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Abstract. Response surface is an e�ective method for robust parameter design. Previous
response surface methodologies assume that independent variables are measured without
errors. However, this assumption might be violated due to the low capability of the measure-
ment system. The present study employs the response surface method for robust parameter
design with measurement errors in variables. In addition, an unbiased estimator is presented
in the presence of some measurement errors and an optimal setting which is determined to
minimize the expected quadratic loss. An example is then illustrated to verify the e�ective-
ness of the proposed approach. The results showed that the proposed method could achieve
better operating conditions, despite measurement errors, than the conventional method.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Robust parameter design (also known as parameter
design) is a quality improvement technique proposed
by Taguchi [1,2], which is a cost-e�ective approach
to reducing variations of products and processes. As
summarized by Nair [3] and Phadke [4], Taguchi
classi�ed the inputs to the system into two groups:
control variables x and noise variables z. While the
former can be easily controlled and manipulated, the
latter are di�cult, expensive or impossible to control
during the normal design or production process. Here,
y denotes the response which is actually a quality
characteristic that measures the output performance
of the system. There could be many combinations or
settings of x where the system can produce the desired
level of y (also called the target) on average. Among
these, there are also some settings based on which the
system becomes insensitive to the e�ect of the noise
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variables z. Variations in z during the manufacturing
process contribute to more unwanted variations into
the system. The basic idea of parameter design lies in
selecting the levels of control variables so as to achieve
robustness or insensitivity to the noise variation z.
This is done by exploiting interactions between the
control and noise variables. A traditional approach
to the study of robust parameter design is the signal-
to-noise ratio approach [5], which combines the mean
with variance. Although this approach can mitigate the
deleterious e�ects of noise variables, its performance is
still limited because it ignores the interactions among
the control variables, leading to invalid results some-
times. Robust design problems can be handled using a
response surface approach such as interactions between
control variables [6]. Response surface model approach
establishes a relationship between process responses
and process variables containing control variables, noise
variables, and interactions between control variables
and noise variables. The control variables are set by
minimizing the quality loss function, which contains
deviation from the target and variance (see, for exam-
ple [7{10]).

To improve the product quality, the �rst issue is
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to identify process variables that potentially a�ect the
product quality characteristics. Once the inuential
variables are identi�ed, the next step is to seek ap-
propriate settings for the control variables to optimize
process output and improve product quality. The
product quality data are obtained through measure-
ments associated with both the design and production
stages. Zhai et al. [11] pointed out that measurement
errors would occur often inevitably due to various
factors such as human errors and limited precision of
the measurement device. Gauge measurement errors
have been extensively discussed in the literature (e.g.,
see [12,13]. Loken and Gelman [14] found that mea-
surement error added noise to predictions, increased
uncertainty in parameter estimates, and made it much
more di�cult to discover new phenomena. Feng et al.
[15] maintained that all measurement processes were
subject to a certain degree of uncertainty, emphasizing
that measurement result should be reported with a
quantitative statement of its uncertainty. The classical
theory of robust design assumes that the independent
variables are measured without errors. Giovagnoli
and Romano [16] introduced a modi�cation to the
dual response surface modeling, which incorporates the
option of stochastically simulating some of the noise
variables when their probabilistic behavior is known.
They applied the method to the design of a high-
precision optical pro�lometer and insisted that their
method was suitable for designing complex measure-
ment systems. In practice, however, the measurement
system is usually not precise enough. A �rm needs to
design the experiment, analyze the data in the design
stage, and maintain the level of control variables in
the production stage. Measurement errors can occur
in design or production stages, which may not be
recognized by the design or production engineers. The
e�ect of errors at the factor levels on the statistical
properties of the parameters obtained from two-level
factorial and fractional factorial designs was �rst stud-
ied by Box [17]. Draper and Beggs [18] measured
the robustness of experimental designs to errors at
the factor levels by the sum of squared di�erences
between the observed and predicted values. However,
they also recognized that �nding an analytical proof
for any optimality conditions in the presence of two or
more factors was very di�cult and, also, recommended
searching numerically for a solution. Steiner and
Hamada [19] assumed that during regular production,
some measurement errors might occur, but negligible
measurement errors would emerge during the design
process. Under this assumption, the response model
derived from the experimental results is una�ected
by measurement errors. Donev [20] focused on the
statistical properties of experimental designs in which
the factor levels could not be set precisely and then
proposed that the criterion of D-optimality should be

based on the inverse of the information matrix. They
recognized that errors in variables could a�ect the mean
and the variance of responses. In the D-optimality,
the e�ect of noise variables is ignored. Moreover,
measurement errors have a signi�cant inuence on the
variance of responses in the �tted model. Zhong et
al. [21] pointed that the errors in measuring noise vari-
ables had a signi�cant inuence on process responses.
Ardakani [22] found that error in noise variables caused
poor estimation of the response model, which would
consequently a�ect the optimal setting of the control
variables. However, they did not consider measurement
errors in the control variables. Over the past years,
the problem of estimating unknown parameters with
measurement errors has been extensively discussed
in the literature (e.g., see [23{26]). Nevertheless, it
has not received enough attention. Design engineers
usually do not consider measurement errors. Since
measurement errors are not ignorable in model �tting
and optimization, it is important to investigate the
impacts of modeling and measurement errors on the
performance of robust parameter design, as well as fur-
ther optimization of the control variables, to improve
the robustness to measurement errors.

The purpose of this paper is �rst to analyze
the inuence of the measurement errors on the re-
sponse surface modeling and optimization and, then,
to explore the best setting of control variables in this
situation. Speci�cally, the next section presents the
response surface model for robust parameter design.
The e�ect of measurement errors on response surface
model is analyzed in Section 3. Section 4 presents
how to optimize the control variables setting under
measurement errors. The optimization scheme is
illustrated with an example in Section 5. Concluding
remarks are given in the �nal section.

2. Response surface model to robust
parameter design

Welch et al. [27] proposed a single response surface
model that utilizes control variables and noise vari-
ables. A general statistical model can be expressed
as:

y = f(x; z) + ": (1)

In Eq. (1), x and z denote the vectors of control and
noise variables; " is a term representing other sources
of variability not accounted for in f .

The regression model in Eq. (1) is often described
including linear, quadratic, and interaction terms. A
second-order statistical model with the main e�ects and
control-by-noise interactions is used:

y = �0 + �T
1 x + �T

2 z + xTB1x + xTB2z + ": (2)
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In Eq. (2), x = (x1; x2; � � � ; xp)T , z = (z1; z2; � � � ; zq)T ,
and other vectors and matrices are of appropriate
dimensions, i.e.:

�1 = (�11; �12; � � � ; �1p)T ;

�2 = (�21; �22; � � � ; �2q)T ;

B1 =

0BBB@
B111 1=2B112 � � � 1=2B11p

1=2B112 B122 � � � 1=2B12p

...
...

. . .
...

1=2B11p � � � � � � B1pp

1CCCA
B2 =

0BBB@
B211 1=2B212 � � � 1=2B2q1

1=2B221 B222 � � � 1=2B2q2
...

...
. . .

...
1=2B2q1 � � � � � � B2qp

1CCCA :

It needs to be noted that the regression model
should be built using signi�cant terms. In general,
the model in Eq. (2) is fairly practicable in many
engineering applications, which assumes the following:

a) The product system performance is time-invariant.
That is, the real-life manufacturing process is stable
and the model parameters (�'s and B's) do not
vary with time.

b) z and " are independent of each other with the
mean of z and " being 0 and the variance of z and
" being

P
z and �2

" , respectively. The regression
errors (") are independently and identically dis-
tributed.

The model in Eq. (2) can be rewritten as follows:

y = g(x; z)T � + "; (3)

where we let:

g(x; z) = (1; x1; x2; � � � ; xp; z1; z2; � � � ; zq;
x1x1; x1x2; x1x3; � � � ; xp; x1z1; x1z2;

� � � ; xpzq)T ;
and:

� = (�0; �11; �12; � � � ; �1p; �21; �22; � � � ; �2q;

B111 ; B112 ; � � � ; B1pp ; B211 ; B212 ; � � �B2pq )
T :

The linear regression coe�cients � and the error vari-
ance �2

" can be estimated using the data obtained from
the experiment by the least squares estimator:

�̂ = (XTX)�1XTy; (4)

and:

�̂2
" =

SSE
n� p� q � p(p+1)

2 � pq � 1
; (5)

where X = (g(x1; z1); g(x2; z2); � � � ; g(xn; zn))T , y =
(y1; y2; � � � ; yn) and SSE denotes the sum of the squared
errors, that is, SSE = (y �X�̂)T (y �X�̂).

The model proposed by Welch et al. [27] could
be used to formulate dual response surfaces (see, for
example [28{30]. The choice of optimum setting x�
could be obtained via the joint exploration of the
response surfaces generated by the mean and variance
of the response. The model for the location response
(the mean response) is found by taking the expectation
of f(x; z) as follows:

� = E";z[f(x; z)] = �0 + �T1 x + xTB1x: (6)

The dispersion response (variance) of f(x; z) in Model
(2) is given by:

�2 =V ar";z[f(x; z)]

= (�T2 + xTB2)�z(�T2 + xTB2)T + �2
" : (7)

An objective function must be de�ned to obtain
the optimal setting of the control variables. Ames et
al. [31] and Murphy et al. [32] studied di�erent types
of loss functions. One of the most commonly used
loss functions is the quadratic loss function. There are
three types of quadratic loss function. Eq. (8) gives the
quadratic loss function for a nominal-the-best quality
characteristic y where the deviation on either side of
the target value � is undesirable:

L = K(y � �)2; (8)

where K is an economic coe�cient. The quadratic
loss function considers o�-target penalty and variance
by measuring the deviation between the response and
target values. Eq. (9) is the quadratic loss function for
a smaller-the-better quality characteristic, which can
be obtained by substituting � = 0 in Eq. (8):

L = Ky2: (9)

For the larger-the-better quality characteristic y which
has positive values, making y larger is equivalent to
making y0 = 1=y smaller. Thus, a larger-the-better
type quality loss function can be used by replacing y
with its reciprocal value y0 = 1=y as:

L = Ky02: (10)

Eqs. (9) and (10) represent well-tested functions to
calculate quality loss for smaller-the-better and larger-
the-better quality characteristics when the quality
characteristic does not take negative and zero values.
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For the larger-the-better quality characteristic, the re-
sponse model should be built based on the relationship
between new quality characteristic and process input
variables (control variables x and noise variables z).

Based on the quality loss function, expected
quality loss can be computed:

J(x) = E(L) =

8<: K[(�y � �)2 + �2
y ] (NTB)

K[�2
y + �2

y ] (STB)
K[�2

y0 + �2
y0 ] (LTB) (11)

The economic coe�cient K is assumed to be 1
in �nding the optimal setting of control variables 1
without loss of generality. Then, the expected quality
loss will be simple as follows:

J(x) = E(L) =

8<: (�y � �)2 + �2
y (NTB)

�2
y + �2

y (STB)
�2
y0 + �2

y0 (LTB)
: (12)

The optimal setting of control variables can be derived
by minimizing the expected loss in Eq. (12):

x� = min
x2�

J(x); (13)

where � is the region of control variables. The opti-
mization procedures are illustrated with an example in
Section 4.

3. Response surface model with measurement
errors

Response surface models for robust parameter design
are widely implemented by engineers to improve prod-
uct or process quality. However, if the measurement
of data collection is followed by errors, they do not
represent the true values of the variables of the product
or process being measured. Therefore, it is important
to perform a valid measurement analysis in advance to
ensure the accuracy and precision of the data collected.
Repeatability and Reproducibility (R&R) are the most
basic concepts used for the identi�cation of the vari-
ation of the measurement system [6]. Gauge R&R
addresses the magnitude of errors in a measurement
system. The variance of the errors in a measurement
system can be easily calculated by statistical software.

As mentioned in the �rst section, there often
exist measurement errors in practical situations. If
there are some measurement errors occurring in the
product or process design stage, the data obtained
from experiments will be imprecise. Assume that
Eq. (3) is the actual form of the regression model. In
an experiment employed to estimate the relationship,
suppose that one observes the following:(

~y = y + v
(~x;~z) = (x; z) + (wx;wz)

(14)

In Eq. (14), y, x, and z denote error-free response,

control, and noise variables, and v and w denote the
measurement errors of the corresponding variables. It
is assumed that the measurement errors follow the
assumptions:�

v
w

�
�MVN

�
0;
�
�2
v 0

0 �w

��
;

where MVN reads `multivariate normal' and �w is a
(p + q) � (p + q) covariance matrix of measurement
errors vector w. Note that v is assumed to be
independent of each component of w and components
of w are independent of each other, i.e., �w =
diag(�2

wx1
; �2
wx2

; � � � ; �2
wxp ). However, one can only

observe the experimental variables ~y and g(~x;~z) with
the relationship y = g(x; z)T � + ". The Ordinary
Least Squares (OLS) estimator � based on the observed
variables is:

�̂ = (~XT ~X)�1 ~XTX� + (~XT ~X)�1 ~XT "; (15)

where X = (g(x1; z1); g(x2; z2); � � � ; g(xn; zn))T and
~X = (g(~x1;~z1); g(~x2;~z2); � � � ; g(~xn;~zn))T . �̂ is an un-
biased estimator for � when there are no measurement
errors. However, in case measurement errors exist,
which often happen in practice, the OLS estimator is
biased.

Wolter and Fuller [23] gave a summary of results
concerning the measurement error models. To facilitate
our discussion, let:

' = (~y; ~g(~x;~z)) = (y; g(x; z)) + �;

~g(~x;~z) = g(x; z) + f = (1; ~x1; ~x2; � � � ; ~xp; ~z1; ~z2; � � � ;
~zq; ~x1~x1 � �2

w1
; ~x1~x2; � � � ; ~xp~xp � �2

wp ; ~x1~z1;

~x1~z2; � � � ; ~xp~zq)T

f = (0; wx1 ; � � � ; wzq ; 2x1wx1 + w2
x1
� �2

wx1
; x1wx2

+x2wx1 + wx1wx2 ; � � � ; xpwzq + zqwxp + wxpwzq )

� = (v; f):

Note that we have de�ned ~g(~x;~z) and � so that E(�) =
0. We also de�ne the moment matrix:

M = n�1
nX
t=1

't0't =
�
Myy Myx
Mxy Mxx

�
; (16)

and the covariance matrices:


t = E(�Tt �t) =
�

�2
v 
vft


fvt 
� t

�
; (17)
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 = n�1
nX
t=1


t: (18)

Because the measurement errors are distributed
as multivariate normal, the covariance matrix of �t
is symmetric. Diagonal elements in Eq. (17) are the
variance of the corresponding terms, e.g.:

V ar(~y)=�2
v ; V ar(~xi)=�2

wxi
; V ar(~zi)=�2

wzi
;

V ar(~x2
i ) = 2�4

wxi
+ 4x2

i�
2
wxi

;

V ar(~xi~xj) = �2
wxi

�2
wxj

+ x2
i�

2
wxj

+ x2
j�

2
wxi

:

Other elements are the covariance of di�erent terms,
e.g.:

cov(~xi; ~xj) = 0; cov(~xi; ~x2
i ) = 2xi�2

wxi
;

cov(~xi; ~xi~xj)=xj�2
wxi

; cov(~x2
i ; ~xi~xj)=2xixj�2

wxi
;

cov(~xi~xj ; ~xi~xk) = xjxk�2
wxi

; cov(~xi~xj ; ~xm~xk)=0:

The unbiased estimator of 
t, which is 
̂t, can be
obtained by replacing xi with ~xi, xixj with ~xi~xj , and
x2
i with ~x2

i � �2
xi . Then, the unbiased estimator of 


can be constructed by:


̂ = n�1
nX
t=1


̂t: (19)

The unbiased estimator of �, which is the extended ver-
sion of Wolter and Fuller [23] for multiple independent
variables, is as follows:

�̂ = (Mxx � �̂
̂� )�1Mxy; (20)

where �̂ is the smallest root of the determinant equa-
tion

���M� �
̂
��� = 0.

4. Response surface optimization with
measurement error model

When the levels of the control variables are set with
errors, their values become random variables. If x is the
vector of the intended value for the control variables,
the factual value ~x will be observed as:

~x = x + wx: (21)

In Eq. (21), wx is the vector of measurement errors
of the control variables. Naturally, we suppose that
the measurement system is unbiased, the covariance
of measurement system is �wx , and the measurement
errors are independent of each other. i.e.:

wx � N(0;�wx);

�wx = diag(�2
wx1

; �2
wx2

; � � � ; �2
wxp ):

Substituting ~x for x of Eq. (21) in Eq. (2) gives:

y=�0+�T
1 (x + wx)+�T

2 z + (x + wx)TB1(x + wx)

+(x + wx)TB2z + ": (22)

Hence, the expectation and variance of the re-
sponses can be derived

Ewx;z(y) = �0 + �T1 x + tr(B1�wx) + xTB1x; (23)

V arwx;z(y) = Ex[varz(y)] + varx[Ez(y)]

= Ex[(�T2 + xTB2)�z(�T2 + xTB2)T ]

+varx[�0 + �T1 x+ xTB1x] + �2

= tr(BT
2 �wxB2�T

z ) + (�T2 + xTB2)

(�T
z BT

2 x + �z�2) + 2tr(B1�wxB1�wx)

+4(x +
1
2
B�1

1 �1)TB1�wxB1

(x +
1
2
B�1

1 �1) + �2: (24)

In Eqs. (23) and (24), Ewx;z(y) represents the ex-
pectation of responses y taken over the distribution of
random variables wx and z, and V arwx;z(y) represents
the variance of response y taken over the distribution
of random variables wx and z.

Then, the conditional objective function can be
expressed as follows:

Jwx;z(x) = E(L) =8><>:(Ewx;z(y)� �)2 + V arwx;z(y) (NTB)
Ewx;z(y)2 + V arwx;z(y) (STB)
Ewx;z(y0)2 + V arwx;z(y0) (LTB)

(25)

The optimal setting of the control variables will
be obtained to minimize the expected quality loss as
follows:

x� = min
x2�

Jwx;z(x): (26)

If there are no measurement errors, i.e., �wx = 0,
the optimal setting of control variables will be the
same as those obtained by the traditional robust
parameter design.

5. Example

In this section, the proposed method is illustrated in
detail using a turning operation process case study
introduced in Kirby et al. [33]. A typical turning
operation produces parts that have critical features
requiring speci�c surface roughness. The objective
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Table 1. Factors, codes, and level values used for the
orthogonal array.

Parameter Code -1 0 1

Control variables
Spindle speed (rpm) x1 1500 2250 3000
Feed rate (ipr) x2 0.004 0.008 0.012
Depth of cut (in) x3 0.010 0.020 0.030
Tool radius (in) x4 0.008 0.016 0.032
Noise variables
Tool number z1 1 2
Temperature range (�F) z2 65{75 95{100
Response variable
Surface roughness (�in) Y

of the experiment is to reduce surface roughness by
controlling four control variables. The control variables
are spindle speed (x1), feed rate (x2), depth of cut (x3),
and tool nose radius (x4). At the same time, tool in-
serts (z1) and room temperature (z2) are noise variables
that cannot be controlled. A modi�ed orthogonal array
is created using the orthogonal array L9(34) and the
selected parameters, as shown in Table 1. A total of 36
experiments are run and the design and experimental
data are given in Table 2. The control variables and
noise variables are coded from �1 to 1. By supposing
that the variance of noise variables is equal to 1/3
(USL�LSL6 ), most of noise variables range from �1 to 1.

To �t the empirical model, terms up to the second
order are taken into account and signi�cant terms are
included in the model for further analysis. Based on
the experimental data, a stepwise regression is used to
�t the turning process model by using � = 0:05 for both
enter and remove tests in MINITAB. It is assumed that
there are some measurement errors in the design stage
and all variables are independently and identically
distributed with the variance of measurement errors
ranging from 0 to 0.07. We can get the estimate of the
parameters by the method proposed in Section 3. The
results are given in Table 3.

From the above results, the control variable x3
(depth of cut) is not a signi�cant factor in reducing
the surface roughness such that it can be set according
to economic advantages during the production. At the
same time, the noise variable z2 (room temperature) is
also not signi�cant in reducing the surface roughness.
In addition, the response surface model can be obtained
as follows:

y = �0 + �T
1 x + �T

2 z + xTB1x + xTB2z; (27)

where x = [x1; x2; x4]T and z = z1. When there are
no measurement errors, that is, the variance of mea-
surement errors of all variables equals 0, the estimated
parameters are:

Table 2. Data of the designed experiment.

Order x1 x2 x3 x4 z1 z2 Y

1 -1 -1 -1 -1 -1 -1 47
2 -1 0 0 0 -1 -1 137
3 -1 1 1 1 -1 -1 145
4 0 -1 0 1 -1 -1 32
5 0 0 1 -1 -1 -1 159
6 0 1 -1 0 -1 -1 230
7 1 -1 1 0 -1 -1 44
8 1 0 -1 1 -1 -1 64
9 1 1 0 -1 -1 -1 244
10 -1 -1 -1 -1 -1 1 47
11 -1 0 0 0 -1 1 137
12 -1 1 1 1 -1 1 147
13 0 -1 0 1 -1 1 31
14 0 0 1 -1 -1 1 162
15 0 1 -1 0 -1 1 214
16 1 -1 1 0 -1 1 49
17 1 0 -1 1 -1 1 69
18 1 1 0 -1 -1 1 240
19 -1 -1 -1 -1 1 -1 61
20 -1 0 0 0 1 -1 124
21 -1 1 1 1 1 -1 117
22 0 -1 0 1 1 -1 26
23 0 0 1 -1 1 -1 178
24 0 1 -1 0 1 -1 207
25 1 -1 1 0 1 -1 50
26 1 0 -1 1 1 -1 52
27 1 1 0 -1 1 -1 248
28 -1 -1 -1 -1 1 1 64
29 -1 0 0 0 1 1 130
30 -1 1 1 1 1 1 116
31 0 -1 0 1 1 1 36
32 0 0 1 -1 1 1 171
33 0 1 -1 0 1 1 210
34 1 -1 1 0 1 1 40
35 1 0 -1 1 1 1 46
36 1 1 0 -1 1 1 247

�0 =139:72; �1 =[�5:71; 69:89;�48]T ; �2 =�4:17;

B1 =[�16:2; 0;�2:45; 0; 0;�10:755;�2:45;�10:755;

�16:46];

B2 = [0;�8:5;�13:75]T :

From Table 4, it can be seen that even though the errors
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Table 3. Parameter estimation under di�erent magnitudes of measurement errors.

Term Variance of measurement errors
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Constant 139.72 141.88 144.71 148.68 155.08 136.37 173.81 214.76
x1 -5.71 -6.46 -7.31 -8.24 -8.86 -29.76 -16.44 -19.30
x2 69.89 71.60 73.51 75.65 77.85 91.74 87.04 92.23
x4 -48.00 -49.00 -50.08 -51.25 -52.52 -53.93 -55.51 -57.31
z1 -4.17 -4.34 -4.52 -4.72 -4.93 -5.17 -5.43 -5.73
x1x1 -16.20 -17.63 -19.42 -21.87 -26.14 14.36 -25.76 -32.63
x4x4 -16.46 -18.65 -21.57 -25.63 -31.69 -41.69 -61.30 -117.18
x1x4 -4.90 -3.19 -1.16 1.25 3.76 27.90 17.46 25.25
x2x4 -21.51 -22.81 -24.27 -25.84 -26.76 -65.26 -40.08 -44.75
x2z1 -8.50 -8.99 -9.54 -10.19 -10.94 -11.84 -12.91 -14.24
x4z1 -13.75 -14.54 -15.44 -16.48 -17.70 -19.15 -20.89 -23.03

Table 4. Optimal setting and Expected Quality Loss (EQL) with di�erent magnitudes of measurement errors in the
production stage.

True optimal setting
Quality loss
under true

optimal setting

Quality loss
under initial

optimal setting
Variance A B D

0 1.000 {1.000 0.991 29.21 29.21
0.01 1.000 {1.000 0.982 112.68 112.95
0.02 1.000 {1.000 0.974 196.13 197.22
0.03 1.000 {1.000 0.966 279.57 282.01
0.04 0.932 {1.000 1.000 362.16 367.32
0.05 0.914 {1.000 1.000 443.97 453.16
0.06 0.896 {1.000 1.000 525.23 539.52
0.07 0.877 {1.000 1.000 605.94 626.41

in independent variables occur at a low level, they
have a great impact on model �tting. As the variance
of the measurement errors increases, the estimated
coe�cients of the parameters deviate further from
those obtained under no measurement errors case.

Since the experimenters are interested in minimiz-
ing surface roughness, the optimization function is the
STB type expected loss. In the surface operation pro-
cess, variance of measurement errors can be obtained
using measurement system analysis.

If there are no measurement errors in the design
stage, meaning the variables are measured with pre-
cision in applying design of experiments, errors can
only occur in the production stage. As can be seen
in Eq. (21), optimal setting x� cannot be set precisely
in production. The actual input value is ~x� due to
measurement errors. Assume that the measurement
system is unbiased and the variance ranges from 0
to 0.07, i.e., �2

wx
2 [0; 0:07]. When the variance

of measurement system equals 0, the optimal setting

can be obtained by the traditional responses surface
optimization approach proposed by Welch et al. [27].
The optimization problem in Eq. (26) will be given in
Eq. (28), which would be solved by genetic algorithm
using MATLAB:

Min
x
Jw;z(x) = u2

w;z(x) + �2
w;z(x)

s.t. x 2 [�1;1] (28)

Optimization results are presented in Table 4. As
can be seen in Table 4, the initial optimal setting
(x1; x2; x4) = (1:000;�1:000; 0:970) is calculated by
the traditional response surface approach when there
are no measurement errors. The actual optimal setting
changes along with the variance of measurement errors
of control variables. Table 4 also gives the actual
optimal setting and the corresponding expected quality
loss with respect to di�erent measurement errors.
Figure 1 shows the comparison of the performances
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Figure 1. Comparison of expected quadratic losses with
and without consideration of measurement errors in the
production stage.

of the estimators with and without consideration of
measurement errors in the production stage. Jios
and Jtos are the expected quality losses under initial
optimal setting obtained with no measurement error
assumption, and under true optimal setting obtained
considering measurement errors in the production
stage, respectively. If the initial optimal setting with
no measurement errors assumption is still used as the
process input with measurement errors, the expected
quality loss will be more signi�cant than that obtained
with measurement errors consideration. However, the
gaps between the two expected quality losses are small
and can be ignored.

Suppose that the levels of the control variables
can be measured with errors in the design stage. From
Table 3 we �nd that measurement errors have a great
impact on model �tting when they occur in the design
stage. If measurement errors occur in both the design
and production stages, the true optimum condition
may be di�erent from the initial optimal setting. We
suppose that the distributions of measurement errors
in the design stage are the same as the ones in the
production stage when the variance of measurement
errors ranges from 0 to 0.07. That is, the diagonal ele-

ments of covariance matrix of MVN
�

0;
�
�2
v 0

0 �w

��
are the same. Table 5 presents the actual optimal
setting and the corresponding expected quality loss
under di�erent magnitudes of measurement error. In
case of measurement errors existing, if the initial
optimal setting obtained without measurement errors
assumption is still used, the expected quality loss will
be much more considerable than that under the optimal
setting with measurement errors. This event happens
even when the variance of the measurement errors is
very small. If there are measurement errors in the
design and the production stage, it can be found that
not only are the regression coe�cients poorly estimated
by the usual OLS, but also the prediction property is
severely damaged. At the same time, the optimum
operating condition of control variables is located far
from the true optimum condition obtained by the

Figure 2. Comparison of expected quadratic losses with
and without consideration of measurement errors in the
design stage.

unbiased estimation method of Eq. (20). Figure 2
shows the comparison of the performances of the esti-
mators with and without consideration of measurement
errors in the design stage. Jios is quality loss under
initial optimal setting, and Jtos is quality loss under
true optimal setting obtained considering measurement
errors. When the variance of measurement errors is
larger than 0.04, considering measurement errors is
imperative. Upon comparing Figures 1 and 2, we
can see that measurement errors in the production
stage have a very negligible impact on the expected
loss, while the errors would be highly inuential in the
design stage. As seen in Figure 2 and Table 5, the
expected quality loss soars up when the magnitude of
measurement errors is 0.07 or larger.

6. Discussion and concluding remarks

To �nd the optimal setting of the control variables
to ensure a robust design based on response surface
methodology, design engineers usually do not consider
measurement errors. However, in reality, measurement
errors exist, yield poor estimation of the regression
coe�cients, and damage the prediction capability. This
paper proposed an approach to properly estimate
a response surface model, which takes into account
measurement errors both in the design and produc-
tion stages. We presented a modeling method when
there were some measurement errors in the design
stage. Location and dispersion performances of quality
characteristics were given and then, optimal setting of
control variables was derived in the production stage.
With a turning operation case study, the performances
of these settings were compared with the performance
of the setting obtained with no measurement errors
assumption. Analysis results show that errors in
variables are needed to be taken into account for
parameter estimation and prediction to reduce the
expected quality loss in the design stage.
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