor models provided equal
protection for the respondents. Moreover, the pro-
posed optional RRT models simultaneously estimated
the prevalence of sensitive attribute and sensitivity
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level, compared to competitor RRT models. We,
therefore, preferred the proposed optional RRT models
over competitor models. An extensive simulation
study showed that the empirical mean and variance
of �̂JSi(i = 1; 2; 3) and !̂ were in good agreement with
the corresponding theoretical values. It was also shown
that �̂JSi in �rst-order approximation worked very
well. The superiority of the suggested optional RRT
under strati�cation was revealed through a numerical
comparison and it was observed that the proposed
optional RRT models under strati�ed random sam-
pling outperformed strati�ed techniques of Mahmood
et al. [5]. Moreover, we also observed that design
parameters played an important role in increasing or
decreasing the e�ciency of the suggested optional RRT
models.
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