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Abstract. The present study proposes a short-term memory discrete-time Finite Impulse
Response (FIR) controller design along with an optimized tuning method. To this end,
the loop shaping scheme was employed in the framework of Linear Matrix Inequalities
(LMIs) to adjust some characteristics of the open-loop frequency response such as phase
margin and bandwidth to the desired values at appropriate frequencies. Unlike the
conventional methods whose functions are based on state-space models, the proposed
procedure generates LMIs directly in the frequency domain. The proposed controller
design procedure was applied to several integrating time-delay systems to illustrate its
performance, and the obtained results were compared with the results of some other
competing methods.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

An integrating system is a process whose transfer
function consists of at least one pole at the origin.
Such systems are di�cult to control because the process
output develops persistently over time in response to a
step change in the input. Level control in distillation
column [1,2], boiler steam drum [3], bio-reactors [4],
and DC motors [5] are a few examples of integrating
systems.

For several years, much e�ort has been devoted
to the study of methods for controlling the integrating
systems. For example, Pai et al. [6] investigated the
problem of designing PID controllers for integrating
time-delay systems by minimizing the Integral of Abso-
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lute Error (IAE) criterion and using a direct synthesis
method for disturbance rejection. In [7], tuning formu-
las for PID controllers cascaded by a �rst-order noise
�lter were introduced to stable/integrating/unstable
systems equipped with dead-time and oscillatory poles
to achieve the satisfactory disturbance rejection. Mer-
cader and Banos [8] proposed a method for tuning
PI controllers in integrating time-delay systems with
parametric uncertainty by considering the constraints
on the sensitivity magnitude and complementary sensi-
tivity functions to guarantee the optimized disturbance
rejection. Studies [9,10] focused on the design of a
Model Predictive Control (MPC) for integrating time-
delay systems with model uncertainty.

However, to the best of our knowledge, the
problem of designing controllers based on loop shaping
in the Linear Matrix Inequality (LMI) framework for
integrating systems has not been investigated in the
previous researches. Loop shaping techniques have
been used for designing controllers in several studies
(see [11,12]). Hara et al. [11] presented a PID controller
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design procedure to satisfy multiple frequency domain
constraints. Grassi et al. [12] proposed a method for
tuning PID controllers to control the temperature of a
three-zone industrial di�usion furnace on the basis of
loop shaping.

In recent years, a number of studies have con-
centrated on the design of controllers using LMI ap-
proach [13{16]. Ojaghi et al. [13] designed a ro-
bust MPC controller for nonlinear systems with state-
dependent uncertainties. To this end, they employed
an LMI approach to minimizing the upper bound of
the in�nite horizon cost function. Argha et al. [14]
designed a robust discrete-time sliding mode controller
for uncertain discrete-time systems. In this respect,
they developed a new framework to design a sliding
function which was linear in terms of states. Wang
et al. [15] tuned multi-loop PID controllers by de-
veloping a computationally e�cient method on the
basis of LMIs. Wu et al. [16] designed an Multi-Input
Multi-Output (MIMO) PID controller for discrete time
systems by developing algorithms in the framework of
LMIs.

Today, almost any controller is realized through
a microprocessor; in other words, the designer should
discretize the transfer function of the controller if
it is designed in the s-domain. In fact, two basic
approaches are adopted while designing a discrete-time
controller for a continuous-time plant. In the �rst
approach, the plant is �rst discretized and then, a con-
troller is directly designed in the discrete-time domain.
For instance, Wang et al. [17] derived the discrete-
time model of integrating and unstable processes and
then, designed a discrete-time two-Degree-Of-Freedom
(2DOF) controller for them. In the second approach,
a continuous-time controller is designed for the plant
and then, its discrete-time counterpart is calculated.
However, discretizing a continuous-time controller may
yield some undesirable e�ects such as loss of the
controller optimality, decrease in the phase margin,
and even instability of the feedback control system.
Recently, Merrikh-Bayat et al. [18] proposed a new
discrete-time Fractional-Order PID (FOPID) controller
for continuous-time processes and showed that while
discretizing a continuous-time controller may cause
instability in the closed-loop system, directly tuning
a discrete-time controller can eliminate this problem.

The present study aims to introduce a new
discrete-time controller as well as a new method for
tuning its parameters based on the LMI approach.
More precisely, the transfer function of the proposed
controller is equal to the sum of the positive integer
powers of z�1, i.e., it is characterized by the structure
of a causal Finite Impulse Response (FIR) �lter. Appli-
cation of FIR �lter as a controller has been investigated
for the �rst time in this paper. From the computational
point of view, the major advantage of this controller

is that regardless of its order, it is a linear function
of tuning parameters. Therefore, the values for these
parameters can be e�ciently calculated using LMIs,
which are applicable only when the problem under
consideration is linear in variables. From the practical
point of view, the main advantage of the proposed
controller is that it has quite a simple structure, which
can be realized with no di�culty. However, it is shown
later in this paper that an FIR controller tuned by the
proposed LMI approach operates considerably better
(at least, in dealing with the numerical examples under
consideration) than the advanced PIDs with the same
or even more tuning parameters when the process is
integrating with time-delay.

The rest of this study is organized as follows.
Section 2 discusses the formulation of the problem.
Section 3 presents the simulation results. Finally,
Section 4 concludes the paper.

2. Problem formulation

The transfer function of some controllers is a linear
function of tuning parameters which can be written as
C(s) = W (s)X, where X is the vector contains tuning
parameters (i.e., variables of the problem) and W (s) is
a weight vector whose entries are functions of s. The
vectors X and W (s) are speci�ed according to the type
of the controller under consideration. For example, a
PID controller with transfer function is considered:

C(s) = Kp +
Ki

s
+Kds; (1)

where Kp, Ki, and Kd are the design parameters. Here,
the vectors W (s) and X are as follows:

W (s) =
�
1 1=s s

�
; X =

�
Kp Ki Kd

�T : (2)

As another example, by using Tustin method, the
structure of the digital PID controller takes the fol-
lowing form:

C(z) = Kp +Ki
T
2

1 + z�1

1� z�1 +Kd
2
T

1� z�1

1 + z�1 ; (3)

where T is the sampling period. Therefore, the vectors
W (z) and X are determined as follows:

W (z) =
h
1 T

2
1+z�1

1�z�1
2
T

1�z�1

1+z�1

i
;

X =
�
Kp Ki Kd

�T : (4)

Finally, the FOPID controller with the following trans-
fer function is considered:

C(s) = Kp +
Ki

s�
+Kds�: (5)

Given that � and � are assumed to be constant, the
vectors W (s) and X can be considered as follows:
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W (s) =
�
1 1

s� s�
�
; X =

�
Kp Ki Kd

�T : (6)

The idea of considering the transfer function of the
controller as C(s) = W (s)X was �rst proposed in [19],
where it was used for tuning the parameters of a
FOPID.

The controller proposed in this paper is charac-
terized by the structure of a discrete-time FIR �lter
with short-term memory. To be speci�c, the transfer
function of this controller can be written as follows:

C(z) = C0 + C1z�1 + C2z�2 + � � �+ Cnz�n; (7)

where C0; C1; � � � ; Cn are the real parameters to be
tuned. The motivation that lies behind the proposition
of this structure for controller is that the Laurent
series expansion of the transfer function of any causal
discrete-time controller around the origin is generally in
the form of C(z) =

P1
k=0 Ckz

�k (keep in mind that the
necessary condition for causality is limz!1 jC(z)j <
1; this is the reason why the positive powers of z
do not appear in the Laurent series of C(z)). In this
regard, the transfer function of the proposed controller,
as given in Eq. (7), can approximate any causal
transfer function with arbitrary precision by assigning
a su�ciently large number to n. However, compared
to the original controller, the proposed structure enjoys
the advantage of linearity in tuning parameters.

Assume the vector of variables as follows:

X =
�
C0 C1 � � � Cn

�T : (8)

Then, the proposed controller can be written as:

C(z) =C0 + C1z�1C2z�2 + � � �+ Cnz�n

=
�
1 z�1 � � � z�n

�
X = W (z)X: (9)

In the following, a method is developed for calculating
C0, C1, ..., Cn. Consider the closed-loop system
shown in Figure 1, where ZOH is the Zero-Order Hold
and C(z) = W (z)X is the proposed discrete-time
controller. The main objective here is to determine
X such that the frequency response of the open-loop
system satis�es the following three properties adopted
from [20]:

Figure 1. Block diagram of the closed-loop system.

1. The phase margin of the feedback system, �m,
equals the desired value at the given frequency !c.
In other words, the equality:

arg
�
C(ej!c)P (j!c)

	
= �� + �m; (10)

is met for the given �m and !c. The above problem
is equivalent to calculating X from the following
optimization problem:

min
C(ej!c )



C �ej!c�P (j!c)� ej'


= min

X



W �
ej!c

�
XP (j!c)�B

 ; (11)

where ' is the open-loop phase angle that forms
the desired phase margin (i.e., ' := �� + �m)
and B := ej'. Ideally, the solution to the opti-
mization problem in Eq. (11) is obtained through
C(ej!c)P (j!c) = ej'. However, such a solution
is not desired since the controller must also satisfy
some other properties, as it will be discussed later.

In the following, an equivalent LMI represen-
tation for the optimization problem in Eq. (11) is
proposed. By introducing the new scalar variable
�, Eq. (11) can be expressed as Eq. (12):

min �;

subject to


W (ej!c)XP (j!c)�B

 < �; (12)

which can also be written as follows:

min �;

subject to
�
W
�
ej!c

�
XP (j!c)�B�H�

W
�
ej!c

�
XP (j!c)�B�<�2I:

(13)

According to the Schur complement lemma [21]
stating that the following matrix inequalities in
Eqs. (14) and (15):

� =
�
�11 �12
�21 �22

�
� 0; �22 � 0; (14)

�11 � �12��1
22 �T12 � 0; (15)

are equivalent, the norm minimization in Prob-
lem (13) corresponds to the LMI problem (Inequal-
ity (16)), shown in Box I. This problem can be writ-
ten in the form of a Generalized Eigenvalue Problem
(GEVP) (Inequality (17)), shown in Box II. The
only di�culty with Inequality (17) is that it con-
tains complex matrices, while trivial LMI solvers
accept only real matrices. In order to eliminate
this trouble, the complex-valued LMIs theorem was
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min �;

subject to
�

�I W (ej!c)XP (j!c)�B�
W (ej!c)XP (j!c)�B�H �I

�
� 0: (16)

Box I

min �;

subject to
�

0 B �W (ej!c)XP (j!c)�
B �W (ej!c)XP (j!c)

�H 0

�
� �I: (17)

Box II

employed [22], stating that a Hermitian matrix
M(x) satis�es M(x) � 0 if and only if:�

Re(M(x)) Im(M(x))
�Im(M(x)) Re(M(x))

�
� 0: (18)

Applying this theorem to Inequality (17) would
yield, Inequality (19) as shown in Box III, where
the subscripts R and I denote the real and imag-
inary parts, respectively. Of note, all of the
frequency-dependent terms in Inequality (19) are
evaluated at ! = !c. Given that the matrix in
Inequality (19) is symmetric, only the entries above
the main diagonal are represented and the other
entries are shown by �.

2. The closed-loop system shows an acceptable level
of robustness to uncertainties in the gain of the
process. This requirement can be achieved by
satisfying the following equality:

d
�]C �ej!�P (j!)

�
d!

�����
!=!c

= 0: (20)

Clearly, satisfying the above equality points to the

atness of the Bode phase plot around ! = !c.

Unfortunately, Eq. (20) is nonlinear in X and it
cannot be represented by LMIs. One approxi-
mate approach to making the Bode phase plot
of C(ej!)P (j!) almost 
at at frequencies around
! = !c is to calculate X such that the following
equation holds:

]�C(ej!0)P (j!0)
	

= '; (21)

where ' := ��+�m = ]fC(ej!c)P (j!c)g and !0 is
a frequency close to !c. Substitution of C(ej!0) =
W (ej!0)X into Eq. (21) yields:

]�W �
ej!0

�
X
	

= '� ]P (j!0): (22)

By taking W (ej!0) = WR(ej!0) + jWI(ej!0) into
account, one can write:

tan�1 WI
�
ej!0

�
X

WR (ej!0)X
= '� ]P (j!0) ; (23)

where taking tan(�) from both sides of Eq. (23)
yields:�

WI
�
ej!0

��tan('�]P (j!0))WR
�
ej!0

��
X=0:

(24)

The LMI representation of Eq. (24) is as follows:

min �;

subject to

26640 BR�WRXPR+WIXPI 0 BI�WRXPI�WIXPR� 0 �BI+XTWT
RPI+XTWT

I PR 0
� � 0 BR�WRXPR+WIXPI� � � 0

3775��I:
(19)

Box III
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�"<�WI
�
ej!0

��tan('�]P (j!0))WR
�
ej!0

��
X<";

(25)

where " is quite a small positive real constant. Note
that Inequality (25) consists of two LMI constraints.

3. The feedback system reduces the high frequency
noise. This is accomplished if the following inequal-
ity is satis�ed:����� C

�
ej!
�
P (j!)

1+C (ej!)P (j!)

������D dB !�!d rad/s;
(26)

where D and !d are given constants. Clearly, In-
equality (26) is satis�ed if the following inequality:��C �ej!d�P (j!d)

�� � �; (27)

holds for an appropriate �. Substituting C(ej!d) =
W (ej!d)X in Inequality (27) yields:

��2+W
�
ej!d

�
X jP (j!d)j2XTWH �ej!d�<0:

(28)

Although Inequality (28) is nonlinear in X, through
the Schur complement lemma, it can be written as:� ��2 W

�
ej!d

�
X

XTWH �ej!d� � jP (j!d)j�2

�
� 0; (29)

which is linear in X. Finally, based on Inequal-
ity (18), the complex-valued LMI in Inequality (29)
can be represented in the following equivalent real-
valued form:2664��

2 WR(ej!d)X 0 WI(ej!d)X
� �jP (j!d)j�2 �XTWT

I (ej!d) 0
� � ��2 WR(ej!d)X
� � � �jP (j!d)j�2

3775
� 0: (30)

2.1. Stability analysis
According to the aforementioned discussions in the
previous section, the vector of unknown variables, X,
can be calculated by Inequality (19) subject to Inequal-
ities (25) and (30). However, in dealing with some
problems, the controller obtained in this manner may
lead to an unstable feedback system since the notion of
stability is not considered in the formulation of problem
(remember that in order to achieve stability, we just
adjust one point on the frequency response of the open-
loop system by setting the phase margin to the desired
value). In such cases, additional (approximate) linear
constraints can be added to the problem formulation
to preserve stability. These stability constraints can be
obtained from the Jury stability test, to be discussed
below.

For example, consider a unity feedback control
system in which the transfer functions of the Integrat-
ing Process with Time Delay (IPTD) and controller are
P (s) = Ke�Ls=s and C(z) = C0 +C1z�1, respectively.
Given that T = 0:5L, where T is the sampling period,
the characteristic equation of the closed-loop system is
obtained as follows:

�(z) = z3 � z2 +KC0z +KC1 = 0: (31)

For the sake of simplicity, assume that K = 1. From
the Jury stability test, it can be concluded that a
feedback system with characteristic Eq. (31) is stable
if and only if the following three inequalities hold
simultaneously:

�1 < C1 < 1; (32)

0 < (1� C2
1 )2 � (C0 + C1)2; (33)

0 <(1� C2
1 )2 � (C0 + C1)2

� (1 + C0C1)2(C2
1 + C0 + C1 � 1): (34)

Unfortunately, Inequalities (33) and (34) are nonlinear
in X =

�
C0 C1

�T . The proposed approximate method
for deriving LMIs from Inequalities (33) and (34)
aims to plot the region de�ned by these inequalities
in C0 � C1 plane and approximate it by a convex
polygon. Figure 2 shows the region de�ned through
Inequalities (32){(34) in red and a convex polygon
used to approximate it in black. Of note, in�nitely
many polygons with di�erent side numbers can be
employed to approximate this region where the accu-
racy of approximation would increase upon increasing
the number of sides of the polygon. Similarly, in
case the discrete-time controller under consideration
has three parameters, the region of stability can be

Figure 2. The region of stability obtained from
Inequalities (34){(36) and its polygon approximation.
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approximated by a polyhedron. Of note, in case the
approximating polygon or polyhedron is non-convex, it
can be partitioned into several convex sets and then,
the controller can be designed for each set separately
and the optimal controller can be chosen.

3. Illustrative examples

The results of MATLAB simulations for two di�erent
integrating time-delay processes are summarized in this
section.

Example 1. Consider the following First-Order De-
layed Integrating Process (FODIP) taken from [23{25]:

P (s) =
0:2

s(4s+ 1)
e�s: (35)

The proposed controller is designed for this process
to reach !c = 0:5 rad/s, �m = 60�, !d = 100 rad/s,
and D = �40 dB. Table 1 summarizes the values
obtained for two- and three-parameter controllers.
To measure the robustness of the resulting feedback
system when the proposed controller is used, a
perturbation of +10% is applied simultaneously to the
time delay and process gain, and the simulations are
repeated. Figures 3 and 4 show the step responses of
the closed-loop systems with nominal and perturbed
process models, respectively, when di�erent controllers
are employed (more details of the controllers used for
comparison can be found in Table 2). Note that in
both of these �gures, a �50% disturbance is applied
at t = 30 s. As observed, the propounded controllers
suppress other controllers in terms of set-point tracking
and disturbance rejection. Furthermore, as observed,
the proposed controller with the term z�2 yielded the
best response. Table 3 represents the IAE, overshoot,
and phase margin indices for the proposed controller
and the controllers calculated in [23{25] (the stepinfo
command in MATLAB is used for computing the
maximum overshoots). In this example, the controllers
are evaluated regardless of the stability constraints.
However, it was observed that consideration of the
stability constraints when the controller had two
tuning parameters made no changes in the results.

Figure 3. Step responses of the closed-loop system with
the nominal model of process, corresponding to
Example 1.

Figure 4. Step responses of the closed-loop system with
the +10% perturbed model of process, corresponding to
Example 1.

Example 2. Consider the following Double Inte-
grating Process with Time Delay (DIPTD) discussed
in [23,25,26]:

P (s) =
1
s2 e
�s: (36)

The proposed controller is designed for this process to

Table 1. Parameters measured for the proposed controller.

Example Proposed controller C0 C1 C2 Sampling period (T )
Ex. 1 C0 + C1z�1 101.4935 {98.6551 | 0.1

P (s) = 0:2e�s
s(4s+1) C0 + C1z�1 + C2z�2 339.2258 {574.0294 237.8912 0.1

Ex. 2 C0 + C1z�1 7.0849 {7.0842 | 0.1
P (s) = e�s

s2 C0 + C1z�1 + C2z�2 30.6793 {54.3350 23.6565 0.1



1576 H. Naja�zadegan and F. Merrikh-Bayat/Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1570{1578

Table 2. Parameter settings for comparing controllers with transfer function Kc

�
1 + 1

Tis
+ Tds

�
�s+1
�s+1 .

Example Proposed controller Kc Ti Td � � Set-point �lter

Ex. 1
Anil and Sree [25] 5.74 5.90 1.95 0.63 0.49 |
Kumar and Sree [24] 7.41 7.80 1.94 0.50 0.19 0:7s+1

3:8s+1

Jin and Liu [23] 3.68 10.39 2.47 | | 9:8s2+6:2s+1
25:7s2+10:4s+1

Ex. 2
Lee et al. [26] 0.14 7.07 3.53 | | 6:25s2+5s+1

25s2+10s+1

Anil and Sree [25] 0.13 9.72 3.82 1.07 1.04 |
Jin and Liu [23] 0.05 21.38 7.25 | | 46:2s2+13:6s+1

155:1s2+21:4s+1

Table 3. Comparison of di�erent methods in terms of performance and robustness.

Example Method Nominal model +10% perturbed model
IAE Overshoot �m IAE Overshoot �m

Ex. 1

C0 + C1z�1 3.69 12.22 54.66 4.00 21.90 48.49
C0 + C1z�1 + C2z�2 3.51 7.69 58.57 3.58 12.67 53.55
Anil and Sree [25] 5.97 51.83 28.97 5.96 65.69 22.93
Kumar and Sree [24] 2.88 29.00 30.05 3.19 40.13 20.85
Jin and Liu [23] 4.43 17.00 37.62 4.37 21.55 34.39

Ex. 2

C0 + C1z�1 3.84 28.04 45.28 4.84 43.39 36.37
C0 + C1z�1 + C2z�2 2.64 10.66 57.65 3.16 25.24 49.42
Lee et al. [26] 5.91 38.21 18.44 5.64 44.55 13.79
Anil and Sree [25] 8.06 67.76 20.39 8.09 81.62 14.69
Jin and Liu [23] 6.05 18.30 25.97 5.66 19.31 26.25

reach !c = 0:73 rad/s, �m = 60�, !d = 100 rad/s, and
D = �40 dB. Table 1 summarizes the values obtained
for two- and three-parameter controllers. To measure
the robustness of the resulting feedback system when
the proposed controller is used, a perturbation of +10%
is applied to the time delay and process gain, and
the simulations are repeated. Figures 5 and 6 show
the step responses of the closed-loop systems with
nominal and perturbed process models, respectively,
when di�erent controllers are employed (more details
of the controllers used for comparison can be found in
Table 2). Note that in both of these �gures, a �50%
disturbance is applied at t = 50 s. It was observed
that the proposed controller provided a lower overshoot
value than that proposed by Anil and Sree [25]. In
addition, the proposed controller provided a faster
response and better disturbance rejection than those
introduced by Jin and Liu [23] and Lee et al. [26]. The
interesting point here is that the proposed controller
is characterized by a lower order and less tuning
parameters than the controllers designed in [23,25,26].
The corresponding performance indices are listed in
Table 3. Note that in this example, the discrete-
time controllers were designed without considering the
approximate linear stability constraints developed in
Section 2.1.

Figure 5. Step responses of the closed-loop system with
the nominal model of process, corresponding to
Example 2.

4. Conclusion

The present study aimed to introduce a new discrete-
time controller and an LMI-based method for tuning its
parameters. The structure of the proposed controller
is similar to that of an Finite Impulse Response (FIR)
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Figure 6. Step responses of the closed-loop system with
the +10% perturbed model of process, corresponding to
Example 2.

�lter, and the proposed tuning method measured the
controller parameters by open-loop shaping to obtain
the desired phase margin and bandwidth. Moreover,
robustness of the closed-loop system to uncertainties
in the process model was considered in the formulation
of the algorithm. This study contributed to developing
approximate linear constraints used for achieving the
closed-loop stability when the order of controller was
at most equal to three. All of the control objectives
and stability constraints were formulated using Linear
Matrix Inequalities (LMIs) and then, they were readily
solved using MATLAB. The propounded approach was
applied to two di�erent integrating processes with time
delay. The results of simulations showed the supe-
riority of the proposed structure and tuning method
over some already existing methods in the considered
examples.
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