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Abstract. A portfolio selection model is developed in this study using a new risk measure.
The proposed risk measure is based on the fundamental value of stocks. For this purpose,
a mathematical model is developed and transformed into an integer linear programming.
In order to analyze its e�ciency, the actual data of the Tehran Stock Exchange market are
used in 12 scenarios to solve the proposed model. In order to evaluate the scenarios, data
mining approaches are employed. Data mining methods used in this paper include Adaptive
Neuro-Fuzzy Inference System (ANFIS), decision tree, random forest, Fisher Discriminant
Analysis (FDA), and Gene Expression Programming (GEP). The best method for scenario
evaluation is GEP based on numerical results. Hence, the market values are evaluated
by this algorithm. Software packages like MATLAB, GEP xpero tools, and LINGO are
used to solve the model. Di�erent trends of market value and fundamental value volatility
in the optimum stock portfolio are determined. It is possible to examine the optimum
portfolio pro�tability in di�erent scenarios. By using real-world data, trends are extracted
and analyzed. Results show that the developed model can be e�ectively applied in bubble
situations.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Portfolio selection problem is one of the most important
issues in �nance in which investors try to maximize
return and minimize risk. Markowitz was the �rst
researcher who developed a mathematical de�nition of
risk measures [1]. However, his risk measure was not
linear and was subject to some calculation issues. After
developing the mentioned measure, many researchers
have tried to develop new risk measures. Konno
and Yamazaki [2] presented Mean Absolute Deviation
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(MAD) as a risk measure. Their risk measure was
based on the stocks' rate of return. It was linear, but
MAD considered both positive and negative deviations
from mean as a risk which was not practically accept-
able. The next huge step toward a proper risk measure
was taken by Rockafellar and Uryasev [3] who devel-
oped Conditional Value at Risk (CVaR). This new risk
measure is convex and has a linear programming model.
CVaR is a downside risk measure and uses historical
data with the assumption that historical trends will
happen in the future. Moreover, this risk measure uses
the rate of return for its calculation. They also de-
veloped Conditional Drawdown at Risk (CDaR) which
used the maximum price of a stock in the investment
period as a threshold. However, this risk measure is too
conservative. Bernardi et al. [4] presented multiple risk
measures for multivariate dynamic heavy-tailed mod-
els. They studied the evolution of risk interdependence
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and proposed a new risk measure to capture tail co-
movements. This risk measure uses the stock rate of
return. Kuzuba�s et al. [5] proposed network centrality
measures and systemic risk. They used data from
Turkish Interbank market in the �nancial crisis and
did not consider fundamental values in their analysis.
Fu et al. [6] developed a convex risk measure based
on the generalized lower deviation. This risk measure
indicates the risk aversion of investors in non-linear
equations. They used stocks' rate of return in their
risk measure. Fu et al. [6] illustrated deviations and
asymptotic behavior of convex and coherent entropic
risk measures. Gong and Zhuang [7] measured the
�nancial risk and portfolio reversion with time changed
and employed stochastic volatility through tempered
stable L�evy processes to construct time changed tem-
pered stable L�evy processes. Sorwar and Dowd [8]
estimated �nancial risk measures for options. They
applied simulation-lattice procedure estimation and did
not consider the fundamental factors in their analysis.
Many researchers have worked on developing �nancial
risk measures [9{15]. However, these researches have
a gap in considering fundamental factors and bubble
conditions.

Many of these risk measures are based on the
di�erence between the expected rate of return at the
beginning and that in the last period of investment.
One of the most important criticisms of these risk
measures is about the nature of the stock market value
which facilitates calculating risk measures. In fact, this
assumption is based on the fact that the stock market
value is an indication of all events and phenomena
around corporates including good or bad news about
them. However, some part of stock value volatility is
the result of investors' emotions about events. These
volatilities are mostly short-lived. In fact, after a while,
stock price reverts to its former price channel. Nev-
ertheless, traditional risk measures have no procedure
so as to confront these volatilities. The stock market
crash under economic crisis has shown that traditional
risk measure cannot evaluate risk properly, especially
in emotional and crisis situations. This circumstance
creates a bubble phenomenon.

Some stocks' market prices are greater than the
fundamental values, which cause a bubble. In recent
years, some researchers have focused on bubble analysis
in the �nancial market. Domeij and Ellingsen [16]
proposed a quantitative analysis of rational bubbles
and public debt policy. They used bubble analysis
for securities in public sectors. Barberis et al. [17]
wrote an article paper entitled \Extrapolation and
Bubbles". They developed a model for extrapolation
of bubbles. Lee and Philips [18] proposed performing
asset pricing considering �nancial bubble risk. They
provided an empirical investigation into risk factors in
bubble pricing. Bosi et al. [19] proposed an article

paper entitled \�nancial bubbles and capital accumu-
lation in altruistic economies". They studied the global
dynamics of capital stocks and assets' values. Maynard
and Ren [20] assessed the power of long-term predictive
tests in a model that contains �nancial asset bubbles.
Michaelides et al. [21] developed non-linearities in
�nancial bubbles. They used theory and Bayesian
evidence from S&P500 and attempted to �nd and
date non-linear bubble episodes, which are captured
using a neural network. Miao and Wang [22] surveyed
banking bubbles and �nancial crises. Wigniolle [23]
considered the role of optimism and pessimism con-
cerning �nancial bubbles. They demonstrated that it
was possible to extend the scope of rational bubbles
when uncertainty was introduced in association with
rank-dependent expected utility. Harvey et al. [24]
developed tests for explosive �nancial bubbles in the
presence of non-stationary volatility. Kunieda and
Shibata [25] presented a tractable model in which asset
bubbles could exist in spite of in�nitely lived agents
and found that the policy of purchasing an asset should
involve predicting the possibility of �nancial crises and
avoiding them.

Many researchers have focused on bubble analysis
[26{30]. The above-mentioned researches are among
the newest of researches in this context. However,
there are still some important gaps in the literature.
Researchers who have developed risk measures did not
consider a fundamental factor and bubble analysis in
their models. On the other hand, researchers who
have worked on bubble analysis have not developed risk
measures. Consequently, there is a gap in this research
area. Developing a new risk measure which takes into
account bubble conditions can �ll this gap.

To overcome the weakness of traditional risk
measures, we need the development of a new paradigm
in risk measures. Many people in �nancial market
invest in �nancial assets based on the fundamental
value of stocks. The attitude of these investors is
that if the market value of a stock is less than the
fundamental value, then the probability of increasing
market value to fundamental value is high. In this sit-
uation, investors attempt to buy stocks. On the other
hand, if the market value of a stock is higher than the
fundamental value, then the probability of decreasing
market value to fundamental value is high. In this
situation, investors often sell stocks. Accordingly, in
this strategy, investors have pro�t and loss zones, as
illustrated in Figure 1.

The aim of this paper is to present a formula-
tion for portfolio selection problem based on a new
de�nition of risk measure. Risk is measured in this
paper based on the di�erence between fundamental
value and the market value of stocks. The structure of
this study is given in the following. In the second part,
the innovation and research method are presented.
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Figure 1. De�nition of losing and pro�t areas (a hypothetical image).

The third section presents problem modeling and the
method of calculating the stock fundamental value.
The fourth section depicts market value prediction
based on di�erent scenarios. The �fth part contains
the numerical results. Finally, the conclusion of the
study is presented in the last part.

2. Innovation and research method

The most important innovation in this research is
the conceptual and mathematical development of the
portfolio selection model. In fact, in this research,
a new concept is introduced as a risk and then, this
new concept is transformed into a mathematical model
using mathematical foundations. The concept which
is developed in this research is generally di�erent
from �nancial risk measures in the literature of the
�nancial �eld. On the other hand, the proposed risk
measure is more consistent with the existing strategies
of investment in the stock markets.

To develop a risk measure and develop a new
portfolio selection model, this paper uses the concept of
market and fundamental values of stocks. In the real
world, many investors use the strategy of estimating
the fundamental value and comparing it with the actual
stock value to choose their optimum portfolio. In
fact, investors �rst calculate the fundamental value
of a stock and then, make a decision to buy or sell
the stock by comparing that fundamental value with
the market value. The key to this trading strategy is
that based on diverse fundamental value calculations,
the amount of fundamental value in an interval is
roughly the same unless a particular event occurs for
the company, e.g., an increase in capital, or for the
outcome of a new development contract that improves
the company's future cash 
ow. Furthermore, adverse
events such as company losses or unexpected events or
even macroeconomic problems in a country will reduce
the value of the company's capital or its future cash

ows. In this case, the fundamental value decreases,
but these events are not issues that occur every day.
Therefore, it is expected that the fundamental value
of a stock will remain stable in a long-term interval.
Generally, it is expected that the stock market value

will move towards its fundamental value. In reality,
when market value is higher than the fundamental
value, it is likely to be a transitory excitement in the
market. However, prices will decrease over time. Even
the demand pressure may create bubble in the market,
which pushes the market value farther away from the
fundamental value. If the market value collapses,
investors will face a signi�cant loss. On the other hand,
if the market value is less than the fundamental value
for various reasons, e.g., rumors or investors' inaccurate
estimates, then the market value is expected to increase
and reach its fundamental value after a while.

This brief explanation is a basis for introducing
the concept of risk in this research. Investors should
expect a signi�cant risk when a stock's market value
is greater than the fundamental value, thus forming
a bubble. Furthermore, they should avoid investing
in these conditions. On the other hand, when the
market value is lower than the fundamental value of a
stock, it is an investment opportunity and a chance for
securing some pro�t. Therefore, two areas of pro�t and
loss are formed in relation to the comparison between
fundamental value and market value, which can be
considered as the concept of risk.

The innovation of this research lies in the use
of this trading strategy as the concept of risk and
pro�tability as well as its mathematical modeling
to provide the best possible optimum combination
of stocks. The important point, considered in the
modeling of this research, is the idea of developing a
model that considers the market value in approaching
di�erent scenarios. Owing to the dynamics of the stock
market and the volatility of market value, the proposed
model has some advantages over the existing models to
be counted below:

1. Traditional portfolio selection models focus only
on the mathematical concepts of calculating the
di�erence between the expected returns or expected
level of con�dence, but the proposed model in this
research is more consistent with a practical strategy
in the market. Hence, it is more understandable for
investors,

2. The traditional approach relies heavily on investors'
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expected returns. However, in a market with
bubble conditions, even when the expected returns
are reasonably relative to market conditions, if
the bubble collapses, the reality will reveal itself
and clearly, the expected returns of investors with
real values and actual values of the market will
be very di�erent. For instance, assume that a
particular asset in the market bubbles up and its
prices grow at an average of 25%. If an investor
expects a 25% pro�t, it seems reasonable and the
investment seems to be successful. However, if
the market bubble subsides and prices fall, the
portfolio selection models that are designed and
decided based on the expected return of 25% for the
mentioned investor will be not only non-pro�table
but also highly detrimental, thus resulting in a
huge loss of capital. On the contrary, the model
and the concept developed in this study are not
characterized by this drawback,

3. Traditional portfolio selection models have failed
to consider the fundamental value of a stock. As
a result, no attention has been paid to emotional
issues and bubbles in the market, while the concept
of risk as well as the proposed model in this study
focus on this issue.

The actual data of 15 shares in the Tehran Stock
Exchange under 12 scenarios are used in this study to
solve the proposed model within the time duration of
5 years.

3. Mathematical formulation

The �rst step in the model formulation is the de�nition
of parameters and decision variables. The present
study used the fundamental value as a key factor
to calculate a new risk measure. There are many
di�erent methods for estimating the fundamental value
of a stock. One of the most commonly used ones
is the free cash 
ow method. The free cash 
ow of
a company is the cash 
ow obtained from company
activities apart from the required capital expenditure
for executing current operations with the increased
production capacity. Free cash 
ow is calculated from
the total net income after taxes minus depreciation
costs, working capital costs, and capital expenditure.
The stock pricing in this way is achieved in the form of
the total current free cash 
ow value and cost of equity.
The required indices of the model are listed in Table 1.

To de�ne the new risk measure based on the di�er-
ence between the fundamental and market values of the
stock, it is required to perform some calculations for the
model. The associated variables are given in Table 2.

Calculating the fundamental value of a share is of
signi�cance in this section. The operational free cash

ow must be calculated in the �rst step:

Table 1. Indices de�nition of the model.

Name Indices

Stock index i
The maximum number of shares N
Scenario index t
The maximum number of scenario s

OFCF = EBIT � (1� Ta) +DEPRECIATION

�CAPEX�WORKING CAPITAL: (1)

To calculate the fundamental value, the growth rate
of the company should be calculated which is itself
necessary for determining the discount rate. The
growth rate is calculated through the following formula:

g = RR �ROIC: (2)

In the above formula, there are two components that
include the ratio of dividends to total and return on the
invested capital. These two components are as follows:

RR = (1� PAY OUT RATIO); (3)

PAY OUT RATIO =

DIV IDENDS PER SHARE
EARNING PER SHARE

; (4)

ROIC =
EBIT (1� Ta)

TOTAL CAPITAL
: (5)

To calculate the discount rate, two components are
required. The next component is the weighted average
cost of capital which is calculated as follows:

WACC =
E
V
� Re +

D
V
�Rd � (1� T ): (6)

The required variables for calculating the weighted
average cost of capital are presented in Table 2. The
fundamental value is calculated as follows:

FIRM V ALUE =
OFCF

(1 +WACC � g)t
: (7)

Eq. (7) is a fundamental price based on a constant
growth rate. This study de�ned two di�erent zones
based on the fundamental value. In case the market
value is less than the fundamental value, the market
value will get closer to the fundamental value level. If
an investor buys stocks in this situation, some pro�t
can be expected. On the other hand, if the market
value is higher than the fundamental value, the stock
value will decrease. This area is called the loss zone.

The amounts of loss and pro�t are calculated in
the following:

Profit : (Q)+ = PFi � Pmit ; (8)
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Table 2. Model variables.

Sign Variable

EBIT Pro�t before tax
Ta Tax rate
CAPEX Capital expenditure
DEPRECIATION Depreciation costs
WORKING CAPITAL Working capital
OFCF Operating Free Cash Flow
G Growth rate
RR Retention Rate
ROIC Return On the Invested Capital
PAYOUT RATIO Payout ratio
WACC Weighted Average Cost of Capital
Re Cost of equity
Rd Cost of debt
E The market value of equity
D The market value of debt
V Sum of the market value of equity and market value of debts.
PFi Fundamental value of stock i
Pmi0 Market value of stock i at the beginning of the investment period
Pmit Market value of stock i based on scenario t
PPF Portfolio fundamental value
PPmt Portfolio market value based on scenario t
xi The number of purchased shares from i share
B Available budget
Lb The lower limit of the authorized number of shares that can be bought from a share
Ub The upper limit of the authorized number of shares that can be bought from a share
� % of the expected pro�t

pt = 1
s

The probability of occurrence of the scenario t which we consider discrete uniform
distribution function for it. Then, the probability is equal to 1

s

Loss : (Q)� = Pmit � PFi : (9)

Formulation needs two variables used for calculating
both pro�t and loss. Here, Q+ is a variable used in
calculating the pro�t and must take the value of zero
in case of loss. However, Q� is a variable used for
explaining loss while it must take zero in the pro�t
zone. These two variables are as follows:

Q+ = maxfQ; 0g; (10)

Q� = minf�Q; 0g: (11)

By using Eqs. (8) and (9) and substituting them in
Eqs. (10) and (11), formulations are done as follows:

Q+ = maxfPFi � Pmit ; 0g; (12)

Q� = minfPmit � PFi ; 0g: (13)

Investors aim to maximize the pro�t and minimize
the loss. This can be illustrated in a mathematical
form through a fraction in which the numerator of the
fraction is pro�t and the denominator is loss. Through
maximization of this fraction, the numerator (pro�t)
increases while the denominator (loss) decreases. This
fraction is given below:

max r =
maxfPFi � Pmit ; 0g
minfPmit � PFi ; 0g : (14)

Instead of one stock, the fraction can be used by the
portfolio of stocks, as shown in the following:

max r =
maxfPPF � PPm; 0g
minfPPm � PPF ; 0g ; (15)

PPF =
nX
i=1

xiP fi ; (16)
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PPm =
1
s

nX
i=1

sX
t=1

xiPmit ; (17)

PPmt =
nX
i=1

xiPmit ; 8t : (18)

The fundamental value is calculated and shown in the
following:

PFi =
Firm value

Total number of stocks
: (19)

The portfolio selection problem based on a new concept
of risk measure is:

max r =
PPF � PPm

z
; (20)

1
s

nX
i=1

sX
t=1

xiPmit �
nX
i=1

xiPmi0 � �B; (21)

nX
i=1

xiPmi0 � B; (22)

z =
sX
t=1

dtpt pt = 1
s ; (23)

dt � PPmt � PPF ; (24)

dt � 0; (25)

xi � 0 and integer: (26)

In this model, Eq. (20) is the objective function of the
model that represents the pro�t-to-loss ratio. This type
of ratio is very common in �nancial models. Among the
most famous pro�t-to-loss ratios in �nancial problems
are sharp and Omega ratios. This objective function
aims to maximize pro�ts and minimize losses. The
numerator of the fraction is the calculation of the pro�t
area, aiming at �nding a combination of stocks where
the market value is as low as possible compared to the
fundamental value. The denominator is the value of z
which is the area of loss, calculated through Eqs. (23){
(25). These limitations resurface exactly when measur-
ing the area of losses. According to Guastaroba et al.
(2016) and Mansini et al. (2003), these types of ratios,
i.e., pro�t-to-loss, can be negative [31,32]. The negative
value of this objective function in the proposed model
points to the formation of bubble in the market. In case
the market value is greater than the fundamental value,
the objective function can get negative value which is
a bubble condition. The proposed model enjoys the
ability to clearly pinpoint the bubble formation by a
negative value in the objective function.

Eq. (21) evaluates the yield of an investment.
In this constraint, the average of market values of
the portfolio based on di�erent scenarios minus the
market price of the portfolio at the beginning of the
investment period shows the investment yield. Here, s
is the number of scenarios based on di�erent economic
conditions, n the number of candidate stocks, Pmit the
market value of stock i in scenario t, and � the expected
rate of return. In this formulation, the yield of an
investment is a fraction of the budget.

Eq. (22) is related to the budget constraint for
each scenario. In this research model, pmi0 is the market
pricing of stock i at the beginning of the investment
period.

Constraints (23), (24), and (25) are used for mea-
suring the area of loss, and Eq. (26) is also employed to
determine whether the decision variable is greater than
or equal to zero. Decision variables should also be an
integer number.

In Objective Function (20), z is in the denomi-
nator the value of which should not be zero because;
otherwise, the fraction is not de�ned and the model
will be unacceptable; therefore, the value of z must be
nonzero. As a result, the value of z is assumed to be
larger than a nonzero " value [31{33].

z � " " 6= 0 ; (27)

z >
1
M
; (28)

" =
1
M

M ! 1: (29)

The model that considers new variables is given below:

max r =
PPF � PPm

z
; (30)

nX
i=1

xiPmi0 � B; (31)

z =
sX
t=1

dtPt Pt = 1
s ; (32)

dt � PPmt � PPF 8t ; (33)

dt � 0; (34)

xt � 0: (35)

The linearization of the problem is presented as follows.
Initially, the fraction of Objective Function (30) is
divided into two fractions shown below:

max r =
PPF

z
� PPm

z
: (36)
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There is a need for a variable change in this stage. This
variable can change the objective function fraction to
a linear function. This variable is:
PPF

z
= �: (37)

On the contrary, there should be no factor in the
form of a fraction; therefore, the change in the second
variable is shown in the following:

1
z

= �0: (38)

With the consideration of the two above-mentioned
variables, the objective function can be rewritten as
follows:

max � � PPm�0 : (39)

This variation of the introduced variables should be
applied to all parts of the research model since the
research model must be integrated on the basis of a
series of decision variables. Therefore, the two sides
of the research limit are divided by z. However, this
change requires new variables for the model to change.
These variations are as follows:

~dt =
dt
z
; (40)

~B =
B
z

= B�0; (41)

~xi =
xi
z
: (42)

The three above-mentioned variables are used for
situations in which the two sides of the inequalities
of constraints are divided by the value of z. As
already stated, this study simulates the variables and
parameters of the model. An example of this operation
is:

nX
i=1

xiPmi0 � B
z
�z!; (43)

nX
i=1

xi
z
Pmi0 � B

z
: (44)

Accordingly, we can rewrite the model as follows:

max
nX
i=1

~xiPFi � 1
s

nX
i=1

sX
t=1

~xiPmit = max

� � PPm�0 ; (45)

nX
i=1

~xiPmi0 � B�0; (46)

1
s

sX
t=1

~dt = 1; (47)

~dt � 1
s

nX
i=1

sX
t=1

~xiPmit �
nX
i=1

~xiPFi 8t ; (48)

1
s

nX
i=1

sX
t=1

~xiPmit �
nX
i=1

~xiPmi0 � �B�0; (49)

~dt � 0; (50)

~xi � 0; (51)

�0 �M: (52)

Eqs. (45){(51) represent Eqs. (20){(26) of the non-
linear programming models which have turned into lin-
ear programming models upon changing the introduced
variables. Based on the concept of new risk introduced
in this study, the model as well as a relaxed linear
programming model o�er a new approach to measuring
risk. At the next step, an attempt is made to examine
the analysis of the model presented with the real data.

4. Input data calculation (scenario production
and data evaluation)

The proposed model is very sensitive to the input data.
Therefore, market and fundamental values are required
to measure the bubble. In addition, the corresponding
risk measure needs these two values for each stock so
that the bubble risk can be evaluated.

In this section, �ve data mining approaches with
some similarities are presented. Decision tree, random
forest, and Fisher Discriminant Analysis (FDA) are
based on linear regression. Adaptive Neuro-Fuzzy
Inference System (ANFIS), FDA, decision tree, and
random forest are based on the inference engine. Gene
Expression Programming (GEP), decision tree, and
random forest are based on tree structure. In the
case of using only one method, one could ask the
reason for using that speci�c method. However, this
comparison shows that GEP is the best data mining
approach in this concept based on numerical results. In
recent years, researchers in data science have compared
di�erent methods so that the best method can be
selected for their own data. In this study, these studies
have been referred to as the references to this approach
[34{39]. In addition, this study employed this method
and compared �ve data mining approaches to select the
best one in order to calculate our input data.

This section is of high signi�cance in this study.
If we had used historical data as input, we would have
used an inaccurate assumption (historical trends tend
to be repeated in the future while it is not true in most
cases).

Since there are numerous tables and graphs for
each data mining method, the results of data mining
approaches were presented for one stock only.
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The data used in this study were divided into two
categories of inputs and target. The input data were
employed to assess the target that contain:

� Max price of the stock on a day;
� Min price of the stock on a day;
� The volume of stocks which have been bargained;
� Exchange rate;
� Oil price;
� Tehran stock index.

The output or the target is the market value of stock.
The data used in this study comprised 15 stocks in
the time period of �ve years from 2013 to 2017. The
following approaches are employed in this study.

4.1. Decision tree
A decision tree is a tool for classi�cation and prediction.
It is a structure that includes a root node, branches,
and leaf nodes. Each internal node denotes a test on an
attribute, each branch denotes the outcome of a test,
and each leaf node holds a class label. The topmost
node in the tree is the root node. The decision tree is
predicted based on rules, derived from the input data.
The rules for prediction are established based on the
relationship among the input data. Figure 2 shows
a decision tree used for assessing the market value of
stocks.

A decision tree is a machine learning method
that maps the observable facts of inputs to target
values through inference engine. In the decision tree,
each internal node is a variable (in this case, input
variables), and each leaf is the target value (in this
case, the market value of stocks). A decision tree is

generated when each decision node in the tree contains
a test on the values of some input variables. The
terminal nodes of the tree contain the predicted output
variable values. In this speci�c decision tree, regression
is conducted based on the fractures of subtree. Initially,
all records in the training set (pre-classi�ed records
that are used to determine the structure of the tree) are
grouped into the same partition. The algorithm then
begins allocating the data to the �rst two partitions or
branches using every possible binary split in every �eld.
The algorithm selects the split that minimizes the sum
of the squared deviations from the mean in the two
separate partitions. This splitting rule is then applied
to each of the new branches. This process continues
until each node reaches a user-speci�ed minimum node
size and becomes a terminal node [40]. Following steps
shows the decision tree process:

Step 1: The standard deviation of the target is
calculated;

Step 2: The dataset is then split into di�erent
attributes. The standard deviation for each branch
is calculated. The resulting standard deviation is
subtracted from the standard deviation before the
split. The result is the standard deviation reduction;

Step 3: The attribute with the largest standard
deviation reduction is chosen for the decision node;

Step 4: The dataset is divided based on the val-
ues of the selected attribute. This process is run
recursively on the non-leaf branches until all data are
processed.

After preprocessing the data and eliminating the lost
data, both input data and target are applied to the

Figure 2. Decision tree for prediction of market value of one stock.
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decision tree. Input variables are the independent
variables, and target is the dependent variable. The
training method is cross-validation. Each branch of
the decision tree is based on rules, thus resulting in the
creation of leaf, and each leaf of the tree is a target
value. Figure 2 shows the decision tree used in this
study. K-fold loss in this tree is 0.98. This algorithm
was then applied to all 15 stocks in di�erent scenarios.

4.2. Random forest
Random forest is a learning method based on classi�-
cation and regression. The construction of a random
forest is a multitude of decision trees. This algorithm is
a group algorithm which is a set of decision trees. In a
random forest, a set of trees is made. The classi�cation
accuracy for the random forest comes from voting
among trees. The random forest produces enormous
numbers of trees. Each tree gives a classi�cation.
Hence, each tree votes for a class. Trees with the
largest number of votes are selected as the �nal forest.
Random forest is built through a process known as
binary recursive partitioning which is an iterative
process that splits the data into partitions or branches;
then, it continues splitting each partition into smaller
groups as the method moves up each branch [41].
However, random decision forests correct the habit of
over�tting to their training set for each decision tree.
Figure 3 shows the random forest. This �gure is like
the decision tree. This �gure also depicts the rules and
equations built based on the relationship among the
input variables.

One of the most prominent problems of random
forest is over�tting. In order to solve this problem,
the algorithm prunes the trees, i.e., every branch and

Figure 4. Pruning of random forest.

leaf are transferred to the preceding nodes. Figure 4
illustrates the pruning process.

Figure 4 shows that after pruning 60 times, the
Root-Mean-Square Error (RMSE) declines to 0.98,
indicating that there is no over�tting on the model.

4.3. Fisher Discriminant Analysis (FDA)
FDA is a statistical method employed to �nd a linear
combination of traits in the best form. This method
uses linear discriminant analysis to determine the pat-
tern. Figure 5 illustrates a linear discriminant analysis
that shows the priority of variables. Variables must be
arranged in decision tree based on linear discriminant
analysis.

Discriminant analysis works by creating one or
more linear combinations of predictors, thus creating a
new latent variable for each function. These functions
are called discriminant functions. The number of func-
tions possible is either Ng�1, where Ng is the number
of groups, or p (the number of predictors), whichever
is smaller. The �rst created function maximizes the
di�erences between groups on that function. The sec-

Figure 3. Random forest network for prediction.
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Figure 5. Linear discriminant analysis.

Figure 6. Decision tree based on Fisher Discriminant Analysis (FDA).

ond function maximizes the di�erences between groups
on that function, but must not be correlated with the
previous function. The same holds for the subsequent
functions provided that the new ones would not be
correlated with any of the previous functions [38].

Figure 6 shows a decision tree based on FDA
analysis. Upon determining the priority of variables,
Figure 6 shows the decision tree based on the priority of
the variables. This tree is better than the decision tree
and random forest shown in this research given that
FDA analysis shows the best combination of variables.

4.4. Adaptive Neuro-Fuzzy Inference System
(ANFIS)

The ANFIS is a framework that operates based on if-
then. This system has 3 parts:

1. Fuzzy rules;
2. Membership function;
3. Inference process.

In this research, we use TSK (Takagi-Sugeno-
Kang) rules. The architecture is composed of �ve



2822 A. Ghahtarani et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 2812{2829

Figure 7. Fuzzy inference network (compatibility
between real and predicted data).

Figure 8. Root-Mean-Square Error (RMSE) index
through training process.

layers. The �rst layer takes the input values and
determines the membership functions belonging to
them. It is commonly called fuzzi�cation layer. The
membership degrees of each function are computed by
using the premise parameter set, namely fa; b; cg. The
second layer is responsible for generating the �ring
strengths of the rules. In this task, the second layer
represents \rule layer". The role of the third layer is
to normalize the computed �ring strengths by dividing
each value by the total �ring strength. The fourth layer
takes input as the normalized values and the resulting
parameter set fp; q; rg. The values returned to this
layer are the defuzzi�ed ones and they are passed to
the last layer to return the �nal output [42]. Eighty
percent of inputs are training data and twenty percent
belong to the trail. Figure 7 is the fuzzy inference
network applied to the training data. The black curve
is real data, while the red curve is predicted data. The
graph shows that there exists a good �tness. Real and
predicted data share acceptable compatibility.

Figure 8 shows the RMSE, which is the error in-
dex. RMSE in this stock is 0.0322. Figure 9 shows that
the conformity of real data and prediction is 93 percent.

4.5. Gene Expression Programming (GEP)
GEP is a developed genetic algorithm. This algorithm
operates based on population and each generation is
selected based on �tness. Solution production was
done through some genetic operators. The di�erence

Figure 9. Conformity between real data and prediction.

between GEP and genetic algorithm is the essence of
individuals. In GEP, chromosomes are the string with
a constant length and they are expressed in a nonlinear
string with di�erent lengths. In this algorithm, 80
percent of data are the training data and 20 percent of
data belong to the trail. Figure 10 shows the objective
function of GEP, which is the mean square error. Basic
steps of the GEP are as follows:

1. Select function set;
2. Select terminal set;
3. Load dataset for �tness evaluation;
4. Create chromosomes of initial population ran-

domly;
5. For each program in population:

a) Express chromosome;
b) Execute program;
c) Evaluate �tness;

6. Verify stop condition;
7. Select programs;
8. Replicate selected programs to form the next pop-

ulation;
9. Modify chromosomes using genetic operators; and

10. Go to Step 5.

In Figure 10, the yellow curve is the target and
the green curve is real data. The consistency between
the real data and prediction is shown well in Figure 10.
Some �tness indices used in this algorithm are shown
in Table 3.

Coe�cient of determination is 99 percent, which
indicates the best data mining method among the used
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Figure 10. Gene Expression Programming (GEP) results.

Table 3. Fitness indexes.

Performance
measures

Best of
run-training

Best of
run-validation

Fitness 939.114296655572 891.659462224849

R-square 0.9962 0.9883

Max �tness 1000 1000

Table 4. Best solution of Gene Expression Programming
(GEP).

Generation 1000

Best �tness 939.114296655572

R-square 0.9962

Correl coe�cient 0.9981

methods to assess the market value of stocks. The best
solution is shown in Table 4.

GEP presents some tree graphs that demonstrate
the prediction model. The prediction occurs based on
these trees, as depicted in Figure 11.

The above-mentioned methods were used to pre-
dict the market value of stocks. The assessment was
done for all 15 stocks. However, only the results of
one stock are shown in this research. Based on the
evaluation of di�erent methods, the best predictor is
GEP, which has a higher coe�cient of determination
and the lowest Mean Square Error (MSE). Coe�cient
of determination is the �tness index and MSE is

the error-index. Table 5 shows the accuracy of the
prediction of each method for each stock.

The results of accuracy index show that GEP is
the best method for assessing the market value under
di�erent scenarios. For all 15 stocks, GEP is the
best data mining method. Therefore, 12 scenarios
were employed to predict the market value of stocks
in di�erent economic situations. Table 6 shows the
calculated data.

5. Numerical results

In this part, the proposed model was analyzed using
the data of scenarios. The data used in this section
include the shares of 15 companies in 12 scenarios. For
each share, its fundamental value is also calculated.
The scenarios are evaluated through GEP algorithm,
which is proven to be the best data mining method for
assessing the scenarios. Then, 12 di�erent conditions
are used for the oil price, exchange rate, and gold price.
The proposed model is a linear programing that can be
solved easily. This is another advantage of our model
which can be solved using regular software packages.

In the �rst stage, the results of the model for a
budget of one-million units and the expected growth
estimated to be 10 to 30 percent in wealth are achieved.
The results are given in Table 7.

The �rst column in Table 7 shows the expected
pro�t margin. Figure 12 illustrates this margin. In
fact, it is the percentage expected to be derived from
the stock market. The second column shows the di�er-
ence between the fundamental value and market value.
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Figure 11. Tree graph of Gene Expression Programming (GEP) for prediction.

Figure 12. The di�erence between fundamental and
market values.

The third column represents the fundamental value
of the optimum stock portfolio, and �nally the last
column is the market value of the optimum portfolio.

In Section 2, it can be claimed that the proposed

model considers the di�erence between fundamental
and market values in order to select the best stocks
in the portfolio. Results show that upon increasing
the expected pro�t level, the di�erence between the
fundamental value of the portfolio and the market value
of the optimum portfolio decreases. The optimum
portfolio is based on the composition of the output
that has a higher market value. In fact, if the expected
pro�t is placed at its lowest, a combination of shares
is chosen which has the greatest di�erence from the
fundamental value. In fact, they have the highest gap
with respect to their fundamental value. In this case,
the risk is low. The optimum combination of stocks in
a portfolio is the situation in which the shares are at
their lowest price and the likelihood of a fall in prices is
very low. In other words, the risk is very low. In such
circumstances, the market value of stocks is expected
to increase and reach its fundamental value. Column 3
of Table 7 indicates the status of the fundamental value
of the optimum portfolio.
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Table 5. Accuracy index of di�erent methods.

Stock number ANFIS Decision tree FDA Random forest GEP
1 0.93 0.29 0.3 0.48 0.99
2 0.72 0.31 0.27 0.46 0.999
3 0.64 0.38 0.31 0.49 0.965
4 0.96 0.4 0.33 0.463 0.976
5 0.88 0.33 0.291 0.51 0.982
6 0.45 0.33 0.31 0.42 0.96
7 0.87 0.34 0.28 0.36 0.96
8 0.72 0.32 0.33 0.48 0.98
9 0.57 0.31 0.36 0.441 0.95
10 0.74 0.42 0.39 0.53 0.98
11 0.52 0.37 0.33 0.47 0.97
12 0.8 0.35 0.36 0.476 0.97
13 0.88 0.39 0.38 0.48 0.99
14 0.87 0.36 0.33 0.34 0.99
15 0.81 0.37 0.41 0.39 0.98

Table 6. Calculated fundamental and market values.

Stocks
no.

Market
value

(Sce.a 1)

Market
value

(Sce. 2)

Market
value

(Sce. 3)

Market
value

(Sce. 4)

Market
value

(Sce. 5)

Market
value

(Sce. 6)

Market
value

(Sce. 7)

Market
value

(Sce. 8)

Market
value

(Sce. 9)

Market
value

(Sce. 10)

Market
value

(Sce. 11)

Market
value

(Sce. 12)

Fun.b

values

1 1164 1017 3326 1634 1936 1714 2222 2828 3746 1164 3287 1745 2443
2 2229 3874 3284 3555 2659 2753 3503 1487 3637 3874 2912 3379 1293
3 1032 1832 3486 2009 3484 1688 2100 1482 3619 3610 2972 2633 1064
4 2015 1862 2554 1621 1741 2585 1806 1863 2686 3231 3448 1196 1941
5 3775 2781 2033 3434 2933 3061 1266 2548 1589 3356 2143 2659 1360
6 2914 3914 2673 3063 3990 1143 2304 3018 1074 1575 1149 3195 3953
7 3222 2033 1916 2345 2686 3350 3811 1188 1225 2371 2607 1643 1563
8 3343 2163 1611 1094 1583 1319 3850 1870 3050 1551 2868 1174 1166
9 1685 1556 1552 2438 3892 1543 1274 3016 3814 2933 1900 2135 1759
10 1651 2723 3511 3855 2492 2040 1850 2072 1006 1556 1788 1414 1874
11 2961 2918 1234 3056 1580 3826 3746 1130 1265 1746 3654 2708 1092
12 3003 1204 1200 2557 1164 1110 1078 2194 1487 2919 1125 2038 3095
13 3566 1635 3039 3980 2176 3202 1088 3334 3033 3419 2982 2943 3137
14 1415 2447 3369 1887 2588 3759 2630 2662 1450 3302 1190 3128 1517
15 2781 2090 1501 3354 3005 1690 3913 1496 3337 3335 3514 2690 1791

aSce.: Scenario; bFun.: Fundamental.

In Section 2, we claimed that the proposed model
uses fundamental value as an important factor to make
the optimum portfolio. Figure 13 points to this claim.
According to Figure 13, this diagram exhibits a trend
which is indicative of an increase in its value with a
relatively gentle gradient and a decrease with a sudden
steep slope. The reason behind this occurrence is the
fact that it is feasible at a level of 27% in the range
of 0.27 to 0.3; however, in the range of 27% to 30%,
the model is unrecoverable; in fact, there is no optimal
combination of stocks that yields pro�ts of 28% and
29%. At these levels, the optimal level is 30% response.
Of course, this trend may have di�erent shapes for
other data and other stocks. Generally, when the
expected pro�t increases, it is expected that shares that
are closer to their market value be selected. On the

Figure 13. The fundamental value of the optimum
portfolio.
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Table 7. Summary of model results.

Expected pro�t
percentage

The di�erence between
the fundamental value
and the market value

The inherent
value of the

optimal portfolio

Market value of
the optimal

portfolio
0.1 426263.5 1526263 1100000
0.11 425887.7 1535888 1110000
0.12 425511.9 1545512 1120000
0.13 425136.1 1555136 1130000
0.15 423579.4 1573579 1150000
0.16 419440.8 1579441 1160000
0.17 415302.2 1585302 1170000
0.18 411163.6 1591164 1180000
0.19 407025 1597025 1190000
0.2 402886.4 1602886 1200000
0.21 398747.8 1608748 1210000
0.22 394609.2 1614609 1220000
0.23 390470.7 1620471 1230000
0.24 386332.1 1626332 1240000
0.25 363431 1613431 1250000
0.26 327453 1587453 1260000
0.27 291475 1561475 1270000
0.3 183541 1483541 1300000

Figure 14. The market value of the optimum portfolio.

other hand, further increase in the distance between
market value and fundamental value is expected when
the market value is lower than the fundamental value.
Hence, the model chooses a combination of stocks
that are generally low in price and the gap between
fundamental value and market value is high.

Figure 14 shows one of the most important ad-
vantages of the proposed model which is the raised
expected pro�t. Hence, the market value of the
optimum portfolio increases. The point is that the
market value of the optimum portfolio at each expected
rate of return is greater than the budget. Consequently,
our model selects stocks based on both the fundamental
point of view and market pro�tability. Column 4 of

Figure 15. Market value trends of the optimum portfolio
based on each scenario.

Table 7 shows the results of solving the model and
market value over di�erent scenarios. As mentioned
before, 12 scenarios are used for analysis in this model.
Table 8 shows the whole market values of the optimum
portfolio based on di�erent scenarios and di�erent
expected pro�ts.

Figure 15 illustrates the trends of portfolio market
values in di�erent scenarios. This �gure shows that
based on each economic scenario, there exists the same
pattern of portfolio market value. Each economic con-
dition results in di�erent market values for each stock.
Consequently, the proposed model selects shares that
are in the pro�t zone. Moreover, the proposed model
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Table 8. Market values of optimum portfolios.
Scenarios 1 2 3 4 5 6 7 8 9 10 11 12

Expected rate 0.1 1000000 813993.2 1483648 1115305 1123296 805175.6 1068148 1467144 1526263 878191.1 1334465 1100000
Expected rate 0.11 1000000 830680 1502176 1120766 1144015 810224.2 1081471 1479130 1535888 871589.9 1345201 1110000
Expected rate 0.12 1000000 847366.7 1520705 1126227 1164734 815272.9 1094794 1491116 1545512 864988.7 1355938 1120000
Expected rate 0.13 1000000 864053.5 1539233 1131688 1185453 820321.6 1108118 1503102 1555136 858387.6 1366674 1130000
Expected rate 0.15 1000000 900018.1 1573579 1142309 1228118 828428.3 1133443 1525005 1568796 843538.8 1383613 1150000
Expected rate 0.16 1000000 928815 1579441 1146362 1254571 824173.1 1140595 1527324 1552299 829242.2 1373161 1160000
Expected rate 0.17 1000000 957611.8 1585302 1150415 1281023 819917.9 1147746 1529643 1535802 814945.6 1362708 1170000
Expected rate 0.18 1000000 986408.7 1591164 1154468 1307476 815662.7 1154897 1531962 1519305 800649 1352255 1180000
Expected rate 0.19 1000000 1015206 1597025 1158521 1333928 811407.5 1162048 1534281 1502808 786352.5 1341802 1190000
Expected rate 0.20 1000000 1044002 1602886 1162574 1360381 807152.3 1169200 1536600 1486311 772055.9 1331349 1200000
Expected rate 0.21 1000000 1072799 1608748 1166627 1386833 802897.1 1176351 1538919 1469815 757759.3 1320897 1210000
Expected rate 0.22 1000000 1101596 1614609 1170680 1413286 798641.9 1183502 1541238 1453318 743462.7 1310444 1220000
Expected rate 0.23 1000000 1130393 1620471 1174733 1439739 794386.7 1190653 1543557 1436821 729166.1 1299991 1230000
Expected rate 0.24 1000000 1159190 1626332 1178786 1466191 790131.4 1197805 1545876 1420324 714869.6 1289538 1240000
Expected rate 0.25 1000000 1183008 1613431 1177851 1477399 796082.4 1194429 1533524 1374345 721561.9 1250558 1250000
Expected rate 0.26 1000000 1203356 1587453 1173441 1477982 809146.7 1183717 1510948 1307817 742882.9 1191696 1260000
Expected rate 0.27 1000000 1223704 1561475 1169030 1478566 822211 1173005 1488372 1241290 764203.9 1132833 1270000
Expected rate 0.3 1000000 1284748 1483541 1155799 1480315 861404 1140868 1420644 1041707 828167 956245.8 1300000

selects stocks that are out of losing zone. Di�erences
between optimum portfolios and fundamental factors
have the same pattern in each scenario. In other words,
regardless of economic conditions, the proposed model
selects the best possible portfolio with the least bubble.

The results show that the increase and reduction
in the market value of the optimum portfolio in scenar-
ios are based on the di�erence between fundamental
and market values. In fact, the model developed in
this research attempts to minimize the average of the
di�erence between fundamental and market values in
the losing area under various scenarios.

6. Conclusion

In this research, a speci�c type of portfolio
optimization model was examined and analyzed. The
proposed model was �rst introduced with the objective
of minimizing any deviation of market price and
fundamental value. It was presented as a descriptive
de�nition of risk. To develop a risk measure and a new
portfolio selection model, this paper used the concept
of market value and fundamental value of stocks. In
the real world, many investors use the strategy of
estimating the fundamental value and comparing it
with the actual stock value to choose their optimum
portfolio. In fact, investors �rst calculate the
fundamental value of a share and then, by comparing
that fundamental value with the market value, they
make their decision whether to buy or sell the stock.
Risk in this research was calculated as the di�erence
between fundamental and market values. The
proposed model uses the ratio of maximizing pro�ts
and minimizing losses. The model was transformed
into linear programming by using mathematical

modeling techniques. The model was analyzed using
real data from the Tehran Stock Exchange.

Subsequently, the proposed model was solved
by using the data from the Tehran Stock Exchange
for di�erent conditions of expected pro�t. Finally,
the results of the model were compared to the
optimum portfolio pro�tability, the fundamental value
of the portfolio as well as the optimum portfolio
risk. The results represent speci�c trends in the risk
and fundamental value of the portfolio for expected
volatility in the pro�tability level.

Backed by the results of this research, investors
might suggest making investments based on funda-
mental value under poor economic conditions and
emotional price hikes in the stock market. Indeed,
when the market value is considered to be emotionally
high in the models of this research, the level of risk will
greatly increase and the pro�tability of the portfolio as
well as the fundamental value of the portfolio may fall.
These results are not desirable for investors. When
the market value is close to the fundamental value or
even lower, the proposed model o�ers a portfolio that
derives from market value 
uctuations. On the other
hand, the risk of reduction in prices will not cause losses
for shareholders.
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