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Abstract:  This study presents a set of rules for optimal tuning a class of integer-order controllers, known 

as implementable fractional-order PID controllers, to be applied in control of first-order-plus-dead-time 

(FOPDT) processes. To this aim, the approach of so-called ñtuning based on the implementable form of 

the controllerò is applied instead of the common approach of ñtuning based on the ideal form of the 

controllerò. Consequently, no contradiction is found between the behavior of the tuned controller and 

that of the implemented controller. Also, algebraic relations between the values of cost functions, which 

are defined based on integral square error (ISE) and integral square time error (ISTE) performance 

indices and free parameters of the implementable controller are established. Tuning implementable 

fractional-order PID controllers via the proposed rules guarantees that the values of performance indices 

are reduced in comparison with the case of using optimal PID controllers. In addition to numerical 

results, experimental results are also provided to demonstrate the effectiveness of the proposed tuning 

rules in practical applications.  

Keywords: Optimal tuning, Implementable fractional-order PID controller; Integer-order approximation; 

Optimization; ISE performance index; ISTE performance index. 

1. Introduction  

In the last years, researchers have paid increasing attention to the applications of fractional calculus in 

the control systems engineering via constituting the fractional-order control filed. This field includes 

the applications of fractional-order differentiation/integration operators in modeling of real-world 

processes and proposing effective control laws. Fractional operators, on one hand, provide a 

framework for more exact modeling of the processes from different areas such as electrical 

engineering [1, 2], mechanical engineering [3-5], medicine [6] and relaxation processes [7] with fewer 

parameters in comparison with integer-order models. On the other hand, considering their unique 

characteristics are used to design controllers that are more robust to process variations in comparison 

with traditional integer-order controllers. Some of the most applicable samples of fixed-structure 

fractional-order controllers are fractional-order PD (FOPD), fractional-order PI (FOPI) and fractional-

order PID (FOPID) controllers which have been originally introduced by Podlubny [8]. 

The traditional PID controllers have been the most applicable type of the industrial controllers so far. 

Some reasons for the widespread use of these controllers in industrial applications include the 

simplicity of structure, existing simple tuning procedures and robustness against parameter 

uncertainties. On the other hand, in recent years, the design of five-parameter FOPID controllers has 

received many interests amongst researchers [8ï11], because they are more flexible than traditional 

PID controllers and can improve the closed-loop system robustness against parameter uncertainties 
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[12].This is the reason that the studies about the tuning of these controllers for controlling the 

industrial and experimental processes have increasingly spread [13-16].Up to now, tuning of the 

FOPID controllers based on certain performance criteria in time domain such as integral square error 

(ISE), integral absolute error (IAE), integral time absolute error (ITAE) and integral square time error 

(ISTE) or in frequency domain such as gain crossover frequency and phase margin specifications [17-

19] have been from the most popular subjects in the area of fractional-order control systems. 

Therefore, finding an analytical method to solve the optimization problems resulted from satisfying 

the above-mentioned objectives may be laborious (Particularly in the cases that we encounter with 

high-dimensional and multi-objective optimization problems). Accordingly, various heuristic 

algorithms can be employed to solve these complex optimization problems. Several optimization 

algorithms such as artificial bee colony (ABC) algorithm [20, 21], genetic algorithm (GA) [22, 23], 

particle swarm optimization (PSO) [24] and Tabu search algorithm (TSA) [25] have been used for 

optimal selection of the free parameters of FOPID controllers hitherto. For instance, the authors in 

[21] have designed a fractional-order PID controller to minimize IAE, ISE and ITAE performance 

indices by using artificial bee colony (ABC) algorithm. Also, the authors in [22] by applying the 

genetic algorithm have proposed a set of tuning rules for both integer-order and fractional-order PID 

controllers in order to optimally control integral and unstable processes from the viewpoint of the IAE 

criterion. Their results have showed higher performance in the systems controlled by FOPID 

controller in comparison with the same ones controlled by standard PID. Similarly, the authors in [23] 

have introduced a novel adaptive genetic algorithm (AGA) to design a FOPID controller on the basis 

of a multi-objective optimization task. As another example, in the paper [24] with the aim of tuning 

the parameters of FOPID controllers, the enhanced PSO algorithm has been applied based on 

minimizing a cost function defined as a weighted combination of the ITAE and the control effort. 

Also, there are different tuning methods for FOPID controllers obtained by mathematical 

optimizations. For example, in the paper [26] a linear quadratic regulator (LQR) based FOPID 

controller has been adopted to control the time-delay fractional-order processes with only one 

fractional operator by means of Pareto optimization trade-off solutions. Furthermore, the authors in 

[12] have proposed a set of algebraic rules for tuning the fractional-order based integer-order 

controller by considering the ISE performance index. In the proposed methods, in order to implement 

the fractional controllers in practice, the integer-order approximation of the fractional derivatives and 

integrators is used because the exact implementation of fractional-order operators in online 

applications is not possible due to their infinite memory characteristics [27]. This approximation may 

cause the difference between the behavior of the implemented system and the expected behavior of the 

closed-loop system [28]. Therefore, using an appropriate approximation is necessary for the proper 

implementation of fractional-order operators.  

The main purpose of this paper is concentrated on providing a set of tuning rules for the 

implementable form of FOPID controller by using the algebraic formulation of ISE and ISTE cost 

functions in terms of free parameters of the fractional based controller. In this way, firstly, integer-

order realization of the FOPID controller, which is referred to an implementable form, is obtained. 

The first-order-plus-dead-time (FOPDT) process is assumed as the under control system in a unity 

negative feedback structure. Also, the implementable controller and the optimally tuned controller 

have the same structures. Consequently, no contradiction will  be among the specifications of closed-

loop system obtained by theoretical evaluations and the same ones obtained in practice. Moreover, in 

order to eliminate the error in the computation of ISE and ISTE, an exact analytical procedure is 

applied while by the steepest descent algorithm the decrement of them is guaranteed. It is worth noting 

that by utilizing this procedure, the considerable decrement in the cost function value is accessible 

after only a few stages of steepest descent algorithm. Hence, it will be shown that the use of FOPID 

controller allows improving the performance indices. 

The organization of the paper is as follows. In Section2, firstly, the structures of the process and 

controller are introduced. Then, the implementable form of FOPID controller, after normalizing the 

transfer function of process and approximating fractional operators in the ideal form of the controller, 

is obtained. Section3 presents algebraic relations for analytically evaluating the ISE and ISTE cost 

functions. In Section4, the method of optimal tuning of the free parameters of implementable FOPID 

controller is described and the resultant tuning rules are given. Next, in Section5, to verify the 

efficiency of the proposed tuning rules some numerical examples, as well as an experimental example, 
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are given. Finally, Section 6 deals with drawing the main conclusions of the paper. 

2. The models of process and controller 

2.1. Process and ideal form of the controller 

In Fig. 1, the typical structure of a closed-loop system with unity negative feedback is shown. In this 

structure, ()G s  and ()C s  respectively denote the process and controller models. In this paper, the 

process is considered in the form of a first order plus dead time (FOPDT) system with model 

 () ,
1

t-

=
+

sKe
G s

Ts
 (1) 

in which K is the steady-state gain, Űis the dead-time and T is the positive time-constant. Several 

step response based techniques have been known for approximating process dynamics by an FOPDT 

transfer function [29]. The primary form of the considered controller  is described by transfer function 

[8] 

 () i
F p d ,   , .m += + + Íɛ

ɚ

k
C s k k s   ɚ  

s
 (2) 

The FOPID (PI Dl m
) controller in Equation (2) has five free parameters for tuning: pk , ik and dk  

are constant coefficients, ɚ and m are respectively the fractional orders of integration and derivation 

terms. In comparison to use a traditional PID controller, the extra freedom caused by ɚ and min a 

FOPID controller helps to improve the performance of the control system. In this paper, to simplify 

the optimal tuning rules, orders ɚ and m are assumed as 

 
1 ,

1

ɚ ɜ

ɛ ɜ.

= +

= -
 (3) 

It is clear that with 0ɜ= , the classical form of PID controller is obtained. 

2.2. The integer-order approximation of controller 

Using integer-order approximations of fractional-order controller is common in practice, because the 

ideal forms of these controllers have infinite memory characteristics [27]. But when a fractional-order 

controller is replaced by its integer-order approximation, there is no guarantee for meeting the 

intended control objectives. Therefore, an intermediate design scheme, as shown in the diagram of 

Fig. 2, is used for optimal tuning of the free parameters. By this scheme, firstly a parameterized fixed-

structure integer-order approximation of fractional-order controller is obtained. Then, optimal tuning 

rules are proposed to obtain a suboptimal controller [28]. In this approach, there will be no repugnance 

between the ideal behavior of the controller and the behavior of its implementable form. Many of the 

available studies about the optimal tuning of the fractional-order controllers have made use of this 

design paradigm, indirectly [12, 21, 22, 24, 28]. In addition, the use of this approach for optimal 

tuning of the fractional-order controllers causes that the frequency domain constraints and 

specifications match with expected theoretical values of them in practice [28]. Via the above-

mentioned intermediate design approach, the fractional structure is used as a simplifying map for 

tuning a high-order controller (In this case, the number of tuning parameters is equal to the number of 

free parameters of the fractional structure, whereas the implemented controller is a high-order one) 

[28].  There are many approximation methods in discrete-time or frequency domain for approximating 

the fractional-order operators with integer-order linear time-invariant filters [30, 31]. For example, 

some of the approximation techniques in discrete time domain are based on power series expansion 

(PSE) and continued fraction expansion (CFE) methods. Also, there are several methods, such as 

Carlsonôs, Matsudaôs and Oustaloupôs methods, for the integer-order continuous model approximation 

of fractional-order operators. One of the most generally used techniques is Oustaloupôs recursive 
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approximation method in which fractional-order differentiator is formulated by series of the rational 

functions as follows [30]. 

 

 

 z,i

e

i 1
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The poles and zeros are calculated by using the following recursive rules. 
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The integer-order approximation of ɜs is only valid in the boundary of low and high cut-off 

frequencies L H[ , ]ɤ ɤ . Also, N  denotes the number of poles and zeros which should be chosen 

beforehand and determines the order of approximating integer-order filter. Thus, to approximate the 

ideal controller in Equation (2) with the orders given in Relation (3), it is enough to replace the term 

ɜs  by an integer-order filter. With the order 2=N and the frequency range[0.1,1000]rad / s, a 

parameterized integer-order approximation of the term ɜs  is gained. Substituting corresponding terms 

in Equation (2) with this filter, following integer-order controller  

 ()
( )( )
( )( )

( )( )
( )( )

2 2

di
I p 2 2

e e

1 10 1 10 1 10 1 10
,

1 10 1 10 1 10 1 10

- - - - - -

- -

å õ å õ+ + + +
æ ö æ ö= + +
æ ö æ ö+ + + +
ç ÷ ç ÷

ɜ ɜ ɜ ɜ

ɜ ɜ ɜ ɜ

s s s s skk
C s k

k ks s s s s
 (5) 

is obtained, where 

 
( )( )
( )( )

2

e 2

1 10 1 10
.

1 10 1 10

- - -

-

+ +
=

+ +

ɜ ɜ

ɜ ɜ
k   

2.3. Normalization 

In this section, for normalizing the process transfer function ( ()G s ) in Equation (1), firstly, open 

loop transfer function of the control system, drawn in Fig. 1, is obtained as 

 () i
ol p d ,

1

-å õå õ
= + +æ öæ öæ ö+ ç ÷ç ÷

Űs
ɛ

ɚ

kKe
G s k k s

Ts s
 (6) 

in which ()FC s is considered as the controller. By use of the variable transformation=ɝ Ts, the open 

loop transfer function in Equation (6) can be rewritten as 

 () di
ol p ,

1

-å õ
å õæ ö

= + +æ öæ öæ ö+ ç ÷æ ö
ç ÷

Ű
ɝ

ɚT
ɛ

ɚ ɛ

kk TKe
G ɝ k ɝ

ɝ ɝ T
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in the ɝ domain. Therefore, the free parameters of the resultant controller can be optimally tuned for 

each FOPDT process scaled by ratio
Ű

T
, which is called the normalized dead time. The normalized 

FOPDT process and the normalized fractional-order controller have the models 

 () ,
1

-

=
+

Ű
ɝ

Te
G ɝ

ɝ
 (7) 

and 

 () i
F p d ,ɛ

ɚ

k
C ɝ k k ɝ

ɝ
= + +  (8) 

respectively. Afterwards, the normalized fractional-order controller in Equation (8) is approximated in 

such a way that given in Equation (5). This procedure yields in the normalized implementable 

controller  

 ()
( )( )
( )( )

( )( )
( )( )

2 2

di
I p 2 2

e e

1 10 1 10 1 10 1 10
.

1 10 1 10 1 10 1 10

- - - - - -

- -

å õ å õ+ + + +
æ ö æ ö= + +
æ ö æ ö+ + + +
ç ÷ ç ÷

ɜ ɜ ɜ ɜ

ɜ ɜ ɜ ɜ

ɝ ɝ ɝ ɝ ɝkk
C ɝ k

k kɝ ɝ ɝ ɝ ɝ
 (9) 

Thus, it is enough that the free parameterspk , ik , dk  and nin Equation (9) are optimally tuned for 

the normalized process given in Equation (7) at different values of 
Ű

T
 based on the performance 

criteria. Now, by reusing the variable transformation =
ɝ

s
T

for ()()IC ɝ G ɝ, the implementable 

fractional-order controller is derived in the form of 

 ()
( )( )
( )( )

( )( )
( )( )

2 2

di
p 2 2

e e

1 10 1 10 1 10 1 10
.

1 10 1 10 1 10 1 10

ɜ ɜ ɜ ɜ

ɜ ɜ ɜ ɜ

Ts Ts s Ts Tskk
C s k

k ks Ts Ts Ts Ts

- - - - - -

- -

å õ å õ+ + + +
æ ö æ ö= + +
æ ö æ ö+ + + +
ç ÷ ç ÷

 (10) 

The coefficients pk , ik  and dk are optimally achievable for each FOPDT process by utilizing the 

optimal values of pk , ik  and dk  in normalized integer-order controller given in Equation (9), 

through the following relations 

 

p

p

i
i

d
d

,

,

.

=

=

=

k
k

K

k
k

KT

k T
k

K

 (11) 

In this paper, the implementable fractional-order controller ( ()C s ) with the transfer function 

Equation (10) is tuned for each FOPDT process given in Equation (1). Consequently, the problem of 

incompatibility between the theoretical specifications of the closed-loop system with the specifications 

of its implementable form will be removed because the implemented controller is the same as the 

optimal tuned fractional-order based controller. 

3. Analytical  evaluation of cost functions 

3.1. Analytical calculation of ISE 
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In the optimal control theory, to satisfy the intended control objective by the closed-loop system in the 

time domain or the frequency domain, a cost function is usually considered which should be 

minimized by properly choosing the free parameters of the controller. In this paper, one of the 

performance criteria which are adopted for the optimization task is the ISE performance index. Using 

this index as the cost function in the design of control system causes that the step response of the 

closed-loop system gets more rapid [32]. The ISE index is formulated as  

 ()2

0

,

¤

=ñJ e t  dt  (12) 

where ()e t
 
(with the Laplace transform ()E s ) is the error of the closed-loop system to the unit step 

reference input of, i.e. 

 () ()1 , 0.= - ²e t y t    t   

It is clear that the Laplace transform of the error of time-delay systems contains exponential term (
-Űse ) that corresponds to the dead-time of the process. In previous studies, different techniques for 

evaluation of ISE in such cases have been utilized in which the approximation methods play essential 

roles. For example, the authors in [21] use the sampled values of the error ( ()e t ) during a certain 

interval to calculate the integral in Equation (12). Moreover, in [12, 33] the exponential term of ()E s  

has been substituted with a rational function by applying the Pade approximation method. These 

techniques are not extremely accurate for calculating the ISE performance index, due to the 

approximation methods used in them. Here, the ISE cost function is evaluated by an analytical 

procedure, in which no approximation technique has been used. Let ()E s be given by 

 ()
() ()

() ()

Ĕ Ĕ

Ĕ Ĕ
,

-

-

+
=

+

Űs

Űs

B s D s e
E s

A s C s e
 (13) 

where ()ĔA s , ()ĔB s , ()ĔC s  and ()ĔD s  are real polynomials. The assumption is that the integral of 

Equation (12) exists, or equivalently the closed-loop system is stable. It is worth noting that a 

necessary, but not sufficient, condition for stability of the system is that the poles of ()E s lie in the 

open left-half of s -plane [34]. Applying the Parsevalôs theorem results in the following integral 

 () ( )
1

,
2

j

j

J E s E s  ds
ˊj

¤

¤

+

-

= -ñ  (14) 

Substituting ()E s  in Equation (14), calculation of ISE is possible by using contour integration such 

that only a finite number of related poles should be analyzed [35]. Supposing that the integrals around 

the semicircles at infinity are zero, the integral J is evaluated as:  

 
() ()

() ()

( )() ( )()

( )() ( )()k
k

Ĕ ĔĔ Ĕ Ĕ Ĕ

Ĕ Ĕ Ĕ
e ,

Ĕ Ĕ
r s

Ĕ

-

-=

å õå õ+ - - -
=- æ öæ ö

æ öæ ö+ - - -ç ÷ç ÷
ä

Űs

Űss s

B s D s e B s A s D s C s
J

A s C s e A s A s C s C s
 (15) 

in which the summation is taken over all the zeros ( ks ) of the following equation: 

 ( )() ( )()Ĕ 0Ĕ Ĕ Ĕ .- - - =A s A s C s C s  (16) 

Here, applying the mentioned analytical procedure, the exact value of ISE performance index is 

calculated. To this aim, firstly, the Laplace transform of the error signal for a unit step reference input 

is determined. For the closed-loop system shown in Fig. 1, ()E s is in the form of 
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 ()
()()( )
1

.
1

=
+

E s
s G s C s

  

Here, the transfer function ()E s is rewritten as Relation (13), where 

 

() ( )( )( )
() ( )( )( )
() ( )( ) ( )( ) ( )( )
()

2
e

2
e

2 2 2 2
p e i d

1 1 10 1 10 ,

1 1 10 1 10 ,

1 10 1 10 1 10 1 10 1 10 1 10 ,

0.

Ĕ

Ĕ

Ĕ

Ĕ

-

-

- - - - - - -

= + + +

= + + +

= + + + + + + + +

=

ɜ ɜ

ɜ ɜ

ɜ ɜ ɜ ɜ ɜ ɜ

A s k s Ts Ts Ts  

B s k Ts Ts Ts

C s Kk k s Ts Ts Kk Ts Ts Kk s Ts Ts

D s

 (17) 

Hence, for exact calculation of ISE the roots of Equation (16) should be determined. To this end, the 

following polynomial equation  

 8 6 4 2 0,+ + + + =as bs cs ds e  (18) 

should be solved where the coefficientsa , b , c , d  and e  are 

 

( )

( )

4 4 6 2 2
e 1

2 4 2 2 4 4 4 2
e 1 1 1

2 2 2 2 4 2
e 1 1 1 1 1

2 2
e 1 1 1

2
1

10 ,

10 10 10 2 ,

10 10 1 2 2 ,

2 ,

,

-

- -

-

= -

=- + + + -

= + + + - -

=- + -

=-

ɜ

ɜ ɜ ɜ

ɜ ɜ

a T k a  

b k T b a c  

c k T b d a e c

d k d c e  

e e

 (19) 

with 

( )( )

( )( )

( )( )

2 2 2
1 d

2 2 2 2
1 p e d

2 2 2 2
1 p e i d

2
1 p e i

1 i

10 ,

10 10 10 ,

10 10 10 ,

10 10 ,

.

- -

- - - -

- - -

- - -

=

= + +

= + + +

= + +

=

ɜ

ɜ ɜ ɜ

ɜ ɜ ɜ

ɜ ɜ

a Kk T

b K k k T k T  

c K k k T k T k

d K k k k T  

e Kk

 

 

Hence, the coefficients of Equation (18) are some functions of the parameters of the process and 

controller. The degree of polynomial in Equation (18) is eight, where the coefficients of odd power 

terms of s  in this polynomial are zero. Therefore, the change of variable 2=x s  results in the fourth 

order equation 

 4 3 2 0.+ + + + =ax bx cx dx e  (20) 

Quartic equations are the highest degree polynomials which can be analytically solved by radicals in 

which no iterative technique needs to be utilized [36]. Accordingly, the polynomial Equation (20) can 

be analytically solved. This means that the roots of Equation (20) may be expressed according to the 

coefficientsa , b , c , d  and e ,which are the functions of parameters of the process and controller. 

Subsequently, being aware of process parameters, roots of the Equation (18) are the functions of 

controller parameterspk , ik , dk  and n. In order to compute the ISE criterion via Relation (15), 

firstly, the residue of the function in the root is  is evaluated as [37] 

 
() ()

() ()

( )() ( )()

()

i

i

i i i i i i
i

i ii i

Ĕ ĔĔ Ĕ Ĕ Ĕ

ĔĔ Ĕ
,

-

-

å õå õ+ - - -
=-æ öæ ö

æ öæ ö+ ç ÷ç ÷

Űs

Űs

B s D s e B s A s D s C s
J

E sA s C s e
 (21) 

in which ()i i
ĔE s is the factorized form of the polynomial in Equation (18), i.e. 
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() ( )

8

i i i k

k 1

k i

.Ĕ

=

¸

= -ÔE s a s s  
(22) 

Accordingly, by the sum of iJ s in each root of Equation (18), an algebraic relation with respect to 

controller parameters for computation of the ISE is derived as 

 ( )p i d, , , .=J J k  k k  ɜ  (23) 

Hence, the ISE performance index is exactly evaluable by substituting the values of controller 

parameters in the cost function J . This result yields in simplicity in searching for a minimum value of 

J  and high accuracy in the optimal tuning of controller parameters.  

3.2. Analytical calculation of ISTE 

In this section, the method of analytical evaluation of another cost function, which is assumed as ISTE 

performance index, is described. This index is mathematically defined as 

 ()2 2

0

,

¤

=ñJ t e t dt  (24) 

in which ()e t
 
is the error of closed-loop system to a unit step reference input. Taking into account 

that in the under study control system, as represented in Equation (17), ()Ĕ 0=D s and using the 

procedure proposed in [38], which is similar to the way utilized for evaluation of ISE index, the 

following formula is obtained for calculation of the ISTE criterion: 

 
()

( )() ( ) ()( )

( )

( ) ( )k
3

k

Ĕ Ĕ

Ĕ ĔĔ Ĕ
r

Ĕ Ĕ
es ,

å õ
å õ-æ ö

= æ öæ öæ ö- + -æ öç ÷- - -
ç ÷

ä Űss

N s B s
J

A s C s eA s A s C s C s

 (25) 

where 

 

() ()() () ()

() ()() () ()( )() () () () () ()( )
() () ()( )() () () ()( )
() ()() () ()

() ()() () () ()()

21 11 11

22 11 12 12 12 11

23 12 12 12

11

12

Ĕ Ĕ

Ĕ Ĕ Ĕ Ĕ Ĕ

Ĕ Ĕ Ĕ

Ĕ ĔĔ Ĕ

Ĕ Ĕ ĔĔ Ĕ Ĕ

2 ,

2 2 ,

2 ,

,

,

= -

= + - - - -

= - - -

= -

= - +

' '

' ' ' '

' '

' '

' '

N s N s A s N s A s

N s N s C s N s ŰN s A s N s A s N s C s ŰC s  

N s N s ŰN s C s N s C s ŰC s

N s B s A s A s B s

N s B s C s B s C s ŰB s C s

  

the superscript ( ' ) denotes derivative with respect to  s  and the sum of residues is calculated at the 

roots of the following equation: 

 ( )() ( )()( )
3

Ĕ 0Ĕ Ĕ .Ĕ- - - =A s A s C s C s  (26) 

Equation (26) is written as  

 ( )
3

8 6 4 2 0,+ + + + =as bs cs ds e  (27) 

with the parameters defined in (19). Hence, the roots of Equation (26) are the same as the roots of 

Equation (18) with repetition 3. By use of the residues theory [37], following formula is constituted 

for the evaluation of residue in the i-th root of Relation (27) 
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()

()

( )

( ) ( )
i

2

i 2 3
i

1
lim ,

2

Ĕ Ĕ

Ĕ ĔĔ
­

å õå õå õ-µ
æ ö= æ öæ ö
æ öæ öæ öµ - + -ç ÷ç ÷ç ÷

   Űs
s s

N s B s
J

s E s A s C s e
 (28) 

where i
Ĕ( )E s  has the same form as presented in Equation (22). Similar to the ISE cost function, by the 

sum of iJ s for each root of Equation (27) and having process parameters (K , t, T ), an algebraic 

relation to evaluate the integral in Equation (24) is formed in terms of free parameters of the 

controller. Therefore, substituting the values of controller parameters in the function of Equation (28) 

for each root of the polynomial of Equation (27), the exact value of the ISTE performance index is 

calculated.  

4. Procedure of optimal tuning 

In this section, an optimization method based on the steepest descent algorithm is applied in order to 

tune the implementable FOPID controller in Equation (10). The vector of the controller parameters is 

given by 

 

p

i

d

,

k

k
P

k

ɜ

è ø
é ù
é ù=
é ù
é ù
é ùê ú

 (29) 

which will be optimally tuned to minimize the cost function J  for the FOPDT processes. The steepest 

descent algorithm (also called gradient or Cauchyôs method) is one of the line search algorithms for 

scalar unconstrained optimization [12]. In each stage of the algorithm, gradient of the objective 

function ( ( )iJ PÐ ) and the step length ( iŬ ) need to be computed and inserted in the following 

formula [39]: 

 ( )i+1 i i i i, .  P P Ŭ J P Ŭ +- Ð Í=   

The ideal choice for step length is derived from the one-dimensional optimization problem 

 ( )
i

i i i i 0min ,( ),  
Ŭ

J P Ŭ J P Ŭ- Ð >  (30) 

Which solving this problem may be not a simple task. Here, to find a local minimizer the following 

equation  

 
( )( )i i i

i
0,

dJ P Ŭ J P

dŬ

- Ð
=  (31) 

is considered, where iŬ  is approximately determined through a numerical method at each iteration. 

As demonstrated in the previous section, the fact that the ISE and ISTE performance indices are as 

functions of free parameters of the controller makes it possible to plot the cost functions according to 

the step length. For instance, in Fig.3, a typical plot of the ISE cost function with respect to Ŭ has 

been drawn. In this special case, using Equation (31), the optimal value of step length is almost 

0.4Ŭº . Therefore, the local minimize Ŭmay be numerically estimated based on Equation (31) at 

each iteration. 

It is clear that the integer-order PID controller is indeed a special case of Equation (10) in which the 

fractional-ordernis set at zero. Hence, the initial point for the parameter vector given in Equation (29), 

may be chosen as 
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ord
p

ord
0 i

ord
d

,

0

k

k
 P

k

è ø
é ù
é ù
=é ù
é ù
é ù
ê ú

 (32) 

where ord
pk , 

ord
ik  and 

ord
dk  are supposed as the optimal parameters of the ordinary PID controller. 

4.1. Analytical gradients of the cost functions 

As explained in the previous subsection, the gradient of the objective function with respect to the 

controller parameters defined by 

 () ()

p

8

i
i

i 1

d

,

J

k

J

k
J P J P

J

k

J

ɜ

=

µè ø
é ùµ
é ù
é ùµ
é ù
µé ùÐ = = Ð
é ùµ
é ù
µé ù
é ùµ
é ù
µê ú

ä   

should be calculated at each stage of the steepest descent algorithm. As presented in Section3, the ISE 

and ISTE performance criteria are expressed in terms of pk , ik , dk  and n. Accordingly, the 

gradient of the cost functions can be analytically evaluated. Hence, applying the chain rule to 

differentiate the objective functions, the exact value of gradient is achievable as [40] 

 () ()

i
i

p

i
i

i i
i i

i i
i

d

i
i

( , 

( , 

,
s

( , 

(

)

)

)

), 

J
P s

k

J
P s

J k
J P s P

J
P s

k

J
P s

ɜ

µè ø
é ùµ
é ù
é ùµ
é ù

µ µé ùÐ = Ð +
é ùµ µ
é ù
µé ù
é ùµ
é ù
é ùµê ú

 (33) 

in which ()is PÐ denotes the gradient of the i-th root of Equation (18) respect to the vector of 

controller parameters. ()is PÐ  is calculated by again applying the chain rule via the following 

formula 

 () () () () () ()i i i i i
i .

s s s s s
s P a P b P c P d P e P

a b c d e

µ µ µ µ µ
Ð = Ð + Ð + Ð + Ð + Ð

µ µ µ µ µ
  

Therefore, the gradient of ISE and ISTE performance indices are computed by exploiting the algebraic 

and accurate relations. After substituting the gradient ()J PÐ  in Equation (30), the optimal value of 

step length is evaluated based on Equation (31). 

 

4.2. Optimal tuning rules 

To find the optimal tuning rules for the free parameters of the implementable fractional-order 

controller in Equation (10), firstly, the normalized form of the controller given in Equation (9) is 

optimally tuned for the normalized process transfer function in Equation (7) with different ratios of 

[0.1, 2]
Ű

T
Í . The interpolated plots of optimal parameters of the normalized implementable controller 

( pk , ik , dk  and ɜ) have been drawn in Figs. 4 and 5, based on the ISE and ISTE performance 

criteria, respectively. To this aim, eight stages of the proposed algorithm in the previous section have 
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been repeated and the optimal parameters of ordinary PID controller tuned based on ISE and ISTE 

cost functions, as that proposed in [41], have been assumed as the starting points. Using least squares 

fit ting method [42], the normalized parameters are formulated according to 
Ű

T  
with separate 

coefficients in the subintervals [0.1, 1]
 
and [1.1, 2]. Then, applying the relations in Equation (11), the 

following tuning rules are obtained: 

 

p

i

3 2

p p p p p p

3 2

i i i i i i

5 4 3 2

d 5 4 3 2 1 0

1
,

1
,

b

b

Ű Ű Ű Ű
k a c d e f

K T T T T

Ű Ű Ű Ű
k a c d e f

TK T T T T

T Ű Ű Ű Ű Ű
k P P P P P P

K T T T T T

å õå õ å õ å õ å õ
= + + +æ öæ ö æ ö æ ö æ öæ öç ÷ ç ÷ ç ÷ ç ÷ç ÷

å õå õ å õ å õ å õ
= + + + +æ öæ ö æ ö æ ö æ öæ öç ÷ ç ÷ ç ÷ ç ÷ç ÷

å õå õ å õ å õ å õ å õ
= + + + +æ æ ö æ ö æ ö æ ö æ öæ ç ÷ ç ÷ ç ÷ ÷

+

+
ç ç ÷ç

6 5 4 3 2

6 5 4 3 2 1 0,

,

Ű Ű Ű Ű Ű Ű
ɜ P P P P P P P

T T T T T T

ö
ö
÷

å õ å õ å õ å õ å õ å õ
= + + + + + +æ ö æ ö æ ö æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ 

(34) 

 

in which the values of coefficients are represented in the Tables 1 to 4 for both ISE and ISTE 

performance criteria. Consequently, to optimally tune the implementable fractional-order controller in 

Equation (10) for FOPDT processes based on ISE and ISTE performance indices, it is enough to 

calculate the parameters given in Equation (34). 

 

5. Simulation and experimental results 

In this section, in order to investigate the effectiveness and performance of the proposed 

implementable fractional-order controller with the tuning rules in Equation (34), three examples (two 

numerical examples and an experimental example) are presented. In each example, both the 

implementable fractional-order PID and conventional optimal PID controllers have been designed 

based on the ISE and ISTE performance indices and compared with each other (It is worth noting that 

in the following examples the sample time used for discretizing the controllers in the Matlab/Simulink 

environment is chosen as 0.01s).  

5.1. Example 1 

Consider the following process 

 ()
5

1

3.13
.

1 43.333

se
G s

s

-

=
+

 (35) 

For control of FOPDT process (35), the free parameters of the implementable FOPID controller with 

the transfer function of Equation (10) are tuned by using the ISE based rules given in Relation (34) as 

follows. 

 

1
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d
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k

k
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k
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è øé ù
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 (36) 

Fig. 6 shows the unit step responses of the closed-loop system with the implementable FOPID 

controller tuned by (36) and optimal PID controller based on the ISE criterion [41]. As compared in 

Table 5, the implementable FOPID controller outperforms the optimal integer-order PID controller in 

the viewpoint of ISE performance index. Also, as compared to optimal PID control method, the 
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overshoot, peak time and settling time of the closed-loop step response are reduced by using the 

implementable FOPID controller, while the RMS values of the control signal a little increase. 

The second comparison will be carried out for the feedback control systems designed on the basis of 

the ISTE performance index. To this aim, the conventional PID controller is optimally tuned based on 

the ISTE based rules proposed in [41]. The free parameters of the implementable FOPID controller is 

also adjusted by the formulas in Equation (34) based on the ISTE criterion, which results in the 

following parameter vector for control of process in Equation (35): 

 

1

1

1

+
p

+
i+

1
+
d

+
1

2.2938

0.0511
.

5.1826
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k

k
P

k
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è ø
è øé ù
é ùé ù
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 (37) 

 

 

 

 

The output responses and control signals of the closed-loop system by using the above mentioned 

controllers have been depicted in the Figs. 7a and 7b, respectively. From the numerical results shown 

in Table 5, considerable decrement in the value of ISTE index is verified due to the use of the 

implementable FOPID controller instead of the optimal PID controller. Also, as verified in Figs. 8 and 

9, the performance of the tuned FOPID controllers in external disturbance rejection of step type 

signals is similar to that of the optimal PID controllers.  

 

 

 

5.2. Example 2 

The following process 

 ()
10.3920

2

1.5
,

1 8.66

se
G s

s

-

=
+

 (38) 

is supposed to be controlled by the implementable FOPID controller tuned based on the ISE and ISTE 

objective functions. According to the proposed tuning rules, the following parameter vectors  
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 (39) 

and 
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d
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 (40) 

are assigned to set the implementable FOPID controller, according to the ISE and ISTE performance 

indices, respectively. 
 

 

 

Figs. 10 and 11 show the set-point step responses of the process ()2G s
 
controlled by the 
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implementable FOPID controllers tuned by the parameters as in Equations (39) and (40), respectively, 

in comparison to those controlled by optimal integer-order PID controllers [41] (The performance of 

the considered control systems in external disturbance rejection is also compared in Figs. 12 and 13). 

Referring to the results summarized in Table 5, the superiority of implementable FOPID controller for 

the ISE and ISTE performance criteria is verified compared to the integer-order PID controller. For 

the ISE case, it appears that the overshoot of step response stay almost unchanged whereas the settling 

time decreases. Also, for the ISTE case, using the proposed implementable FOPID controller leads to 

the less oscillations in comparison with the case of using optimal PID controller. 

In Table 5, the results related to using FOPID controllers tuned via the IAE index based method 

introduced in [10, 43: Subsection 3.4.5] are also presented. As it is expected, the implementable 

fractional order PID controller proposed in this study result in less ISE and ISTE values in comparison 

to the case of using FOPID controllers tuned via the method of [10, 43: Subsection 3.4.5]. But, due to 

the nature of the IAE index, the controller tuned on the basis of this criteria yields in less maximum 

overshoots. 

 

 
 

5.3. Example 3: Experimental control of a thermal furnace 

In this example, in order to verify the efficiency of the proposed tuning rules in practical applications, 

experimental results on control of a thermal furnace, shown in Fig. 14, are presented. For this purpose, 

firstly, a FOPDT model of the process from the input voltage to the furnace temperature should be 

obtained. By a simple step response test, the transfer function of the process is obtained as 

 ()
3.6

3

14.105
.

1 7.675

se
G s

s

-

=
+

 (41) 

From the tuning rules of Equation (34), the free parameters of the implementable FOPID controller for 

control of process in Relation (41) are obtained as 
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 (42) 

and 
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 (43) 

based on the ISE and ISTE performance criteria, respectively.  To illustrate the effectiveness of the 

tuned FOPID controllers, they are compared with the conventional PID controller tuned based on the 

corresponding cost functions by the methods presented in [41]. The controllers have been 

implemented via MATLAB/Simulink Real-Time Workshop and the obtained practical results have 

been presented in Figs. 15-17. 

 
 

From the step responses plotted in the Figs. 15 and 16 for the thermal furnace controlled by 

implementable FOPID and integer-order PID controllers and the numerical results given in Table 5, it 

can be seen that the maximum overshoots of the output signals have been decreased in the case of 

using FOPID controller in comparison with the same of integer-order type for both ISE and ISTE 

criteria. Also, the numerical results depicted in Table 5 verify the improvement of the mentioned cost 

functions by use of the parameters presented in Equations (42) and (43. Furthermore, comparing the 
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values of the peak time and settling time reveals that the control system is faster in the case of using 

implementable FOPID controllers and the RMS values of the control inputs a little decrease.   

 
 
 

 

6. Conclusion 

In this paper, closed forms for calculation of ISE and ISTE cost functions in the case of using 

implementable FOPID controllers in control of FOPDT processes were derived. On the basis of these 

forms, algebraic rules for tuning free parameters of FOPID controllers were proposed. Using these 

rules, it is guaranteed that the resultant performance is to be superior to that of any conventional PID 

controller. This point was verified through different numerical and experimental examples.  
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