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Abstract: This studypresents set ofrulesfor optimal tuninga class ofntegerordercontrolless, known

asimplementable fractionadrderPID controllers, to be applied in control of firstderplus-deadtime

(FOPDT) processes. To this aithe approachofsoal | ed fAtuning based o the imple
the control lteead iacf atptpd i edmmors approach of tuning bas
controll ero. Consequently, no contradiction is found b
that of the implemented controlleklso, algebraic relationsetweernthe values otost functions, which

are defined based ointegral square error (ISE) and integral square time error (ISTE) performance

indices and free parameters of the implementable controller are established. Tuning implementable

fractionatorder PID controllers via the proposed rules guaranteeshiatlues of performance indices

are reduced in comparison with the case of using optimal PiDrallers. In addition to numerical

results,experimental results are also provided to demonstrate the effectiveness of the proposed tuning

rules in practical applications.
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1. Introduction

In the last yeargesearcherbavepaidincreasing attention tthe applications ofractionalcalculusin
the control systemsengineeringvia constitutingthe fractionalorder controffiled. This field includes
the applications ofractional-order differentiationihtegration operatorsin modeling of realworld
processes angbroposing effective control laws. Fractional operat®; on one handprovide a
framework for more exact modeling of the processesfrom different areas such aselectrical
engineerindl, 2], mechanical engineerin@4b], medicine[6] andrelaxation processeg][with fewer
parametersn comparison withintegerorder models On the other handgonsideringtheir unique
characteristics are used to des@mtrollersthat aremorerobust toprocessvariationsin comgarison
with traditional integeiorder contrders Some ofthe most applicablesamplesof fixed-structure
fractionatordercontrollersarefractionatorder PD(FOPD) fractionalorder PI(FOPI) andfractionat
order PID(FOPID) controllerswhich have been originallintroducedby Podlubny[8].

The traditional PID controllers have betty® mostapplicabletype of the industriatontrollersso far
Some easons forthe widespreaduse of these controllers in industriapplicationsinclude the
simplicity of structure, existing simpleguning procedurg and robustness against parameter
uncertaintiesOn theother handjn recentyears the design offive-parametef=OPID controlleis has
receivedmany interestsamongst researchef8i 11], becausehey are mordlexible than traditional
PID controllers andccan improvethe closedoop systenmrobustnessgainst parameter uncertainties
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[12].This is the reason thathe studies about the tuning of these controllers for cdingothe
industrial and experimentaprocessg have increasinglyspread[13-16].Up to now, tuning of the
FOPID controllersbased orcertain performanceriteriain time domainsuch as integral square error
(ISE), integral absolute error (IAENtegral time absolute error (ITAEBNd integrasquaretime error
(ISTE) or in frequency domain such as ganmossover frequencgnd phase mgm specificatiors [17-
19] have beenfrom the most popular subjectén the area offractionatorder control systems
Therefore,finding an analyticamethodto solvethe optimization problemsesulted from satisfying
the abovementioned objectivesnay belaborious(Particularly in the casethat we encounter with
high-dimensional and multi-objective optimization problenmjs Accordingly, various heuristic
algorithms can be employed to soltleese complex optimization problems.Several optimization
algorithms such aatrtificial bee colony (ABC) algorithm20, 21], genetic algorithm (GAJ22, 23],
particle swarm optimization (PSQ24] and Tabu search algorithm (TSAP%] have beerused for
optimal selection ofhe freeparameters oFOPID controlless hitherta For instance, the authors in
[21] havedesigred a fractionatorder PID controller to minimize 1AE, ISE and ITAgerformance
indices by using artificial bee colony(ABC) algorithm. Also, the authors in22] by applying the
genetic algorithmhave proposed set of tuning rules fdvoth integerorderand fractionabrderPID
controllersin order tooptimally control integral and unstable procesBesn the viewpoint of the IAE
criterion Ther results have showed higher performancen the systems controlled by FOPID
controllerin comparison withthe samenes controlled by standard PISimilarly, the authors inZ3]
have introduce@ novel adaptive genetic algorithm (AGAY designa FCPID controlleron the basis
of a multrobjective optimizatiortask. As another examplen the papef24] with the aimof tuning
the parameters of FOPID controligrthe enhanced PSO algorithhas beenapplied based on
minimizing a cost function defined asveeighted corhination ofthe ITAE and the control effort.
Also, there are different tuning methods forFOPID ®ntrollers obtained by mathematical
optimizatiors. For example,in the paper[26] a linear quadratic regulatorL,QR) based FOPID
controller has beeradopted to control the time-delay fractionabrder processes with only one
fractional operatoby means ofareto optimization tradeff solutions.Furthermore, the authors in
[12] have proposeda set ofalgebraicrules for tuning the fractionabrder basedintegerorder
controllerby consideringhe ISE performance indexn the proposed methods, in order to implement
the fractional controllers ipractice, thentegerorder approximation of the fractional derivatives and
integrators is used becausethe exact implementation offractionalorder operators in online
applicationss not possible due to thainfinite memory characteristidq®7]. This approximatiommay
causehedifferencebetweerthe behavior oftheimplemented system artbe expectedehavia of the
closedloop systen]28]. Therefore,using an appropriateapproximation is necessary ftire proper
implementation bfractionatorder operators.

The main purpose of this papés concentrated on providing a set of tuning rules for the
implementable form ofOPID controller by using the algebraic formulation of ISE and ISTE cost
functions in terms of free parameters of the fractional based contialldris way, firstly,integer
order realization of th&OPID controller, which isreferred to arimplementable formis obtained
The firstorderplusdeadtime (FOPDT)processis assumeds the under control systeim a unity
negative feedback structuralso, the implementable controlleaand the optimally tuned controller
have the sarme structurs. Consequentlypo contradictiorwill be among the specificationd closed
loop systenobtained by theoretical evaluatioasd the same ones obtained in practidereover in
order to eliminate the error ithe computation oflISE and ISTE, an exa&nalytical procedure is
appliedwhile by the steepest descent algorithm the decrement of them is guardnie@ebrth noting
that by utilizing this procedure the considerabledecrement in theost functionvalue is accessible
afteronly a fewstage of steepest descent algorithifence,it will be shown thathe use of FOPID
controller allowsmprovingthe performance indices.

The organization of the paper is as follows. Sectior, firstly, the structure of the processand
controller areintroduced.Then the implementableform of FOPID controller, after normalizing the
transfer function of process and approximating fractional operators idgaorm of thecontroller,

is obtained.Sectior8 presents algebrailationsfor analytically evaluating thdSE and ISTEcost
functions.In Sectiord, the method ofoptimal tuning of the free parameters of implementable FOPID
controller is described and the resultant tuning raesgiven. Next, in Sectio, to verify the
efficiency of the proposetlining rulessome numericadéxamples as well asanexperimental example



aregiven.Finally, Sed¢ion 6 deals with drawinghe main conclusionsf the paper.

2. The models of processand controller

2.1. Processandideal form of thecontroller

In Fig. 1, thetypical structure of &losedloop system with unityegativefeedbackis shown.In this
structure G (s) andC (S) respectively denote therocessand controller modeldn this paper, the
processs consideredh the form ofafirst orderplus dead tim¢FOPDT)systemwith model

-ts
G(s)— Ke
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in which K is the steadytate gainlUis the deadtime andT is the positive time-constant.Several
step response based techniques have ke@nn for aproximatingprocessdynamics by a FOPDT
transfer functiorj29]. The primary form othe consideredontroller is described byransfer function

[8]
Ce(s) =k, +k—; kS, oom W' @)
s

The FOPID (PI’ D ’) controller in Equation(2) hasfive free parametes for tuning kp Jkjand kg

are constant coefficientsy and /m arerespectively thdractionalordess of integrationand derivation
termrs. In comparison to use a traditional PID controlléwe ¢xtrafreedom caused bg and min a

FOPID controller helps tamprovethe performance of the control systelm this paperto simplify
the optimal tuningules ordersa- and /77 are assumeds

=1 +3
€=1-3
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It is clear thawith3 =0, theclassicalform of PID controller is obtained

2.2. The integerorder approximation ofcontroller

Using integeforder approximations of fractionalrder controller iscommon in practicebecausehe
idealforms of these controlletsave infinite memory characteristif27]. But when a fractinalorder
controller is replaced by its integerder approximation, there is no guarantee for meeting the
intended control objective§ herefore, an intermediate dgsischemgeas shown in the diagram of
Fig. 2, is used for optimal tuning of the free paramet&gthis schemdijrstly a parameterizefixed-
structure integeorder approximation of fractionairder controller isobtained.Then optimal tuning

rules areproposedo obtaina suboptimal controlld28]. In this approachthere wil be nhorepugnance
betweerthe ideal behavior of the controller and the behavior of its implementable Ktany of the
available studies about the optimal tuning of the fractiondér controllers have made use of this
design paradigm, indirectly Pl 21, 22, 24, 28]. In addition, the use of this approach for optimal
tuning of the fractionabrder controllerscauses that the frequency domain constraints and
specifications match with expected theoretical values of them in pract#je (ia the above
mentionedintermediate desigapproachthe fractional structure is used as a simplifying map for
tuning a highorder controller (In this case, the number of tuning paramistergual to the number of
free parameters of the fractional structure, whereas the implemented contrallbigisorder one)

[28]. There are many approximation methods in disetiete orfrequency domain for approximating

the fractionalorder operators with integarder linear timenvariant filters B0, 31]. For example,
some of theapproximationtechniques in discrete time domaire based opower series expansion
(PSE) and continueddction expansion (CFE) methods. Also, there are several methods, such as
Carl sonos, Mat sudadés and Goudertcantineouspmddel appeoxinhatiod s |,

of fractionatorder operators. One of the most generally used techniques is Qustdls r ecur si ve

f
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approximation method in which fractioratder differentiator is formulated by series of the rational
functions as follows30].

"0< k (4)
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The integerorder approximation ofs® is only valid in the boundary ofow and hidn cutoff
frequencie$y,, ¥,]. Also, N denotes thenumber of poles and zeros which should be chosen
beforehand and determines theler of approximating integender filter. Thus, b approximate the
ideal controller inEquation(2) with the orders given iRRelation(3), it is enough to replace the term

s* by an integetorder filter. With the order N =2 and the frequency rangf0.1,1000]rad/:, a

parameterizeéhtegerorder approximation of the tersi is gained Substitutingcorresponding terms
in Equation(2) with this filter, following integerorder controller

] ‘ 25(1+1035)(1+10'32 o} Sgl 10 § 1 %0 % (5)
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is obtainedwhere
(1+10°)(1 +10°22)
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2.3. Normalization

In this sectionfor normalizing the process transfer functiga (s)) in Equation(1), firstly, open
loop transfer function of theontrol systemdrawn in Fig.1, is obtained as

Gy (s) akeVs § ¢

%ﬁg‘p ok ®

in whichCg (S) is consideredasthe controller.By use ofthe variable transformatios = T, theopen
loop transfer functiorin Equation(6) can berewrittenas

a .9, p
L aKe T &, kT® ky . €
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in the 3 domain Therefore the free parameters dhe resultantcontrollercanbe optimally tunedfor

each FOPDTprocessscaled by ratic—TH , Which is called the normalized dead tim€he normalized

FOPDT process arttie normalizedractionalorder controllehave themodek

— e’ )
G(#)= 1+3’
and
Ce(e)= T +3'f—a K ®

respectively Afterwards the normalized fractionalrder controller irEquation(8) is approximated in
such a waythat given in Equation (5). This procedure yields ithe normalized implementable

controller
a41+10 3)(1 022 } - E 10 '3)(:1 0 2*)
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Thus, it is enouglthatthe free parametek§J i kd andnin Equation(9) are optimally tuned for

the normalized process given iBquation(7) at different values of_lf based onthe performance

criteria. Now, by reusing the variable transformaticm=$ forC, () & ¥, the implementable

fractionatorder controller is derivenh the form of

aE§1+10 Ts 140 32Ts) Sl fel 10 3r)a( 1 10 231)5
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Cle)=k +-

(10)

The coefficientskp, k; and k4 are optimallyachievablefor each FOPDT procedsy utilizing the

optimal values ok_p, k_I and k_d in normalized integeorder controllergiven in Equation (9),

throughthe following relations

k :_p,
P K
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e

In this paper,the implementable fractionalrder controller(C(s)) with the transfer function

Equation(10) is tuned for each FOPDT procegiwen inEquation(1). Consequently, the problem of
incompatibility betveen the theoretical specifications of the clekexb system wittihe specifications
of its implementable fornwill be removedbecausehe implemented controller is éhsameas the
optimal tuned fractionabrder based controller.

3. Analytical evaluation of costfunctions

3.1. Analytical calculation of ISE



In theoptimal control theory, to satisfthe intended control objective llye closedoop system in the
time domain or the frequency domain, a cost functiorussally consideredwhich should be
minimized by properly choosing the free parameters of the controlterthis paper, one of the
performance criteria whichre adopted for the optimizationdh is the ISE performance indddsing
this indexas the cost function ithe design of control system causimt the step response of the
closedloop systengets more rapifi32]. The ISE indexs formulatedas

= /(1) dt (12)
0

wheree(t) (with theLaplace transforr (s) ) is the erromf the closedoop systento the unitstep
referencanputof, i.e.

e(t)=1-y(t), t e.
It is clear thatthe Laplacetransform of the error of timdelay systemsontainsexponential term (

el Y that correspond to the deadtime of the processIn previousstudies, differentechnique for
evaluation of ISE in sucbaseshave been utilizeth which the approximation methods play essential

roles. For example, the authors i21] use the sampled values of tlaeror(e(t)) during a certain

interval tocalculate the integral iEquation(12). Moreover,in [12, 33] the exponential term off (S)

has beersubstitutedwith a rational functionby applyingthe Pade approximation methothese
techniques are not extremely accurate for calculathmgy ISE performance index, due tihe
approximation methodsised in them. Here, the ISE cost functionis evaluatedby an analytical

procedurein which no approximation techniquedtzeen used.et E (s) begivenby

£ (s)- §( + D(—:s
A{s)+Cl e”
where A(s), BYs), &(s) and O¥(s) are real polynomials The assumption is that tfitegral of

Equation (12) exists or equivalentlythe closedloop system is stablelt is worth noting that a
necessary, but not sufficient, conditior stability of the systems that the poles df (S) lie in the
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open lefthalf of s -plane[34]. ApplyingtheP a r s e v a | Gesults intheefalowagrintegral

I=5 AE(s) B( -9 ds (14)

SubstitutingE (s) in Equation(14), calculation ofISE is possibleby using contour integratiosuch

thatonly a finite number of related polskouldbe analyzed3b]. Supposinghat the integralsround
the semicircles at infinity arzerq the integrald is evaluated as

s A9 DB e SHE K} -1 B €)s
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in which the summation is taken over all the z€rgs) of thefollowing equation:

A-s)Al -8 945 o (19
Here applying the mentionedanalytical procedure the exact value ofSE peformance index is

calculated To thisaim, firstly, the Laplace transform dffie errorsignal for a unit stepeferencanput
is determinedFor the closedoop system shen in Fig 1, E (s) isin the form of
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Herg the transfefunction E (S) is rewritten afkelation(13), where
A{(s)= kes(L +TY(1 36 TH{1 16°2 T,
s) = k(1 +Ts)(1 18 T%(l 16°2 T );
)=

B
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Hence for exact calculation of ISEheroots of Equation(16) should be determined o this end, the
following polynomial equation

a’+bd +c§ €8 eO, (18)
should be solved whethke coefficients, b, ¢, d ande are
a=10%"*T 6ke2 -,
b= k2T4(10* 30*°* 16" *) b%* 26

=K2T2(10% 40*** 4 ;d e ¢ (19
d= &2 & 2epe,
e= €,

with
a =102 2Kk,T 2,
b1=K(1023'2k keT? +,T(107° 20°9))

=K (kok,T (10 40°2) 207 2KT? Iq,-)‘

(
(kk #T(10° 30'32)),
e, = Kk;.

Hence,the coefficientsof Equation (18) are somefunctions of the parameters ttie processand
controller. The degree ofpolynomial inEquation(18) is eight, wherethe coefficiens of odd power

terms ofs in this polynomial are zerd herefore the change of variablg = s? results inthe fourth
orderequation

ax?+bx® 4o dx er0. (20)

Quartic equationsre the highest degree polynomials which cammedyticallysolved by radicalsn
which no iterative techniquaeeds to beitilized [36]. Accordingly, the polynomialEquation(20) can
be analyticallysolved. This means that the roots Bfjuation(20) may be expressedccording tathe
coefficients, b, ¢, d ande ,which arethe functions of parameters of th@ocessand controller.
Subsequentlybeing aware of process parametemgts of the Equation (18) are the functions of

controller parametellsp, ki, kg andn. In order to compute the ISE critem via Relation (15),

firstly, theresidue of the function ithe roots; is evaluatedis[37]

a )+ & E ¢
" eii: o6 Usga( e (21)

in whichE-E,—(a ) is thefactorized form othepolynomial inEquation(18), i.e.
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Accordingly, by the sum ofJ; s in each root oEquation(18), an algebraic relatiomwith respect to
controller parameterf®r computation of the ISEs derivedas

3=3(k,. k. k. 3). (23

Hence the ISE performance index igxactly evaludle by substituting the values of controller
parameters in the cost functian. Thisresult yields insimplicity in searching foa minimum valueof
J andhigh accuracyn theoptimal tuningof controller parameters

3.2. Analytical calculation of ISTE

In this section, the method of analytical evaluation of another cost function, which is as®IBiEd
performance index, is descrihélthis indexis mathematially definedas

J = f{e?(t) dt, (24)
0

in which e(t) is the errorof closedloop systento a unitstepreference inputTaking into account

that in theunder studycontrol systemas representeth Equation (17), [E(s)=0and using the

procedureproposed in 38], which is similar to the way utilized for evaluation ISE index the
following formula is obtained for calculation tfe ISTE criterion:

. & NE(s) 8 BEy ¢
p— m paal e C
a sesgﬁ( A6 -§ § Y FH-s) cE98°t @9
where

N p1(s) = Ny )l?f(s) 2 Ny $ 'd(?)s ] ) )
N2o(s)=Ni(9 &9 { NA 3 ONL )P BA 2 f N (B 2-6)( (Es (9,
st(s)=(le(s ) ONA )3E(G 2 ) &) c(§ vc s
Nia(s)= B (9 K(§ - A} &)
Nio(s)=B(9E 9 -y Ep GHGs (& s

the supescript () denotesderivative with respect tos and the sum of residués calculated athe
roots of the following equation:

(A9 K9 -& § EY o (26
Equation(26) is written as
(s +b$ +cé @€ F o (27)

with the parameters defined in (19). Hence, the rootSguiation(26) are thesameas theroots of
Equation(18) with repetition 3 By use of the residues thwy [37], following formula is constituted
for the evaluation of residue in thehi root ofRelation(27)
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where L£i(s) has the same form asesentedn Equation(22). Similar tothe ISE cost functionby the

(29)

|-OQ: O
A~ v

aze
s 24 (9

sum of J; s for each root ofEquation(27) and having process parametets (¢ , T ), an algebraic

relation to evaluate the timgral in Equation (24) is formed in terms offree parameters of the
controller. Therefore, substituting the values of controller parameters in the furaftiBguation(28)
for each rot of the polynomiabf Equation(27), the exact value ahe ISTE performance index is
calculated

4. Procedure of optimal tuning

In this section, an optimization method basedhmnsteepest descent algbin isapplied in order to

tunethe implementabl&OPID controllerin Equation(10). The vector otthe controller parameters is

given by

p =€k
&
é d

é3
which will be optimally tunedto minimize thecost functionJ for theFOPDT proceses The steepest

descent algorithnfalsocalledgr adi e nt mathodGsaonecofi theblise search algorithrits
scalar unconstrained optimizatigf2]. In each stage of the algorithm, gradient of tigective

(29

[ VT N o N eVl aaVl SV

function (BJ (Pi)) and the step lengthU') need to be computeand insertedin the following

formula[39]:
Pi+1:Pi_U'D\:( i},’ iR
The ideal choicéor step lengths derivedfrom the onedimensional optimization problem
minJ(P'-U B] 'H, ' =D,
inI(P'- U o ' 30

Which solving this problem may be not a simple tds$&re,to find a localminimizer the fllowing
equation

dJ(Pi-Ule).( iﬁ:o, D
dU

is consideredwhere U' is approximatelydeterminedthrougha numerical methodht each iteratian
As demonstratedn the previous ection the fact that the ISE and ISTE performance indexesas
functions of free parameters of the controller makes it possible tehglatost functiosaccording to
the step lengthFor instance, in Fi@, a typicalplot of the ISE cost function with respect tb has
been drawnIn this special case,sing Equation(31), the optimal value of stp length is almost
U° 0.4. Therefore the local minimize U may be numerically estimatedbased a Equation(31) at
each iteration

It is clear that théntegerorder PID controlleis indeeda special case dquation(10) in which the
fractionatordem is set at zerddence the initial point for the parameter vector giverEiquation(29),
maybe choseras
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wherek 5", k; °d and k™ are supposedsthe optimal parameters dheordinary PID controller

4.1. Analytical gradiens of the cost functiors

As explained in the previousulsection,the gradient of the objective functiowith respect to the
controller parameterdefined by

shouldbe calculatedt each stage of theteepest descealgorithm As presented irsectior, the ISE
and ISTE performanceriteria are expressed in terms d(p, ki, kg andn . Accordingly, the

gradient ofthe cost functions can banalytically evaluatedHence applying thechain ruleto
differentiak the objective fundbns, the exact vatiof gradient is achievable pt0]

elJ“]I P

pkp( s) |

uJ.
o3, (P) 2 8(r) &K
. e, s)
Ak

e

(P.s)
(33

PR N N Y e N DY Y e N S )

“’J' e |

in which Ds, (P) denotesthe gradient ofthe i-th root of Equat|0n(18) respect to the vector of

controller parametersbs, (P) is calculatedby again applyingthe chain rule via the following
formula

Bs(P) =2 #(P) & PR —E (B Lrd e %P

Therefore, the gradient of ISE and ISTE performance indices are confqgyeegloitingthe dgebraic
and accurate relationéfter substituting the gradier®J (P) in Equation(30), the optimal value of
step length i®valuaedbased orEquation(31).

4.2. Optimal tuningrules

To find the optimal tuning rules for the free parametefsthe implementable fractionakrder
controller in Equation(10), firstly, the normalized form of the controller given Eguation(9) is
optimally tunel for the normalized process transfer functiorEguation(7) with different ratiosof
TEI' [0.1, 2]. The interpolateghlots of optimalparameters of the normalized implementable controller

(k_p, k_I k_d and3 ) have been drawn ifigs 4 and 5, based on the ISE and ISTE performance
criteria, respectivelyTo this aim, eight stages of the proposegbdthm in the previous section have
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been repeated and the optimal parameters of ordinary PID controller tuned based on ISE and ISTE
cost functionsas thatproposel in [41], have been assumed as the starting pdifgsg least squares

fitting method[42], the normalizedparameters are formulatedccording to_lg with separate

coefficients inthe sulintervals[0.1, 1] and [1.1, 2]. Then,applyingthe relaionsin Equation(11), the
following tuning rulesareobtained:

. 3 ~ (34
Kg :%ng%r! 58‘* P 'Fé?; *8’3 T Ejgepzégf Zué@g _[B(J)?'O;e
S A I A ¥t = A 30

in which the values of coefficients are represented in the Tdbkes4 for both ISE and ISTE
performance criteria. Consequently, to optimally tune the implementable fraatiieal controller in
Equation(10) for FOPDT processes based on ISE and ISTE performance indices, it is enough to

calculate the parameters givergquation(34).

5. Simulation and experimentalresults

In this section in order to investigate the effectiveness and performanocaef the proposed
implementable fractionadrder controllewith the tuning rulesin Equation(34), threeexampleqtwo

numerical examples and an experimental exampl®) presentedin each examplebath the

implementable fractionadrder PIDand conventionabptimal PID controllershave beerdesigned
based on the ISE and ISTE performance indérescompared with each othgris worth noting that
in the following examplethe sample time used for discretizing the controllers ilvthtab/Simulink

environment is chosen as 0.01s)

5.1. Example 1

Consider the followingrocess

3.1
= o1® 35
1(9) 1+43.333 (39

For control of FOPDT process (35hetfree parameters othe implementable FOPID controllevith
the transfefunctionof Equation(10) aretunedby usingthe ISE basedulesgivenin Relation(34) as
follows.

&n §e23231

é
é’ ué

e b £0.0618
& U €5.6698
e: 1
g3,

*

P = (36)

—_—— =

Ug 0.0764
H

Fig. 6 shows the unit step responses dhe closedloop system with the implementable FOPID

controller tuned by36) and optimal PID controller based on the ISE critefiétj. As comparedn

Tableb5, the implementabl&OPID controlleroutperforms the optimal integerder PID controllein

the viewpoint ofISE performance indexAlso, as compared to optimal PID control method, the
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overshoot peak time and settling timef the closedoop step responsare reducedy using the
implementable FOPID controllewhile the RMS valugof the control sigrl alittle increase.
The second comparison will lwarried outfor the feedback contraystens designed on the basis of
the ISTE performance index.o thisaim, the conventional PID controller is optimally tuned based on
the ISTE basedules proposed iM[l]. Thefree parameters of the implementabl@PID controller is
also adjusted by the formulas iBquation(34) based on the ISTE criterion, whigksults inthe
following parameterectorfor control ofprocessn Equation(35):

N, +

[7]

& § 022938
AP
€ki, U £0.0511

l
Pr=¢é" £ L
' &+ 165.1826 1 (37)
l
l

g e

u

-, U& 00033
(S

& H

2+

The output responses drcontrol signals of the closddop systemby using the abovenentioned
controllershave beemepictedin the Figs 7a and7b, respectively From thenumericalresults shown

in Table 5, considerabledecrement in thevalue of ISTE index is verified due to the use dhe
implementable FOPID controllénstead of the optimal PID controlleklso, as verified in Figs8 and

9, the performance of the tuned FOPID controllers in external disturbance rejection of step type
signals is similar to that of the optimal PID controllers.

5.2. Example2

The following process

1.5%° 10.3926

C(8)*5em 9

is supposed to be controlldyy theimplementable FOPID controller tuned based on the ISE and ISTE
objective functionsAccording to the proposed tuning rules, the following parameter vectors
S o
&r. 2607126 ¢
ér* ueé C
. Gk CI__(?0.0651 (
& 1€3.1802
% 0€ 005240
g, BT T

(39

and

s (4]

Xp. 260.6692
ék* u¢€ ¢
Py = ék.2 L‘J:éo.0585 ;
&; U €2.6346 L
€ 2 ue L
c <& 0.0311 ¢
&7 B° )
are assigned to set the implementable FOgdmtroller, according to the ISE and ISTE performance
indices, respectively.

(40

Figs. 10 and 11 show the sepoint step responses of the proc@§(s) controlled by the
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implementable FOPID controllers tuned by the parametersEguationg39) and(40), respectively,

in comparison to those controlled by optimal integeter PID controllers [41] (The performance of

the considered control systems in external disturbancetiogjés also compared in Fig$2 and 13).
Referring to the results summarized in Tahl¢éhe superiority of implementable FOPID controller for

the ISE and ISTE performance criteria is verified compared to the inteder PID controller. For

the ISEcase, it appears that the overshoot of step response stay almost unchanged whereas the settling
time decreases. Also, for the ISTE case, using the proposed implementable FOPID controller leads to
the less oscillations in comparison with the case of ugtighal PID controller.

In Table 5, the results related to using FOPID controllers tuned via the IAE index based method
introduced in [10 43: Subsection 3.45re also presented. As it is expected, the implementable
fractional order PID controller propa$én this study result in less ISE and ISTE values in comparison

to the case of using FOPID controllers tuned via the method p#R.(Bubsection 3.4.5But, due to

the nature of the IAE index, the controller tuned on the basis of this criteria yielessi maximum
overshoots.

5.3. Example 3:Experimental control of ahtermal furnace

In this examplein orderto verify the efficiency ofthe proposed tuning rulés practicalapplicatiors,
experimentatesults on control of thermal furnaceshown in Figl14, are presented-or this purpose,
firstly, a FOPDT model of theprocessfrom the input voltage téhe furnace temperatushould be
obtained By a simple step response takg transfer function of therocesss obtained as

_14.10%73%

C(8) = 7678 @D

From the tuning rulesf Equation(34), thefree parameters of the implementable FORNtrollerfor
control of process Relation(41) areobtainedas

g
é P e0.1472 ¢
-6k, UZ0.0196 |
&, U €0.2553
€ Ug0.062

g; Y

(42)

~ .~

and

A, T

(4]

Skps  €0.1294
ék*t ué
Py =é iy 03?0'0168
é+ 1€0.2135
6% ue

& H
basedon the ISE and ISTE performance criteria, respectivalg. illustrate the effectiveness of the
tunedFOPID controlles, they arecompared with the conventional PID controller tuteded on the
corresponding cost functionby the methods presented i@1]. The controllers have been
implementedvia MATLAB/Simulink RealTime Workshopand the obtainedpractical results have
been presented in Figk5-17.

(43

[N X e e’X a2 S

o
o
o
-
8

From the step responses plotted in the .Fifs and 16 for the thermal furnace controlled by
implementable FOPID and integerder PID controllers and theumerical resultgivenin Table5, it
can be seen that the maximum oversbadtthe output signalbave beendeceased in the case of
using FQ?ID controller in comarison with the same dhtegerorder typefor both ISE and ISTE
criteria. Also, thenumericalresultsdepictedin Table5 verify the improvement of the mentioned cost
functions by use of the parameters presentdgqimations(42) and (43. Furthermorecomparingthe
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values of the peak time and settling tim@eals that the contralystemis fasterin the case of using
implementable FOPID controlleesdthe RMS values ahe control inputsalittle decrease

6. Conclusion

In this paper, closed forms for calculation of ISE and ISTE cost functions in the case of using
implementable FOPID controllers in control of FOPDT processes were de@inetthe basis of these
forms, algebraic rules for tuning free parameters of FOPID controllers were proposed. Using these
rules,it is guaranteed that the resultant performance is to be superior to that of any conventional PID
controller. This point was vdiied through different numerical and experimental examples.
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