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Abstract. Normal Intuitionistic Fuzzy Number (NIFN), which is introduced based on
intuitionistic fuzzy sets and normal fuzzy numbers, is a useful tool for presenting uncertain
information under complicated situations. This study focuses on the development of
an e�ective method by combining NIFNs with the power average and harmonic mean
operators to address Multi-Criteria Group Decision-Making (MCGDM) problems, wherein
weight information is completely unknown. First, an e�ective ranking method for NIFNs
is provided in view of defects of the existing comparison method of NIFNs. Subsequently,
three normal intuitionistic generalized power harmonic aggregation operators are proposed
based on the operations of NIFNs. Next, a new MCGDM method is developed. Finally, a
numerical example concerning coal mine safety evaluation is provided for demonstration.
The feasibility and validity of the proposed method are further veri�ed by sensitivity
analysis and comparison with other existing methods.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Multi-Criteria Decision-Making (MCDM) refers to
making a decision based on many irreplaceable criteria
under a complicated and uncertain environment. The
purpose of MCDM is to identify the best alternative
from a �nite set of distinct alternatives. Decision-
making problems have become increasingly complex
with the development of society. Individual decision-
making has become ine�cient as the uncertainty of
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these problems increased. To provide a feasible solution
to complicated decision-making problems, the opinions
of Decision-Makers (DMs) or experts from various
�elds must be uni�ed. In this case, Multi-Criteria
Group Decision-Making (MCGDM) method has been
developed and applied widely [1,2].

To describe the fuzziness of decision information,
Zadeh [3] proposed Fuzzy Set (FS), which is con-
sidered a useful tool for solving practical problems
[4,5]. Although FSs are capable of dealing with fuzzy
information, there is a limitation that FSs describe
information by membership degree only. However, in
some cases, membership degree alone cannot precisely
describe information in practical problems. To address
this issue, Atanassov [6] introduced Intuitionistic Fuzzy
Sets (IFSs), which add a non-membership degree to
character fuzzy information. IFS is an e�ective infor-
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mation description tool and has been applied in various
�elds [7{10].

It is worth noting that the information described
by FSs and IFSs is limited in the discrete domain.
To extend these sets to the continuous domain, Shu
et al. [11] introduced the concept of Triangular Intu-
itionistic Fuzzy Numbers (TIFNs). Subsequently, the
operations and ranking method of TIFNs were studied
[12,13], and an extended VIKOR method for MCGDM
problems with TIFNs was developed [14]. Moreover, to
extend the TIFNs, Wang and Zhong [15] proposed the
concept of Trapezoidal Intuitionistic Fuzzy Numbers
(TrIFNs). TrIFNs were then studied by many scholars
[16,17] and applied to address MCGDM problems [18].

In reality, a large number of natural and social
phenomena comply with normal distribution. In this
case, Normal Fuzzy Numbers (NFNs) [19] were in-
troduced to appropriately present such phenomena.
Compared with triangular fuzzy numbers and trape-
zoidal fuzzy numbers, NFNs have much more power
in practical application [20]. In view of this, Wang
et al. [21] introduced Normal Intuitionistic Fuzzy
Numbers (NIFNs) by integrating NFNs with IFS.
NFNs have many advantages over other fuzzy numbers,
and NIFNs are also superior to other intuitionistic
fuzzy numbers [22]. In NIFNs, membership and
non-membership functions depend on NFNs, and the
membership and non-membership degrees are no longer
merely related to a fuzzy concept of \good" or \bad".
On the basis of NIFNs, Wang et al. [21] de�ned the
score function, operations, and similarity measure and
a series of normal intuitionistic aggregation operators.
Liu and Teng [23] further proposed Normal Interval-
Valued Intuitionistic Fuzzy Numbers (NIVIFNs) and
developed many generalized aggregation operators.

Aggregation operators are important tools for
information fusion in decision-making problems, and
many aggregation operators, such as the weighted
average operator [24,25], weighted geometric average
operator [26,27], Ordered Weighted Average (OWA)
operator [28,29], prioritized average operator [30,31],
hybrid aggregation operator [32,33], Bonferroni mean
operator [34], and generalized aggregation operator
[35{37] were studied and applied widely. In terms
of IFSs, Xu [38] introduced the intuitionistic fuzzy
weighted averaging operator. Xu and Yager [39]
proposed the intuitionistic fuzzy weighted geometric
operator. Zhao et al. [40] presented the generalized
intuitionistic fuzzy weighted averaging operator. In
the aspect of TIFNs, Zhang and Liu [41] proposed
the triangular intuitionistic fuzzy weighted arithmetic
averaging operator; Wang et al. [42] developed the
logic AND and OR operators for TIFNs by combining
the OWA and probability operators; and Yu [43]
de�ned the triangular intuitionistic fuzzy prioritized
weighted average operator. In terms of TrIFNs,

Wang and Zhong [15] de�ned the trapezoidal intu-
itionistic fuzzy weighted arithmetic averaging operator.
Wei [44] proposed the trapezoidal intuitionistic fuzzy
ordered weighted averaging operator. Wu and Cao [45]
presented the trapezoidal intuitionistic fuzzy ordered
weighted geometric operator. In terms of NIFNs,
Wang et al. [21] de�ned the Normal Intuitionistic Fuzzy
Ordered Weighted Averaging (NIFOWA) operator and
the Induced Normal Intuitionistic Fuzzy Related Or-
dered Weighted Averaging (INIFROWA) operator.
Wang et al. [22] proposed the Normal Intuitionistic
Fuzzy-Induced Generalized Ordered Weighted Averag-
ing (NIFIGOWA) operator. Liu and Teng [23] fur-
ther developed the normal interval-valued intuitionistic
fuzzy weighted arithmetic averaging operator.

However, none of the aforementioned fuzzy ag-
gregation operators consider the interrelationships be-
tween variables and the central tendency data in the
aggregation process. Introduced by Yager [46], the
Power Average (PA) operator accounts for information
regarding the interrelationships and input variables and
allows these variables to support each other in the
aggregation process. In this way, Xu and Yager [47]
proposed new geometric aggregation operators includ-
ing the power geometric operator and the power or-
dered weighted geometric operator. Subsequently, Xu
[48] proposed the intuitionistic fuzzy power weighted
average operator. Li et al. [49] de�ned the linguistic
neutrosophic power weighted aggregation operators.
Moreover, Harmonic Mean (HM) is a conservative
average operator, which is a useful tool for aggregating
central tendency data and can be used to provide
aggregation lying between the maximum and minimum
operators [50]. Motivated by this idea, Liu et al. [51]
introduced the ordered weighted harmonic averaging
operator. Wei [52] proposed the triangular intuitionis-
tic fuzzy ordered weighted HM operator. Liu et al. [53]
developed the generalized interval-valued trapezoidal
fuzzy weighted harmonic averaging operator.

NIFNs enjoy a signi�cant capability in describing
decision-making information and can precisely reect
the uncertainty and fuzziness of information of di�erent
dimensions. For example, an expert is asked to
estimate human being's lifetime in the next ten years.
The expert states that the human being's lifetime
obeys normal distribution N = (80; 20). Moreover,
the expert has 60% con�dence that the estimation is
correct, 20% con�dence that the estimation is wrong,
and 20% indeterminacy about this estimation. In this
case, the expert's evaluation can be depicted as a NIFN
h(80; 29); 0:6; 0:2i. Although some normal intuitionistic
fuzzy aggregation operators have been proposed, they
cannot handle the relationships among data in the
aggregation process. In fact, aggregated values are
correlated in many practical problems and the central
tendency data plays a vital role in decision results [54].
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For example, in coal mine safety evaluation problems,
environmental security may be a�ected by geological
condition, and human diathesis may be a�ected by
management level; then, the evaluation values under
these criteria are correlative. Moreover, for a speci�c
alternative, suppose that ten evaluation values of 6, 5,
6, 2, 7, 5, 10, 6, 7, and 6 are provided for it under ten
criteria. Compared with 5, 6, and 7, evaluation values
2 and 10 are improperly low and high. In this case, 5,
6, and 7 can be regarded as the central tendency data,
and 2 and 10 are exceptional data. To deal with these
problems, interrelationships among variables should be
considered and the importance of central tendency data
must be highlighted. Therefore, the primary objective
of this study is to combine PA with HM under normal
intuitionistic fuzzy environments to develop a series
of useful aggregation operators to address practical
problems e�ectively.

Based on the analysis above, the primary motiva-
tions of this study are summarized as follows:

1. Compared with TIFNs and TrIFNs, NIFNs possess
the following advantages. First, NIFNs are highly
applicable to present practical decision informa-
tion because normal distribution can explain many
social phenomena and human activities. Second,
NIFNs have favorable mathematical properties be-
cause the higher derivative of the normal mem-
bership function is continuous. Third, the fuzzy
concepts described by the normal membership and
non-membership functions are closer to human
mind [20]. In conclusion, NIFN is a signi�cantly
useful tool for presenting assessments under uncer-
tain or fuzzy environment. Therefore, this study
introduces NIFN as a mean to depict decision infor-
mation involved in practical problems. Moreover,
in view of the defects of the existing comparison
method of NIFNs, which will be discussed in Sec-
tion 3 in detail, this study develops a valid ranking
method to improve the accuracy of decision results;

2. In practical MCGDM problems, the input variables
may be correlative and some excessively low or im-
properly high evaluation values may be provided by
DMs because of their subjective prejudice. Previous
discussion indicates that PA enables the correlative
variables to support each other, and HM can relive
the impact of exceptional data in the aggregation
process; the two operators are highly useful tools
for information fusion. However, there is a lack
of aggregation operator that can simultaneously
consider the interrelationships among variables and
central tendency data. Moreover, the existing
normal intuitionistic fuzzy aggregation operators
cannot handle the relationships among data in
the aggregation process. To develop e�ective and
applicable methods for solving practical problems,

this study focuses on integrating PA with HM under
normal intuitionistic fuzzy environments to propose
a series of useful aggregation operators.

The rest of this study is organized as follows. In
Section 2, some basic concepts are reviewed briey and
the distance and operations of NIFNs are introduced.
In Section 3, an e�ective ranking method for NIFNs
is presented. In Section 4, three normal intuitionistic
generalized aggregation operators are developed. In
Section 5, a new MCGDM method under normal intu-
itionistic fuzzy environment is developed. In Section 6,
an illustrative example is used to verify the proposed
method. Sensitivity analysis and comparison analysis
are then conducted. Finally, the conclusion is presented
in Section 7.

2. Preliminaries

In this section, some basic concepts including IFS,
NFNs, NIFNs, and the corresponding distance and
operations are introduced.

2.1. Intuitionistic Fuzzy Set (IFS)
IFS is a contributing concept to the �eld of fuzzy
decision-making and is of utmost signi�cance to the
introduction of NIFNs. The de�nition of IFS is
presented in the following:

De�nition 1 [6]. Let X be a universe of discourse
and then, an IFS A in X is de�ned as:

A = f< x; uA(x); vA(x) > jx 2 Xg; (1)

where uA : x ! [0; 1] represents the membership
degree of x to A, vA : x ! [0; 1] represents the non-
membership degree of x to A, and 0 � uA(x)+vA(x) �
1. In general, �A(x) = 1�uA(x)� vA(x) can be called
the hesitation degree of x to A. When �A(x) = 0 for
each x 2 X, the IFS is reduced to a FS.

2.2. Normal Intuitionistic Fuzzy Number
(NIFN)

In reality, normal distribution can illustrate many
natural and social phenomena, and it presents universal
applicability and signi�cant inuence in various �elds,
such as mathematics, economics, and engineering. In
view of this, normal distribution is used to characterize
fuzzy information, and the concepts of NFN and NIFN
are proposed.

De�nition 2 [21]. Let X be a non-empty real number
set and A = (a; �) be an NFN if its membership
function satis�es:

A(x) = e�( x�a� )2

; (� > 0); (2)

and the set of NFNs can be considered as ~N .
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A(x) is similar to the probability density function

f(x) = 1p
2��

e�
(x��)2

2�2 of normal distribution, a and �
in A(x) have a similar meaning with � and � in f(x),
respectively. The di�erence is A(x) 2 (0; 1] and f(x) 2
(0; 1p

2��
].

There is a limitation that NFN describes fuzzy
information by membership degree only. Membership
degree alone cannot present information precisely. On
the basis of the elicitation of IFS and NFN, Wang et
al. [21] proposed the concept of NIFN to overcome the
mentioned limitation.

De�nition 3 [21]. Let X be a non-empty �nite set,
(a; �) 2 ~N , and A = h(a; �); uA; vAi as a NIFN when
its membership function satis�es:

uA(x) = uAe�( x�a� )2

; x 2 X; (3)

and its non-membership function satis�es:

vA(x) = 1� (1� vA)e�( x�a� )2

; x 2 X; (4)

where 0 � uA(x) � 1, 0 � vA(x) � 1, and 0 � uA(x) +
vA(x) � 1. Moreover, �A(x) = 1 � uA(x) � vA(x) is
called the hesitance degree of x to A. Compared with
NFN, NIFN adds the non-membership degree function,
which can present the degree of alternatives that do
not belong to (a; �). When uA(x) = 1, vA(x) = 0, and
NIFN is degenerated to NFN. Therefore, NFN can be
regarded as a special case of NIFN. NIFN is graphically
shown in Figure 1.

2.3. Distance of NIFNs
Distance measure plays a critical role in addressing
practical decision problems, and most decision-making
models are constructed based on distance measures
[55{57]. The distance of NIFNs was de�ned by Wang
and Li [58] as follows:

Figure 1. Illustration of Normal Intuitionistic Fuzzy
Number (NIFN).

De�nition 4 [58]. Let A1 = h(a1; �1); u1; v1i and A2
= h(a2; �2); u2; v2i be two arbitrary NIFNs and then,
the Euclidean distance between A1 and A2 can be
de�ned by Eq. (5) as shown in Box I, when uA(x) = 1,
vA(x) = 0, and the above distance is reduced to

d(A1; A2) =
q

(a1 � a2)2 + 1
2 (�1 � �2)2, which is the

distance of two NFNs.

2.4. Operations of NIFNs
Operation is the foundation of information fusion.
For aggregating normal intuitionistic fuzzy evaluation
information in the decision-making process, Wang et
al. [21] proposed the following operations of NIFNs.

De�nition 5 [21]. Let A = h(a; �); u; vi, A1 = h(a1;
�1); u1; v1i, and A2 = h(a2; �2); u2; v2i be three NIFNs,
� � 0, and then the operations of NIFNs can be de�ned
as follows:

1: A1 �A2 =
�

(a1 + a2; �1 + �2);
ja1ju1 + ja2ju2

ja1j+ ja2j ;

ja1j v1 + ja2j v2

ja1j+ ja2j
�
;

when a = b = 0, uA1+A2 = u1+u2
2 and vA1+A2 = v1+v2

2 ;

2: A1 
A2 =
�

(a1a2; a1a2

s
�2

1
a2

1
+
�2

2
a2

2
); u1u2; v1

+v2 � v1v2

�
;

3: �A = h(�a; ��); u; vi ;

4: A� =
D

(a�; �
1
2 a��1�); u�; 1� (1� v)�

E
;

5:
1
A

=
��

1
a
;
�
a2

�
; u; v

�
; a 6= 0:

3. New comparison method of NIFNs

In this section, the drawbacks with respect to the
existing comparison method of NIFNs are discussed
�rst. An e�ective ranking method for NIFNs is then
proposed.

d(A1; A2) =
1
2

r
((1 + u1 � v1)a1 � (1 + u2 � v2)a2)2 +

1
2

((1 + u1 � v1)�1 � (1 + u2 � v2)�2)2: (5)

Box I
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Comparison method is useful for ranking or select-
ing di�erent alternatives. Wang et al. [21] proposed the
comparison method of NIFNs based on score function
and accuracy function as follows:

De�nition 6 [21]. Let A=h(a; �); u; vi be an arbitrary
NIFN and then, the score function of NIFN be de�ned
as follows:

s1(A) = a(u� v) and s2(A) = �(u� v):

The accuracy function is de�ned as:

h1(A) = a(u+ v) and h2(A) = �(u+ v):

De�nition 7 [21]. Let A1 = h(a1; �1); u1; v1i and A2
= h(a2; �2); u2; v2i be two arbitrary NIFNs and then,
the comparison rules can be de�ned as follows:

1. if s1(A1) > s1(A2), then A1 > A2;
2. if s1(A1) > s1(A2), and h1(A1) > h1(A2), then

A1 > A2;
3. if s1(A1) > s1(A2), and h1(A1) = h1(A2):

(I) when s2(A1) < s2(A2), A1 > A2;
(II) when s2(A1) = s2(A2) and h2(A1) < h2(A2),

A1 > A2;
(III) when s2(A1) = s2(A2) and h2(A1) = h2(A2),

A1 = A2.

Example 1. Let:

�1 = h(6; 0:6); 0:4; 0:2i;
�2 =h(3; 0:3); 0:75; 0:25i;
�3 = h(6; 0:6); 0:6; 0:2i ;
�4 = h(4; 0:4); 0:6; 0:3i;
�5 = h(8; 0:8); 0:45; 0:15i ;
�6 = h(5; 0:5); 0:45; 0:15i ;

be six NIFNs, and then their score values and accuracy
values can be calculated as follows:

s1(�1) = 1:2; s1(�2) = 1:5; s1(�3) = 2:4;

s1(�4) = 1:2; s1(�5) = 2:4; and s1(�6) = 1:5:

s2(�1) = 3:6; s2(�2) = 3; s2(�3) = 4:8;

s2(�4) = 3:6; s2(�5) = 4:8; and s2(�6) = 3:

h1(�1) = 0:12; h1(�2) = 0:15; h1(�3) = 0:24;

h1(�4) = 0:12; h1(�5) = 0:24; and h1(�6) = 0:15:

h2(�1) = 0:36; h2(�2) = 0:3; h2(�3) = 0:48;

h2(�4) = 0:36; h2(�5) = 0:48; and h2(�6) = 0:3:

Moreover, according to De�nition 7, there are:

s1(�3) = s1(�5) > s1(�2) = s1(�6)

> s1(�1) = s1(�4):

s2(�3) = s2(�5); s2(�2) = s2(�6);

s2(�1) = s2(�4):

h1(�3) = h1(�5); h1(�2) = h1(�6);

h1(�1) = h1(�4):

h2(�3) = h2(�5); h2(�2) = h2(�6);

h2(�1) = h2(�4):

Therefore, the ranking can be obtained as �3 = �5 �
�2 = �6 � �4 = �1.

The above comparison method of NIFNs has
many non-negligible problems. First, the procedures
for identifying the �nal ranking are tedious; four values
need to be computed and four comparisons need to be
conducted. Moreover, the ranking obtained by this
method is unreasonable in some circumstances. As
mentioned in Example 1, it is obvious that �3 and
�5 are di�erent NIFNs. However, when the above
comparison method is used to compare the two NIFNs,
the score values and accuracy values of them are always
identical, and the ranking is �3 = �5. Intuitively, this
comparison is unreasonable. The above analysis can
also be summarized according to the ranking between
�2 and �6 as well as �4 and �1.

For that matter, it is necessary to explore an ap-
propriate comparison method for NIFNs. Szmidt and
Kacprzyk [59] proposed an e�ective ranking method
of IFNs by comprehensively considering the hesitation
degree of IFNs and the distance to the positive ideal
solution. Motivated by this idea, a valid ranking
method of NIFNs is developed to remove the drawbacks
in the existing comparison method. The new ranking
method systematically integrates the expectation and
variance of normal distribution, the hesitation degree
of NIFNs, and the distance measure.

De�nition 8. Let �i = h(ai; �i); ui; vii ; (i = 1; 2; :::; n)
be n arbitrary NIFNs, �� = h(max(ai);min(�i)) ; 1; 0i
be the positive ideal point among �i(i = 1; 2; :::; n),
dE(��; �i) be the Euclidean distance between �� and
�i, and the scoring function S(�i) be de�ned as follows:

S(�i) = (1 + �i)dE(��; �i): (6)
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It is apparent that the smaller the value of S(�i), the
better the NIFN �i.

Example 2. Let �1; �2; �3; �4; �5; and �6 be the same
as those in Example 1 and then, according to De�nition
8, the scoring value S(�i) can be computed as follows:

S(�1)=6:1603; S(�2) = 5:7502; S(�3)=4:5611;

S(�4)=5:9401; S(�5)=3:926; and S(�6)=6:65:

Therefore, the ranking can be identi�ed as �5 � �3 �
�2 � �4 � �1 � �6.

In conclusion, compared with the existing com-
parison method of NIFNs, the proposed new ranking
method is simple and e�ective: Only one parameter
needs to be computed and the reasonable result can be
obtained.

4. Normal Intuitionistic Power Harmonic
(NIPH) aggregation operators

In this section, based on the operations of NIFNs, three
normal intuitionistic generalized aggregation operators
are developed by integrating the PA and HM operators.
Moreover, some special cases and desirable properties
of these operators are discussed.

4.1. PA operator and HM operator
To comprehend the subsequent normal intuitionistic
generalized aggregation operators easily, the de�nitions
of PA and HM operators are described simply in the
following:

De�nition 9 [46]. Let a1; a2; :::an be n positive real
numbers. The PA operator is a mapping: Rn ! R,
and it can be de�ned as follows:

PA(a1; a2; :::; an) =
Pn
i=1 (1 + T (ai))aiPn
i=1 (1 + T (ai))

; (7)

where T (ai) =
nP

j=1;i 6=j
Sup(ai; aj), and Sup(ai; aj) is

the support degree of ai from aj .

The support degree satis�es the following proper-
ties:

1. Sup(ai; aj) 2 [0; 1];

2. Sup(ai; aj) = Sup(aj ; ai);

3. Sup(ai; aj) > Sup(x; y) if d(ai; aj) < d(x; y), where
d(ai; aj) indicates the distance between ai and aj .

De�nition 10 [50]. For n positive real numbers a1;
a2; :::; an, the HM operator can be de�ned as follows:

HM(a1; a2; :::; an) =
1Pn
i=1

1
ai

: (8)

4.2. Normal Intuitionistic Generalized
Weighted Power Harmonic Operator
(NIGWPH)

In this subsection, based on the weighted arithmetic
averaging, PA, and HM operators, the generalized
weighted power harmonic operator under normal in-
tuitionistic fuzzy environment is investigated. The
de�nition of the Normal Intuitionistic Generalized
Weighted Power Harmonic (NIGWPH) operator and
its corresponding theorems are provided below:

De�nition 11. Let Ai = h(ai; �i); ui; vii ; (i = 1;
2; :::; n) be a collection of NIFNs and wi(i = 1;
2; :::; n) be the weight of A(i = 1; 2; :::; n), with wi 2
[0; 1], and

Pn
i=1 wi = 1, and then the NIGWPH

operator can be de�ned by Eq. (9) as shown in
Box II, where � 2 (�1; 0) [ (0;+1), and T (Ai) =Pn
j=1;i 6=j wjSup(Ai; Aj) is the comprehensive weighted

support degree of Ai from Aj(i 6= j; j = 1; 2; :::; n).
Based on the operations of NIFNs, the speci�c expres-
sion of NIGWPH can be given below:

Theorem 1. Let Ai = h(ai; �i); ui; vii ; (i = 1; 2; :::; n)
be a collection of NIFNs and wi(i = 1; 2; :::; n) be
the weight of Ai(i = 1; 2; :::; n), with wi 2 [0; 1] andPn
i=1 wi = 1, and then the aggregated value obtained

by the NIGWPH operator is also an NIFN and:

NIGWPH(A1; A2; :::; An)

=
1�

w1(1+T (A1))Pn
i=1 wi(1+T (Ai))

�
1
A1

�� � w2(1+T (A2))Pn
i=1 wi(1+T (Ai))

�
1
A2

�� � � � � � wn(1+T (An))Pn
i=1 wi(1+T (Ai))

�
1
An

��� 1
�

=
1�Pn

i=1
wi(1+T (Ai))Pn
i=1 wi(1+T (Ai))

�
1
Ai

��� 1
�
: (9)

Box II
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NIGWPH(A1; A2; :::; An)

=

*�
1�Pn

i=1
i
a�i

� 1
�
;

Pn
i=1

�ii
a�+1
i�Pn

i=1
i
a�i

� 1
�+1

!
;

 Pn
i=1

iu�ijaij�Pn
i=1

i
jaij�

! 1
�

; 1

�
 Pn

i=1
i
jaij� (1� vi)�Pn
i=1

i
jaij�

! 1
�+

; (10)

where i = wi(1+T (Ai))Pn
i=1 wi(1+T (Ai)) and T (Ai) is the compre-

hensive weighted support degree of Ai.

Proof. Obviously, according to De�nition 3, the above
aggregated value obtained by the NIGWPH operator is
also an NIFN. Moreover, Eq. (10) can be proved easily
by mathematical induction on n as follows:

1. For n = 2, since:

w1(1 + T (A1))Pn
i=1 wi(1 + T (Ai))

�
1
A1

��

=

* 
1

�
1
a1

��
; 1�

1
2
�1

a�+1
1

!
; u�1 ; 1�(1�v1)�

+
;

w2(1 + T (A2))Pn
i=1 wi(1 + T (Ai))

�
1
A2

��
=

*�
2

�
1
a2

��
; 2�

1
2
�2

a�+1
2

�
; u�2 ;

1� (1� v2)�
+
:

Then, we have the equation shown in Box III.

2. If Eq. (10) holds for n = k, then the equation shown
in Box IV is obtained. When n = k + 1, according
to the operations of INFNs, we have the equation
shown in Box V. That is, Eq. (10) also holds for
n = k + 1. Therefore, Eq. (10) is true for all n's.

Theorem 2 (Idempotency). Let Ai = h(ai; �i); ui;
vii; (i = 1; 2; :::; n) be a collection of NIFNs. If Ai
= ~A for all i = 1; 2; :::; n and, then, NIGWPH
(A1; A2; :::; An) = ~A.

Proof. Since Ai = ~A(i = 1; 2; :::; n) based on the

NIGWPH(A1; A2) =
1�

w1(1+T (A1))Pn
i=1 wi(1+T (Ai))

�
1
A1

�� � w2(1+T (A2))Pn
i=1 wi(1+T (Ai))

�
1
A2

��� 1
�

=

*�
1�

1
a�1

+ 2
a�2

� 1
�
;

�11

a�+1
1

+ �22

a�+1
2�

1
a�1

+ 2
a�2

� 1
�+1

�
;
� 1u�1ja1j� + 2u�2ja2j�

1
ja1j� + 2

ja2j�

� 1
�

; 1�
� 1
ja1j� (1� v1)� + 2

ja2j� (1� v2)�

1
ja1j� + 2

ja2j�

� 1
�+

:

Box III

NIGWPH(A1; A2; :::; Ak)

=
1�

w1(1+T (A1))Pk
i=1 wi(1+T (Ai))

�
1
A1

�� � w2(1+T (A2))Pk
i=1 wi(1+T (Ai))

�
1
A2

�� � � � � � wk(1+T (Ak))Pk
i=1 wi(1+T (Ai))

�
1
Ak

��� 1
�

=

*�
1�Pk

i=1
i
a�i

� 1
�
;

Pk
i=1

�ii
a�+1
i�Pk

i=1
i
a�i

� 1
�+1

�
;
�Pk

i=1
iu�ijaij�Pk

i=1
i
jaij�

� 1
�

; 1�
�Pk

i=1
i
jaij� (1� vi)�Pk
i=1

i
jaij�

� 1
�+

:

Box IV
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NIGWPH(A1; A2; :::; Ak; Ak+1)

=
1�Pk

i=1
wi(1+T (Ai))Pk+1
i=1 wi(1+T (Ai))

�
1
Ai

�� � wk+1(1+T (Ak+1))Pk+1
i=1 wi(1+T (Ai))

�
1

Ak+1

��� 1
�

=

*�
1�Pk+1

i=1
i
a�i

� 1
�
;

Pk+1
i=1

�ii
a�+1
i�Pk+1

i=1
i
a�i

� 1
�+1

�
;
�Pk+1

i=1
iu�ijaij�Pk+1

i=1
i
jaij�

� 1
�

; 1�
�Pk+1

i=1
i
jaij� (1� vi)�Pk+1
i=1

i
jaij�

� 1
�+

:

Box V

operations of NIFNs and De�nition 11, there is:

NIGWPH(A1; A2; :::; An)

=
1�Pn

i=1
wi(1+T (Ai))Pn
i=1 wi(1+T (Ai))

�
1
Ai

��� 1
�

=
1�Pn

i=1
wi(1+T ( ~A))Pn
i=1 wi(1+T ( ~A))

�
1
~A

��� 1
�

= ~A:

Theorem 3 (Commutativity). Let Ai = h(ai; �i);
ui; vii; (i = 1; 2; :::; n) be a collection of NIFNs,
and (A01; A02; � � � ; A0n) be any permutation of (A1;
A2; � � � ; An). If the weight of is not relevant to the
position of Ai variables, then:

NIGWPH(A1; A2; :::; An)

= NIGWPH(A01; A02; � � � ; A0n):

The support degree of Ai is determined by the
distance measure between Ai and Aj(j = 1; 2; :::; n; j 6=
i), and will not be a�ected by its position in the
permutation. Thus, Theorem 3 can be easily proven.

In general, there are four kinds of basic proper-
ties (idempotency, commutativity, monotonicity and
boundedness) for fuzzy aggregation operators. How-
ever, di�erent operators have distinct features, and
some operators can satisfy all of these properties and
some operators can satisfy some of these properties. It
is noted that it is di�cult to consider the monotonicity,
and boundedness of the NIGWPH operator because the
support degree will change and must be recalculated
when the input variables vary.

Some special cases of the NIGWPH operator are
described as follows:

1. If w = (1/n; 1/n; :::; 1/n), then the NIGWPH
operator is degenerated to the Normal Intuitionistic

Generalized Power Harmonic (NIGPH) operator as
follows:
NIGPH(A1; A2; :::; An)

=
1�Pn

i=1
(1+T (Ai))Pn
i=1 (1+T (Ai))

�
1
Ai

��� 1
�

=

*�
1�Pn

i=1
�i
a�i

� 1
�
;

Pn
i=1 �i

�i
a�+1
i�Pn

i=1
�i
a�i

� 1
�+1

�
;

0@Pn
i=1

�iu�ijaij�Pn
i=1

�i
jaij�

1A 1
�

; 1

�
�Pn

i=1
�i
jaij� (1� vi)�Pn
i=1

�i
jaij�

� 1
�+

: (11)

It is worth noting that the NIGPH operator is
capable of capturing the weight of Ai (i = 1; 2; :::; n)
as �i = (1+T (Ai))Pn

i=1 (1+T (Ai)) (i = 1; 2; :::; n) according to
the support degree among di�erent variables.

2. If � = 1, then the NIGWPH operator is reduced
to the Normal Intuitionistic Weighted Power Har-
monic (NIWPH) operator as:

NIWPH(A1; A2; :::; An)

=
1Pn

i=1
wi(1+T (Ai))Pn
i=1 wi(1+T (Ai))

1
Ai

=

*�
1Pn
i=1

i
ai

;

Pn
i=1

i�i
a2
i�Pn

i=1
i
ai

�2

�
;

Pn
i=1

iuijaijPn
i=1

ijaij
;

Pn
i=1

ivijaijPn
i=1

ijaij

+
: (12)
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3. If �! 0, then the NIGWPH operator becomes the
Normal Intuitionistic Weighted Geometric Power
Harmonic (NIWGPH) operator as follows:

NIWGPH(A1; A2; :::; An)

=
1

nQ
i=1

( 1
Ai )

wi(1+T (Ai))Pn
i=1 wi(1+T (Ai))

=

*�
1Qn

i=1 ( 1
ai )

i ;

qPn
i=1

i�2
i

a2
iQn

i=1 ( 1
ai )

i

�
;

Yn

i=1
uii ;1�

Yn

i=1
(1� vi)i

+
: (13)

4. If � = �1, then the NIGWPH operator becomes
the Normal Intuitionistic Weighted Power (NIWP)
operator as:

NIWP (A1; A2; :::; An)

=
Xn

i=1

wi(1 + T (Ai))Pn
i=1 wi(1 + T (Ai))

Ai

=

*�Xn

i=1
aii;

Xn

i=1
�ii

�
;

Pn
i=1 jaij iPn
i=1

jaiji
ui

; 1�
Pn
i=1 jaij iPn
i=1

jaiji
1�vi

+
: (14)

4.3. Normal intuitionistic generalized induced
ordered weighted power harmonic operator

In this subsection, the generalized induced ordered
weighted power harmonic aggregation operator un-
der normal intuitionistic fuzzy situation is developed,
which is an integration of Induced Ordered Weighted
Averaging (IOWA), PA, and HM operators. The de�-
nition of the Normal Intuitionistic Generalized Induced
Ordered Weighted Power Harmonic (NIGIOWPH) op-
erator and its relevant theorems are presented in the
following.

De�nition 12. Let Ai = h(ai; �i); ui; vii ; (i = 1; 2;
:::; n) be a collection of NIFNs and then, the NI-
GIOWPH operator can be de�ned as follows:

NIGIOWPH(hu1; A1i ; hu2; A2i ; :::; hun; Ani)

=
1�Pn

i=1 �i
�

1
~Aindex(i)

��� 1
�
; (15)

where �2(�1; 0)[(0;+1), hui; Aii is the 2-tuple with
ordered induced variable ui and NIFN Ai (index(1);

index(2); :::; index(n)) is a permutation of (1; 2; :::; n)
such that uindex(i�1) � uindex(i) for all i = 1; 2; 3; :::; n,D
uindex(i); ~Aindex(i)

E
is the 2-tuple with the i-th largest

ordered induced variable ui in fu1; u2; :::; ung and the
corresponding NIFN Ai in hui; Aii, and �i is the asso-
ciated weight that satis�es the following formulation:

T ( ~Aindex(i)) =
Xn

j=1;j 6=i Sup(
~Aindex(i); ~Aindex(j));

Ri =
Xi

j=1
Vindex(j);

TV =
Xn

i=1
Vindex(i); Vindex(i) = 1 + T ( ~Aindex(i));

�i = g
�
Ri
TV

�
� g

�
Ri�1

TV

�
;

where the function g : [0; 1] ! [0; 1] is a Basic Unit-
Interval Monotone (BUM) function satisfying g(0) = 0,
g(1) = 1, and g(x) � g(y), if x > y. Similarly,
Sup( ~Aindex(i); ~Aindex(j)) indicates the support degree
of the ith largest argument ~Aindex(i) from ~Aindex(j),
and T (Ai) is the comprehensive support degree of
~Aindex(i).

In the NIGIOWPH operator, the reordering of the
NIFN aggregated values fA1; A2; :::; Ang is induced by
the order of fu1; u2; :::; ung. If the reordering of the
NIFN aggregated values fA1; A2; :::; Ang is induced by
the order of fA1; A2; :::; Ang (namely, ui = Ai(i =
1; 2; :::; n)), then the NIGIOWPH operator becomes the
Normal Intuitionistic Generalized Ordered Weighted
Power Harmonic (NIGOWPH) operator

Based on the operations of NIFNs, the expression
of the NIGIOWPH operator can be given below.

Theorem 4. Let Ai = h(ai; �i); ui; vii ; (i = 1; 2; :::; n)
be a collection of NIFNs, and then the aggregated value
obtained by the NIGIOWPH operator is given below:

NIGIOWPH(hu1; A1i ; hu2; A2i ; :::; hun; Ani)

=

*�
1�Pn

i=1
�i

a�index(i)

� 1
�
;

Pn
i=1

�index(i)�i
a�+1
index(i)�Pn

i=1
�i

a�index(i)

� 1
�+1

�
;

0BB@
Pn
i=1

�iu�index(i)jaindex(i)j�Pn
i=1

�ijaindex(i)j�

1CCA
1
�

; 1

�
�Pn

i=1
�ijaindex(i)j� (1� vindex(i))

�Pn
i=1

�ijaindex(i)j�
� 1
�+

: (16)
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The aggregated value obtained by the NI-
GIOWPH operator is also an NIFN, and Eq. (16) can
be proven easily through mathematical induction on n.

Theorem 5 (Idempotency). Let Ai = h(ai; �i); ui;
vii; (i = 1; 2; :::; n) be a collection of NIFNs. If Ai
= ~A for all i = 1; 2; :::; n and then, NIGIOWPH
(hu1; A1i ; hu2; A2i ; :::; hun; Ani) = ~A.

Theorem 6 (Commutativity). Let (A01; A02; :::; A0n)
be any permutation of (A1; A2; :::; An) and:

NIGIOWPH(hu1; A01i ; hu2; A02i ; :::; hun; A0ni)
=NIGIOWPH(hu1; A1i ; hu2; A2i ; :::; hun; Ani):

Theorem 5 can be easily proven based on Theorem 2.
Moreover, Theorem 6 is apparently true because all
input variables will be reordered using the IOWA
operator.

Theorem 7. If g(x) = x, then the NIGIOWPH
operator is reduced to the NIGPH operator, that is:

NIGIOWPH(hu1; A1i ; hu2; A2i ; :::; hun; Ani)
= NIGPH(A1; A2; :::; An):

Proof. If g(x) = x, then:

�i =
Ri �Ri�1

TV
=

1 + T ( ~Aindex(i))Pn
i=1 1 + T ( ~Aindex(i))

;

and there are:

NIGIOWPH(hu1; A1i ; hu2; A2i ; :::; hun; Ani)

=
1�Pn

i=1
1+T ( ~Aindex(i))Pn
i=1 1+T ( ~Aindex(i))

�
1

~Aindex(i)

��� 1
�

=
1�Pn

i=1
1+T (Ai)Pn

i=1 (1+T (Ai))

�
1
Ai

��� 1
�

= NIGPH(A1; A2; :::; An):

The NIGIOWPH operator has special cases when the
certain value of � is given:

1. If � = 1, then the NIGIOWPH operator is re-
duced to the Normal Intuitionistic Induced Ordered
Weighted Power Harmonic (NIIOWPH) operator
as:

NIIOWPH(hu1; A1i ; hu2; A2i ; :::; hun; Ani)

=
1Pn

i=1 �i
1

~Aindex(i)

=

*�
1Pn

i=1
�i

aindex(i)

;

Pn
i=1

�i�index(i)
a2
index(i)�Pn

i=1
�i

aindex(i)

�2

�
;

Pn
i=1

�iuindex(i)jaindex(i)jPn
i=1

�ijaindex(i)j
;

Pn
i=1

�ivindex(i)jaindex(i)jPn
i=1

�ijaindex(i)j

+
: (17)

2. If � ! 0, then the NIGIOWPH operator
becomes the Normal Intuitionistic Induced Or-
dered Weighted Geometric Power Harmonic (NI-
IOWGPH) operator as follows:

NIIOWGPH(hu1; A1i ; hu2; A2i ; :::; hun; Ani)

=
1Qn

i=1

�
1

~Aindex(i)

��i

=

*�
1Qn

i=1

�
1

aindex(i)

��i ;
s

nP
i=1

�i�2
index(i)

a2
index(i)Qn

i=1

�
1

aindex(i)

��i�;
Yn

i=1
u�iindex(i);1

�Yn

i=1
(1� vindex(i))

�i

+
: (18)

3. If � = �1, then the NIGIOWPH operator is re-
duced to the Normal Intuitionistic Induced Ordered
Weighted Power (NIIOWP) operator as:

NIIOWP (hu1; A1i ; hu2; A2i ; :::; hun; Ani)
=
Xn

i=1
�i ~Aindex(i)

=

*�Xn

i=1
aindex(i)�i;

Xn

i=1
�index(i)�i

�
;

Pn
i=1 aindex(i)�iPn
i=1
jaindex(i)j�i
uindex(i)

; 1�
Pn
i=1 aindex(i)�iPn
i=1
jaindex(i)j�i
1�vindex(i)

+
:

(19)

4.4. Normal intuitionistic generalized hybrid
power harmonic operator

In general, the NIGWPH operator emphasizes the com-
pensation among di�erent input arguments and the im-
portance of overall evaluations, while the NIGOWPH
operator stresses the impact of the position of in-
put arguments. In this subsection, based on the
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above two generalized aggregation operators, the Nor-
mal Intuitionistic Generalized Hybrid Power Harmonic
(NIGHPH) operator is developed to reect the inu-
ence of the overall evaluations and the position of each
variable simultaneously.

De�nition 13. Let Ai = h(ai; �i); ui; vii ; (i =
1; 2; :::; n) be a collection of NIFNs, and the NIGHPH
operator can be de�ned as follows:

NIGHPH(A1; A2; :::; An)

=
1�

�1('�(1))
� � �2('�(2))

� � � � � � �n('�(n))
�
� 1
�

=
1�Pn

i=1 �i('�(i))
�
� 1
�
; (20)

where � 2 (�1; 0) [ (0;+1), � = (�1; �2; :::; �n) are
the associated weights, which can be determined as de-
scribed in De�nition 12. '�(i) is the i-th largest of the
power NIFNs 'i = n 1+T (Ai)Pn

i=1 (1+T (Ai))
1
Ai (i = 1; 2; :::; n),

wherein n is the balancing coe�cient. Especially, if
'�(i) is the i-th largest of the weighted NIFNs 'i =
nwi 1

Ai (i = 1; 2; :::; n) and wi(i = 1; 2; :::; n) is the
weight of Ai(i = 1; 2; :::; n), then the NIGHPH operator
becomes the Normal Intuitionistic Generalized Hybrid
Weighted Power Harmonic (NIGHWPH) operator.

Theorem 8. Let Ai = h(ai; �i); ui; vii ; (i = 1; 2; :::; n)
be a collection of NIFNs, � = (�1; �2; :::; �n) be the
associated weight, and the aggregated value obtained
by the NIGHPH operator be:

NIGHPH(A1; A2; :::; An)

=

*�
1�Pn

i=1 �ia�'�(i)

� 1
�
;

Pn
i=1 �ia

��1
'�(i)

�'�(i)�Pn
i=1 �ia�'�(i)

� 1
�+1

�
;

0@Pn
i=1

��a'�(i)

���u�'�(i)
�iPn

i=1

��a'�(i)

����i
1A 1

�

; 1

�
�Pn

i=1

��a'�(i)

����i(1� v'�(i))
�Pn

i=1

��a'�(i)

����i
� 1
�+

: (21)

Similar to the NIGOWPH operator, the NIGHPH
operator also satis�es the properties of idempotency
and commutativity.

There are some special cases of the NIGHPH
operator as follows:

1. If the associated weight of the NIGHPH operator
is � = (1/n; 1/n; :::; 1/n) and � = 1, then the

NIGHPH operator becomes a Normal Intuitionistic
Power Harmonic (NIPH) operator as:

NIPH(A1; A2; :::; An) =
1Pn

i=1
(1+T (Ai))Pn
i=1 (1+T (Ai))

1
Ai

=

*�
1Pn
i=1

�i
ai

;

Pn
i=1

�i�i
a2
i�Pn

i=1
�i
ai

�2

�
;

Pn
i=1

�iuijaijPn
i=1

�ijaij
;

Pn
i=1

�ivijaijPn
i=1

�ijaij

+
: (22)

2. If � = 1, then the NIGHPH operator is reduced to
the Normal Intuitionistic Hybrid Power Harmonic
(NIHPH) operator as follows:

NIHPH(A1; A2; :::; An) =
1Pn

i=1 �i'�(i)

=

*�
1Pn

i=1 �ia'�(i)

;
Pn
i=1 �i�'�(i)�Pn
i=1 �ia'�(i)

�2�;Pn
i=1 �i

��a'�(i)

��u'�(i)Pn
i=1 �i

��a'�(i)

�� ;Pn
i=1 �i

��a'�(i)

�� v'�(i)Pn
i=1 �i

��a'�(i)

�� +
: (23)

3. If �! 0, then the NIGOWPH operator is reduced
to the Normal Intuitionistic Hybrid Geometric
Power Harmonic (NIHGPH) operator as follows:

NIHGPH(A1; A2; :::; An) =
1

nQ
i=1

�
'�(i)

��i
=

*�
1Qn

i=1 a
�i
'�(i)

;

rPn
i=1

�i�2
'�(i)

a2
'�(i)Qn

i=1 a
�i
'�(i)

�
;

Yn

i=1
u�i'�(i)

;1�Yn

i=1
(1� v'�(i))

�i

+
: (24)

4. If � = �1, then the NIGHPH operator is reduced
to the Normal Intuitionistic Hybrid Power (NIHP)
operator as:

NIHP (A1; A2; :::; An) =
Xn

i=1

�i
'�(i)

=*�Xn

i=1

�i
a'�(i)

;
Xn

i=1

�i�'�(i)

a2
'�(i)

�
;Pn

i=1
�i���a'�(i)

���Pn
i=1

�i���a'�(i)

���u'�(i)

; 1
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�
Pn
i=1

�i���a'�(i)

���Pn
i=1

�i���a'�(i)

���(1�v'�(i) )

+
: (25)

5. A MCGDM method under normal
intuitionistic fuzzy circumstance

This section presents the development of MCGDM
method in the context of NIFNs. In this method, the
proposed normal intuitionistic generalized aggregation
operators are used to deal with practical decision-
making problems.

Concerning MCGDM ranking or selection prob-
lem with NIFNs information, we suppose that a group
of DMs is denoted by fd1; d2; :::; dqg and a set of
alternatives is denoted by fb1; b2; :::; bng. Each alter-
native is evaluated under given criteria, denoted by
fc1; c2; :::; cmg. DM dk provides assessments for alter-
native bi under criteria cj in the form of NIFNs �kij =

(akij ; �kij); ukij ; vkij

�
(i = 1; 2; :::; n; j = 1; 2; :::;m; k =

1; 2; :::; q). Then, the decision information can be
presented as �k = (�kij)m�n.

In practical decision-making problems, the weight
information of DMs and criteria are usually unknown
because of the uncertainty of decision-making envi-
ronment and the limitation of DM expertise. In the
following, the main procedure of the MCGDM method
is presented to handle decision-making problems with
completely unknown weight information:

Step 1. Standardize the decision information. To
eliminate the inuence of di�erent dimensions in
the operation process, all evaluation values must be
standardized to the same magnitude grade. The
normalized evaluation information ��k = (��kij)m�n
can be obtained as follows:

For bene�t criteria:

��kij =


(�akij ; ��

k
ij); �u

k
ij ; �v

k
ij
�

=

* 
akij

maxi(akij)
;

�kij
maxi(�kij)

�kij
akij

!
; ukij ; v

k
ij

+
:

For cost criteria:

��kij =


(�akij ; ��

k
ij); �u

k
ij ; �v

k
ij
�

=

* 
mini(akij)

akij
;

�kij
maxi(�kij)

�kij
akij

!
; ukij ; v

k
ij

+
:

Step 2. Compute the comprehensive support degree.
The comprehensive support degree of ��kij can be
calculated as follows:

T (��kij) =
Xq

l=1;l 6=k Sup(
��kij ; ��lij) and

Sup(��kij ; ��lij) = 1� 2d(��kij ; ��lij)Pq
k=1

Pq
l=1;l 6=k d(��kij ; ��lij)

;

where d(��kij ; ��lij) is the Euclidean distance between
��kij and ��lij , and Sup(��kij ; ��lij) is the support degree of
��kij from ��lij , which satis�es the properties described
in De�nition 9.
Step 3. Aggregate the evaluation of each alternative
under individual decision matrix. In the group
decision-making problems, the position of evalua-
tions provided by di�erent DMs has no inuence
on decision results, and the importance of overall
evaluations based on all DMs should be highlighted.
Thus, to obtain the collective evaluations ��ij of each
alternative, the NIGPH operator, which can stress
the importance of overall evaluations and capture the
weights of input variables, is used to aggregate the
individual evaluations of each DM as:

��ij = NIGPH(��1
ij ; ��2

ij ; :::; ��qij)

=
1�Pq

k=1
1+T (��kij)Pq

k=1 (1+T (��kij))

�
1

��kij

��� 1
�
:

Then, a collective evaluation matrix can be con-
structed as O = (��ij).
Step 4. Compute the associated weight of the
NIGHPH operator. First, 'ij = m 1+T (��ij)Pm

j=1 (1+T (��ij))
1

��ij
'i;index(j) can be calculated based on Step 3. Second,
the j-th largest value can be obtained by comparing
'ij . Moreover, the support degree and the compre-
hensive support degree can be computed as follows:

Sup('i;index(j); 'i;index(g)) = 1

� 2d('i;index(j); 'i;index(g))
mP
j=1

mP
g=1;g 6=j

d('i;index(j); 'i;index(g))
; and

T ('i;index(j)) =
mX

g=1;g 6=j
Sup('i;index(j); 'i;index(g)):

The BUM function is considered as g(x) = x and,
then, !j = 1+T ('i;index(j))Pm

j=1 (1+T ('i;index(j)))
.

Step 5. Aggregate the evaluations of each alternative
under all criteria. Evaluations may vary signi�cantly
after the �rst aggregation. To acquire valid results,
the evaluations should be preprocessed before the
next aggregation. For example, the rearrangement of
all variables is an e�ective mean. Therefore, to obtain
the comprehensive evaluation �i of each alternative,
the NIGHPH operator, which can consider the po-
sition of input variables and the inuence of overall
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evaluations simultaneously, is used to integrate the
collective evaluations under all criteria as follows:

�i = NIGHPH(��i1; ��i2; :::; ��im)

=
1�Pm

j=1 !j('i;index(j))
�
� 1
�
:

Step 6. Calculate the scoring value of each alterna-
tive. The scoring value S(�i) can be calculated using
Eq. (6) according to De�nition 8.
Step 7. Rank all alternatives and select the best
one. The order of all alternatives can be ranked
and the best alternative can be identi�ed according
to the scoring value S(�i).

In some cases, if the weight information of
the MCGDM problems can be acquired by e�ective
methods, then a method can also be developed to
address such decision-making problems. The steps
of this method are slightly di�erent from the above
method. The distinct steps are described in the
following.

In Step 2, the comprehensive weighted support
degree must be computed as:

T (��kij) =
Xq

l=1;l 6=k �lSup(
��kij ; ��lij);

where � = (�1; �2; :::; �q) is the weight vector of DMs.
In Step 3, the NIGWPH operator must be used

to aggregate the individual evaluations of each DM
as follows:

��ij = NIGWPH(��1
ij ; ��2

ij ; :::; ��qij)

=
1�Pq

k=1
�k(1+T (��kij))Pq
k=1 �k(1+T (��kij))

�
1

��kij

��� 1
�
:

In Step 5, the NIGHWPH operator must be
used to aggregate the collective evaluations ��ij , ob-
tained in Step 3, as follows:

�i = NIGHWPH(��i1; ��i2; :::; ��im)

=
1�Pm

j=1 !j('i;index(j))
�
� 1
�
;

where 'i;index(j) is the j-th largest of the weighted
NIFNs 'ij = n�j 1

��ij
, and � = (�1; �2; :::; �m) is the

weight vector of criteria.

6. Illustrative example

This section provides a practical decision-making prob-
lem to highlight the applicability of the proposed
method. Furthermore, the availability and e�ectiveness
of the proposed method are con�rmed through the
sensitivity analysis and the comparative analysis with
existing methods.

A Mining Bureau evaluates the safety conditions
of four coal mines in an area according to correlative
assessment methods and production regulations. The
four coal mines are denoted by fb1; b2; b3; b4g. To e�ec-
tively assess these coal mines and select the safest one,
a professional team including three DMs fd1; d2; d3g is
formed. Many factors a�ect the safety environment,
and the following four criteria are considered based
on detailed investigation: c1 technological equipment;
c2, geological conditions; c3, human diathesis; and c4,
management quality [60]. The evaluation values of
alternative bi under criteria cj are provided by DMs
dl in the form of NIFNs �kij =



(akij ; �kij); ukij ; vkij

�
,

(i = 1; 2; 3; j = 1; 2; 3; k = 1; 2; 3), and the normal in-
tuitionistic fuzzy evaluation information �k = (�kij)4�4
is shown in Tables 1{3.

Table 1. Evaluations of Normal Intuitionistic Fuzzy Numbers (NIFNs) provided by d1.

c1 c2 c3 c4

b1 h(5:5; 0:4); 0:7; 0:3i h(8; 0:35); 0:5; 0:4i h(6; 0:4); 0:8; 0:1i h(5; 0:35); 0:6; 0:4i
b2 h(7; 0:3); 0:6; 0:4i h(5:5; 0:6); 0:75; 0:2i h(5; 0:3); 0:7; 0:3i h(7; 0:5); 0:8; 0:1i
b3 h(5; 0:5); 0:6; 0:35i h(4; 0:3); 0:6; 0:3i h(7:5; 0:5); 0:5; 0:4i h(6; 0:6); 0:7; 0:3i
b4 h(8; 0:6); 0:65; 0:3i h(6; 0:4); 0:8; 0:1i h(7; 0:4); 0:6; 0:4i h(7:5; 0:4); 0:65; 0:3i

Table 2. Evaluations of Normal Intuitionistic Fuzzy Numbers (NIFNs) provided by d2.

c1 c2 c3 c4

b1 h(7; 0:6); 0:6; 0:4i h(8; 0:4); 0:8; 0:2i h(6; 0:2); 0:6; 0:4i h(7; 0:6); 0:65; 0:3i
b2 h(5; 0:3); 0:7; 0:3i h(6; 0:2); 0:6; 0:3i h(3:5; 0:3); 0:6; 0:4i h(5; 0:3); 0:7; 0:2i
b3 h(7; 0:2); 0:7; 0:2i h(7; 0:5); 0:6; 0:35i h(5; 0:5); 0:8; 0:2i h(6; 0:4); 0:6; 0:25i
b4 h(4; 0:5); 0:8; 0:1i h(6:5; 0:5); 0:6; 0:4i h(6; 0:4); 0:7; 0:3i h(8; 0:6); 0:5; 0:5i
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Table 3. Evaluations of Normal Intuitionistic Fuzzy Numbers (NIFNs) provided by d3.

c1 c2 c3 c4

b1 h(6; 0:5); 0:7; 0:3i h(7:5; 0:5); 0:75; 0:2i h(7; 0:5); 0:7; 0:3i h(4; 0:2); 0:6; 0:4i
b2 h(5; 0:2); 0:65; 0:35i h(8; 0:4); 0:7; 0:3i h(4; 0:3); 0:8; 0:2i h(7; 0:5); 0:8; 0:2i
b3 h(7; 0:4); 0:8; 0:2i h(6:5; 0:35); 0:6; 0:4i h(6; 0:4); 0:6; 0:35i h(7:5; 0:6); 0:65; 0:35i
b4 h(7:5; 0:6); 0:5; 0:45i h(6; 0:6); 0:5; 0:5i h(5:5; 0:5); 0:7; 0:3i h(6:5; 0:5); 0:65; 0:3i

Table 4. Normalized evaluations of d1.

c1 c2 c3 c4

b1 h(0:69; 0:05); 0:7; 0:3i h(1; 0:03); 0:5; 0:4i h(0:8; 0:05); 0:8; 0:1i h(0:67; 0:04); 0:6; 0:4i
b2 h(0:88; 0:02); 0:6; 0:4i h(0:69; 0:11); 0:75; 0:2i h(0:67; 0:04); 0:7; 0:3i h(0:93; 0:06); 0:8; 0:1i
b3 h(0:63; 0:08); 0:6; 0:35i h(0:5; 0:04); 0:6; 0:3i h(1; 0:07); 0:5; 0:4i h(0:8; 0:1); 0:7; 0:3i
b4 h(1; 0:08); 0:65; 0:3i h(0:75; 0:04); 0:8; 0:1i h(0:93; 0:05); 0:6; 0:4i h(1; 0:04); 0:65; 0:3i

Table 5. Normalized evaluations of d2.

c1 c2 c3 c4

b1 h(1; 0:09); 0:6; 0:4i h(1; 0:04); 0:8; 0:2i h(1; 0:01); 0:6; 0:4i h(0:88; 0:09); 0:65; 0:3i
b2 h(0:71; 0:03); 0:7; 0:3i h(0:75; 0:01); 0:6; 0:3i h(0:58; 0:05); 0:6; 0:4i h(0:63; 0:03); 0:7; 0:2i
b3 h(1; 0:01); 0:7; 0:2i h(0:88; 0:07); 0:6; 0:35i h(0:83; 0:1); 0:8; 0:2i h(0:75; 0:04); 0:6; 0:25i
b4 h(0:57; 0:10); 0:8; 0:1i h(0:81; 0:08); 0:6; 0:4i h(1; 0:05); 0:7; 0:3i h(1; 0:08); 0:5; 0:5i

Table 6. Normalized evaluations of d3.

c1 c2 c3 c4

b1 h(0:8; 0:07); 0:7; 0:3i h(0:94; 0:06); 0:75; 0:2i h(1; 0:07); 0:7; 0:3i h(0:53; 0:02); 0:6; 0:4i
b2 h(0:67; 0:01); 0:65; 0:35i h(1; 0:03); 0:7; 0:3i h(0:57; 0:05); 0:8; 0:2i h(0:93; 0:06); 0:8; 0:2i
b3 h(0:93; 0:04); 0:8; 0:2i h(0:81; 0:03); 0:6; 0:4i h(0:86; 0:05); 0:6; 0:35i h(1; 0:08); 0:65; 0:35i
b4 h(1; 0:08); 0:5; 0:45i h(0:75; 0:1); 0:5; 0:5i h(0:79; 0:09); 0:7; 0:3i h(0:87; 0:06); 0:65; 0:3i

6.1. Illustration of the proposed method
The main procedures for evaluating the safest coal mine
are presented in the following:

Step 1. Standardize the decision information. Con-
sidering that all the criteria are of bene�t type, the
normalized evaluations are shown in Tables 4{6.

Step 2. Compute the comprehensive support de-
gree. First, the distance between ��kij and ��lij should
be computed according to De�nition 4. For exam-
ple, d(��1

11; ��2
11) = 0:1194, d(��1

11; ��3
11) = 0:0794,

and d(��2
11; ��3

11) = 0:0401. Second, the support de-
gree can be calculated as Sup(��1

11; ��2
11) = 0:5002,

Sup(��1
11; ��3

11) = 0:6675, and Sup(��2
11; ��3

11) = 0:8323.
Then, the comprehensive support degree can be
obtained as T (��1

11) = 1:1677, T (��2
11) = 1:3325, and

T (��3
11) = 1:4998. All comprehensive support degrees

are shown in the following three matrices.

T
���1
ij
�

=

2664 1:1677 1:1471 1:4995 1:5
1:3642 1:4669 1:454 1:4282
1:0229 1:139 1:4999 1:4881
1:1306 1:2142 1:4741 1:2422

3775 ;
T
���2
ij
�

=

2664 1:3325 1:3541 1:0971 1:1479
1:4968 1:379 1:0517 1:0718
1:4855 1:3636 1:0536 1:3068
1:3824 1:5 1:0862 1:259

3775 ;
T
���3
ij
�

=

2664 1:4998 1:4987 1:4034 1:3521
1:139 1:1541 1:4943 1:5
1:4915 1:4974 1:4465 1:205
1:487 1:2858 1:4397 1:4988

3775 :
Step 3. Aggregate the evaluations of each alternative
under individual decision matrix. Let � = 1 and then,
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Table 7. Collective evaluations.

c1 c2 c3 c4

b1 h(0:81; 0:07); 0:67; 0:33i h(0:98; 0:04); 0:69; 0:26i h(0:92; 0:05); 0:71; 0:25i h(0:66; 0:04); 0:61; 0:38i
b2 h(0:74; 0:02); 0:65; 0:35i h(0:79; 0:06); 0:68; 0:26i h(0:61; 0:04); 0:71; 0:29i h(0:81; 0:05); 0:76; 0:17i
b3 h(0:83; 0:06); 0:69; 0:26i h(0:70; 0:05); 0:60; 0:34i h(0:90; 0:07); 0:63; 0:32i h(0:83; 0:07); 0:65; 0:29i
b4 h(0:80; 0:10); 0:68; 0:25i h(0:77; 0:07); 0:63; 0:34i h(0:89; 0:07); 0:67; 0:33i h(0:95; 0:06); 0:60; 0:36i

Table 8. Rankings with the varying values of �.

Scoring value of each alternatives
� S(�1) S(�2) S(�3) S(�4) Ranking

� = �10 0.2915 0.2965 0.3365 0.2489 b4 � b1 � b2 � b3
� = �8 0.2923 0.2996 0.3312 0.2236 b4 � b1 � b2 � b3
� = �6 0.2968 0.3086 0.3255 0.2185 b4 � b1 � b2 � b3
� = �2 0.2896 0.3195 0.3178 0.2912 b1 � b4 � b3 � b2
� = �1 0.2863 0.3297 0.3166 0.2965 b1 � b4 � b3 � b2
�! 0 0.2971 0.3362 0.3249 0.3152 b1 � b4 � b3 � b2
� = 1 0.2951 0.3352 0.3224 0.2957 b1 � b4 � b3 � b2
� = 2 0.2922 0.3296 0.3192 0.2724 b4 � b1 � b3 � b2
� = 6 0.2806 0.2795 0.3209 0.1818 b4 � b2 � b1 � b3
� = 8 0.2881 0.2646 0.3362 0.1651 b4 � b2 � b1 � b3
� = 10 0.2992 0.2572 0.3520 0.1553 b4 � b2 � b1 � b3

the individual evaluations can be aggregated using
the NIGPH operator, and the collective evaluations
can be obtained, as shown in Table 7.
Step 4. Compute the associated weight of the
NIGHPH operator. According to the obtained col-
lective evaluations, 'ij = m 1+T (��ij)Pm

j=1 (1+T (��ij))
1

��ij
can be

calculated and ranked. Moreover, after computing
the support degree and the comprehensive support
degree, the associated weight of the NIGHPH opera-
tor under each criterion can be computed as follows:

!ij =

2664 0:2581 0:2351 0:2587 0:2481
0:255 0:2604 0:2234 0:2612
0:244 0:2573 0:2416 0:2571
0:2332 0:2611 0:2611 0:2446

3775 :
Step 5. Aggregate the evaluations of each alternative
under all criteria. Utilizing the NIGHPH operator
to aggregate the collective evaluations ��ij obtained
in Step 3, the comprehensive evaluations of each
alternative can be obtained as:
�1 = h(0:8255; 0:0493); 0:6683; 0:3088i ;
�2 = h(0:7331; 0:0438); 0:7001; 0:2704i ;
�3 = h(0:8118; 0:0616); 0:6428; 0:3045i ;
�4 = h(0:8496; 0:0778); 0:6462; 0:3186i :

Step 6. Calculate the scoring value of each alterna-
tive. The scoring value S(�1) of the comprehensive
evaluation �i of each alternative can be calculated by
using Eq. (6) as:

S(�1) = 0:2951; S(�2) = 0:3352;

S(�3) = 0:3224; and S(�4) = 0:2957:

Step 7. Rank all alternatives and select the best one.
From Step 6, it can be seen that the �nal ranking of
the four coal mines is b1 � b4 � b3 � b2. Thus, the
safest coal mine is identi�ed as b1.

6.2. Sensitivity analysis
The above ranking of safe coal mines is obtained by
using the NIGPH and NIGHPH operators with � = 1.
The study should discuss whether or not the �nal
ranking changes when di�erent values of parameter �,
which is involved in the normal intuitionistic general-
ized aggregation operators, are used.

The given example can also be used to conduct
the sensitivity analysis. The results obtained based on
di�erent values of parameter � are shown in Table 8.
In addition, the scoring values of alternatives obtained
using the varying values of � are shown in Figure 2.

The above data shows that the rankings obtained
based on the normal intuitionistic generalized aggre-
gation operators apparently change with the varying
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Figure 2. Scoring values of alternatives with the varying
values of �.

values of �: when �10 � � < �2, the ranking is
b4 � b1 � b2 � b3; when �2 � � � 1, the ranking
is b1 � b4 � b3 � b2; when 1 < � � 3, the ranking
is b4 � b1 � b3 � b2; when 3 < � < 6, the ranking
is b4 � b1 � b2 � b3; and when � � 6, the ranking
is b4 � b2 � b1 � b3. This �nding indicates that
normal intuitionistic generalized aggregation operators
are sensitive to varying values of � under the situation
in the above coal mine safety evaluation problem.

The above discussion demonstrates that the val-
ues of � can inuence the �nal ranking of the safe coal
mines. In general, � is correlated with the thinking
mode of the DM. The bigger the values of �, the more
optimistic the DM is; meanwhile, the smaller the values
of �, the more pessimistic the DM is. Moreover, � < 0
indicates that the DM is negative, and � > 0 indicates
that the DM is positive. Therefore, the proposed
method for evaluating coal mine safety is very exible,
and DMs can choose appropriate values of � according
to their preferences and actual situations to obtain the
most precise result.

6.3. Comparison analysis and discussion
To further verify the feasibility and validity of the
proposed method under normal intuitionistic fuzzy
environment, the comparison analysis for two existing
methods is conducted.

1. Comparison analysis for the existing meth-
ods using NIFNs. Wang et al. [22] proposed the
MCDM method based on NIFNs by developing a
series of aggregation operators, such as Normal In-
tuitionistic Fuzzy-Induced Ordered Weighted Aver-
aging (NIFIOWA) operator, Normal Intuitionistic
Fuzzy-Induced Ordered Weighted Geometric Aver-
aging (NIFIOWGA) operator, and (NIFIGOWA)
operator. Moreover, a practical MCDM problem
was handled using the NIFIGOWA operator in
[22]. The obtained rankings with varying values
of � are shown in Table 9. To ensure an e�ective
comparison, the NIGIOWPH operator proposed in
Section 4 is used to address the MCDM problem in
[22]. The following procedures need to be provided.

First, the comprehensive evaluation of each
alternative can be calculated using the NIGIOWPH
operator based on the normalized decision matrix.
Second, the scoring value of each alternative can
be calculated using Eq. (6) and the ranking can
be determined. Finally, the rankings obtained by
the NIGIOWPH operator with varying values of �
are shown in Table 9. For example, when � = 1,
the scoring values of alternatives are obtained as
S(�1) = 0:3783, S(�2) = 0:2698, S(�3) = 0:4000,
and S(�4) = 0:2211; and the ranking of alternatives
is therefore determined as b4 � b2 � b1 � b3.

The data in Table 9 shows that the rankings
obtained by the proposed approach and the method
in [22] are slightly distinct with the varying values
of �. The reasons for the inconsistency of rankings
are explained in the following.

First, although both the NIFIGOWA opera-
tor in [22] and our proposed NIGIOWPH opera-
tor are based on IOWA, NIGIOWPH has better
capability to deal with fuzzy information fusion
than NIFIGOWA. By combining PA and HM, NI-
GIOWPH allows aggregated values to support each
other with consideration of the interrelationships
among them and can relive the impact of excep-
tional data in the aggregation process. Second,
the method in [22] provided the weight information

Table 9. Rankings using di�erent methods with the varying values of �.

� Method with the NIFIGOWA operator Method with the NIGIOWPH operator

�! 0 b4 � b2 � b1 � b3 b4 � b2 � b1 � b3
� = 1 b4 � b2 � b1 � b3 b4 � b2 � b1 � b3
� = 2 b4 � b2 � b3 � b1 b4 � b2 � b1 � b3
� = 5 b2 � b4 � b3 � b1 b4 � b2 � b1 � b3
� = 10 b2 � b4 � b3 � b1 b4 � b2 � b3 � b1
� = 20 b2 � b4 � b3 � b1 b4 � b2 � b3 � b1
� = 50 b2 � b4 � b3 � b1 b4 � b2 � b3 � b1



2846 H.-G. Peng et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 2830{2850

subjectively, which would a�ect the precision of the
�nal results, whereas our proposed method could
e�ectively judge and weigh the importance of argu-
ments and appropriately assign weights to them in
the aggregation process by using the PA operator.
Finally, the comparison approaches of NIFNs in [22]
and our proposed method are signi�cantly distinct.
As discussed in Section 3, the comparison approach
of NIFNs in [22] has many non-negligible problems,
which may lead to unreasonable ranking results. To
address the drawbacks of the existing comparison
approach, this study developed an e�ective normal
intuitionistic fuzzy ranking method by integrating
the expectation and variance of normal distribution
with the hesitation degree and distance measure of
NIFNs.

In addition, the above comparison analysis
illustrates that the proposed method can not only
solve MCGDM problems, but also address MCDM
problems e�ectively.

2. Comparison analysis for the existing method
using TIFNs. Wan et al. [14] proposed MCGDM
method under the triangular intuitionistic fuzzy
environment. This method developed an extended
VIKOR model to balance the maximum of utility
for the majority and the minimum of the individual
regret for the opponent. Now, the preceding
example is assessed using the method in [14].

First, the NIFNs should be transformed into
TIFNs according to the procedures in [22]. For
example, let A = h(a; �); u; vi be an NIFN and
then, the transformed TIFN can be obtained as
~A =

D
(~a;~b; ~c); ~u; ~v

E
, where ~a = a � 3�, ~b = a,

~c = a+ 3�, ~u = u, and ~v = v.
Second, the weighted possibility means can

be determined through the defuzzi�cation method,
and the individual weights of criteria given
by the three DMs can be calculated through
the Shannon entropy theory. Then, the DMs
weights and criteria weights can be computed
as DW = (0:3325; 0:3247; 0:3428) and CW =
(0:2088; 0:3168; 0:2095; 0:2649), respectively.

Third, the individual evaluations are aggre-
gated by utilizing the TIF-WA operator, and the
group decision matrix can be constructed. Then,
the group utility values can be computed asG(b1) =
0:4434, G(b2) = 0:3390, G(b3) = 0:4634, and
G(b4) = 0:4966; and the individual regret values
can be computed as I(b1) = 0:1564, I(b2) = 0:1127,
I(b3) = 0:1821, and I(b4) = 0:1983.

Finally, the ranking is identi�ed as b2 � b1 �
b3 � b4 according to the closeness coe�cient of
alternatives.

Based on the discussion above, it can be seen
that the ranking of alternatives obtained by the

extended VIKOR model is quite di�erent from that
obtained by the developed method in this paper.
There are some possible reasons for this di�erence
in rankings.

First, there is an essential distinction between
the ideas of the two methods. The method of Wan
et al. [14] develops an extended VIKOR model to
deal with MCGDM problems and mainly focuses
on the measurement among di�erent evaluations,
while the proposed approach uses a series of NIPH
aggregation operators to address MCGDM prob-
lems, emphasizing the signi�cance of comprehensive
evaluations. Second, the way of determining the
�nal ranking is di�erent between the two meth-
ods. The method of Wan et al. [14] employs the
group utility values and individual regret values to
determine the closeness coe�cient of alternatives
and obtain the ranking, while the proposed method
presents an e�ective ranking method to decide the
�nal ranking, which considers all variables in NIFNs
and the distance to the positive ideal solution com-
prehensively. Third, the proposed method utilizes
the PA operator to appropriately assign weights
to the input variables in the aggregation process
according to the support measure and importance
of these variables, whereas the method of Wan et
al. [14] uses some auxiliary tools, such as Shannon
entropy, evidence theory, Bayes approximation to
determine the weights of criteria and DMs.

In addition, there are some non-negligible
shortcomings about the method of Wan et al. [14].
First, the normalization of evaluation information is
usually conducted in the initial stage, however, the
method of Wan et al. [14] normalizes the collective
decision information obtained by aggregating the
individual evaluations. This strategy ampli�es the
negative impact of certain exception variables to
some extent. Second, as discussed in [42], the
operations of TIFNs in [14] have some obvious
defects, which will a�ect the precision of the �nal
result. Third, to determine the weights of cri-
teria and DMs, the triangular intuitionistic fuzzy
evaluation information needs to be transformed
into crisp weighted possibility means, and many
complicated procedures are used in [14]. The weight
determination method in [14] is tedious and compli-
cated, and the transformation from TIFNs to crisp
values will lose and distort the original information.
Finally, the method of Wan et al. [14] involves many
complicated steps, which increase the calculation
complexity. Although the proposed approach based
on aggregation operators also needs a large number
of calculations, the operations among all steps are
regular and correlative. In this way, the compu-
tation e�ciency of the proposed approach can be
easily improved using such tools as MATLAB.
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7. Conclusions

Normal Intuitionistic Fuzzy Number (NIFN) is greatly
e�ective in presenting uncertain information with nor-
mal distribution which can reect many social and
natural phenomena; thereby, the research of Multi-
Criteria Group Decision-Making (MCGDM) method
with NIFNs is of paramount signi�cance. A reliable
ranking method for NIFNs was introduced after re-
viewing the defects in the existing comparison method
of NIFNs, Furthermore, inspired by the Power Aver-
age (PA) and Harmonic Mean (HM) operators, three
normal intuitionistic generalized aggregation operators
were proposed. In addition, the MCGDM approach
under normal intuitionistic fuzzy environment was de-
veloped. Finally, this method was tested by a practical
coal mine safety evaluation problem, and it was further
validated through sensitivity analysis. The comparison
results demonstrated that the proposed method could
provide more reliable and precise outcome than other
methods. Therefore, the proposed method has great
application potential in solving MCGDM or Multi-
Criteria Decision-Making (MCDM) problems.

The main contribution of this study is the integra-
tion of NIFNs with the PA and HM operators. In this
way, the PA operator can judge the importance of the
input variables and assign weights to these variables in
the aggregation process e�ectively, and the HM oper-
ator can pay greater attention to the central tendency
data. Moreover, the proposed method can address both
MCGDM and MCDM problems under conditions in
which the weight information is completely unknown
or known. In addition, the proposed method is fairly
exible to use; the parameter �, which is involved in the
generalized aggregation operators, can a�ect the �nal
results. Therefore, Decision Makers (DMs) can choose
appropriate � according to their preferences to obtain
the most satisfactory result.

Although our proposed method can e�ciently
address the MCGDM/MCDM problems involving a
large amount of data using aggregation operators,
it allows the evaluations under di�erent criteria to
compensate each other in the aggregation process. In
some problems, the criteria evaluations cannot com-
pensate each other and the non-compensation among
di�erent criteria should be considered su�ciently. To
solve such kinds of problems, future research will
focus on incorporating the non-compensation principle
into fuzzy aggregation operators to develop feasible
MCGDM/MCDM methods.
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