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Abstract. Energy consumption plays a key role in economic development for all countries.
Keeping up with the future trend of energy consumption is essential for governments
and energy companies. In this research, the primary energy consumption for Saudi
Arabia, India, Philippines, and Vietnam is systematically studied using different forecasting
models. Based on the actual data derived from the year 2006 to 2016, a novel discrete
grey forecasting model termed NDGMg(1,1,k,c) is proposed where the Simpson numerical
integration formula is applied to construct the background value. The expressions of the
present model are all derived and then, its unbiased property is proved. As demonstrated
by the results, the NDGMg(1,1,k,c) model can achieve better prediction accuracy than
other forecasting models, and it is quite applicable to predicting a sequence based on
homogeneous/non-homogeneous exponential law.

(© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Primary energy is an energy resource found in nature
that has not been subjected to any human engineered
conversion or transformation process. It is also called
natural energy contained in oil, coal, natural gas, water
energy, and modern renewable energy used to generate
electricity. The BP Statistical Review of World Energy
2017 [1] demonstrated that global primary energy
consumption expanded by 1% in 2016, following the
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growth of 0.9% in the year 2015 and 1% in the
year 2014. This trend is measured with the 10-year
average of 1.8% a year. Primary energy consumption
in Saudi Arabia grew by 1.9% in 2016 corresponding
to 266.5 million tonnes of oil equivalent (Mtoe), which
is 2.0% of the total international primary energy
consumption. In addition, the annual growth rate
during the years 2005 to 2015 is 5.1%. For India’s
primary energy consumption, a growth is 5.4% in
2016 corresponding to 723.9 Mtoe, which is 5.5% of
the total global consumption. From 2005 to 2015,
primary energy consumption grew at an incredible
average rate of 5.1%. In Philippines, it grew by 11.3%
in 2016 corresponding to 42.1 Mtoe, which is 0.3%
of the total global consumption. The annual growth
rate from 2005 to 2015 is 3.6%. For Vietnam, the
mentioned energy consumption growth was 1.5% in
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2016 corresponding to 64.8 Mtoe, which is 0.5% of the
total global consumption. From the year 2005 to 2015,
this consumption grew at an incredible average rate of
7.5%. Presently, energy markets are accommodated
and the near-term strength may continuously ease.
It is important for decision-markers and government
departments to develop a better understanding and
judgment of the energy resource plan scientifically and
formulate appropriate energy plans.

Energy is and has been receiving remarkable
attention over a long time because of its importance all
over the world. A variety of methods and techniques
have been advanced for energy forecast utilization
such as cointegrated panel analysis [2], artificial neural
network [3], time series analysis [4,5], coupling math-
ematical models [6,7], hybrid forecasting models [8,9],
grey models [10-14], etc. Among those excellent meth-
ods/techniques, grey system theory that was presented
by Deng [15] is a feasible and efficient prediction
technique to analyze uncertain problems. In his work,
the first-order linear model with single variable termed
GM(1,1) model was discussed in detail. The main
advantage of grey models is that they require a small
number of samples to describe the system. Over the
past three decades, the GM(1,1) model has significantly
generalized with the following aspects: the univariate
linear grey models [16,17], the univariate nonlinear grey
models [18-20], and the multivariate grey models [21—-
23].

Recently, Cui et al. [24] studied the continu-
ous non-homogeneous grey model named NGM(1,1,k)
model where bk is grey action quantity. The yearly
amount of concave soil in Xuyi of China and the CSI
300 index specimen data were used to illustrate the
NGM(1,1,k) model and their optimized model was
effective. However, Chen and Yu’s work [25] iden-
tified that the parameters of the NGM(1,1,k) model
had a fatal flaw that badly affected the application
value. Based on Cui’s work, a modified model named
NGM(1,1,k,c) was proposed in which bk + ¢ was grey
action quantity. This model is truly feasible for simula-
tion and forecasting of approximate non-homogeneous
exponential sequence and can achieve outstanding pre-
diction accuracy. Meanwhile, Xie et al. [26] developed
an NDGM model where the background value was
derived from the trapezoid formula and the initial
point was optimized. The expression of this model
was obtained and the prediction precision was found
to be dependent on the pure non-homogeneous index
sequence.

Encouraged by these works [24-26] and consider-
ing the non-homogenous exponential sequence existing
in the real world [27,28], the present study focuses
on the non-homogenous discrete NGM(1,1,k,c) model
called NDGMg(1,1,k,c) where the background value
is computed using the Simpson numerical integration

formula. Its solutions, properties, and applications
are derived in this paper. Meantime, we prove the
new model is able to simulate a linear sequence and a
homogeneous/non-homogeneous exponential sequence
without error. Further, the primary energy con-
sumption for Saudi Arabia, India, Philippines, and
Vietnam is calculated by grey models, Auto-Regressive
Integrated Moving Average model (ARIMA), and Sup-
port Vector Machines (SVMs). It is noted that the
NDGMs(1,1,k,¢) model presents high accuracy in the
primary energy consumption.

This paper is organized below. A brief introduc-
tion to the NGM(1,1,k,c) model is given in Section 2.
Detailed discussions of the NDGMg(1,1,k,¢) model are
given in Section 3. Applications of the primary energy
consumption are arranged in Section 4. The last
section concludes the paper.

2. The existing NGM model

Next, a brief analysis of the continuous NGM model is
conducted based on the Trapezoid formula.

2.1. Grey NGM(1,1,k) model

It is assumed that an original non-negative data se-
quence with n entries is X(© = (2(0(1),2(9(2),.--,
(0 (n)), where 2(°) (k) stands for the role of the data
at the time index k.

Let X1 = (211:1 x(o)(i)v Z?:l x(o)(i)v T Z?:l
2(9(4)) be the first accumulated generating operation
(1-AGO) sequence of X (0,

We denote Z(V) as the background value of the
grey forecasting model where Z() = (2(1)(2),2(1)(3),

2 (n)) with 2M(k) = 1aW (k) + LW (k — 1),
k=23 n.

From Ref. [24], the mathematical model of the

NGM(1,1,k) is as follows:

dz M (t)
dt

which is a linear differential equation, a is the develop-
ing coefficient, and bt 4 ¢ is the grey action quantity.

The values for the unknown parameters a and b of
NGM(1,1,k) model are computed by the least squares
estimation:

+ azM(t) = bt, (1)

—1
(‘g) = (ATA) " ATy, (2)
where:
AD(2) -2 2(0)(2)
21(3) -3 2(0)(3)
A = — . 3 n=

x(o):(n)

The time response function of the NGM(1,1,k) model
is:
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FW (k) = (x(o)(l) + b b) e—alk=1) ék _b
a

a? a a?’
=23 .. (3)

The restored values of #(°)(k) are:

7(0 — 0 ay, —a(k—1

k=1,2,---,n. (4)
2.2. Grey NGM(1,1,k,c) model

From Ref. [25], the mathematical form of the
NGM(1,1,k,¢) model is:

dz(W(t

xdt( ) ¢ aae(t) = bt 4. (5)

where a is the developing coefficient and bt + ¢ is the
grey action quantity.

The unknown parameters a, b, and ¢ of the
NGM(1,1,k,c) model are determined by the least
squares estimation:

(Z> = (ATA) ATy, (6)

C
where:
D@2y -2 -1 2(0)(2)
AXD(3) -3 -1 2(0)(3)
A:_ . . . L] 77: .
2M(m) —n -1 (0 (n)

The time response function of the NGM(1,1,k,c) model
is:

The restored values of #(%) (k) are:

#O(k) = <a:(1)(1) _e_b + b) (1—e®)e~k=1)

a a a2
k=23 n. (8)

3. The NDGMs(1,1,k,c) model

3.1. Representation of the NDGMgs(1,1,k,c)
model

In this subsection, we plan to derive the discrete

NDGMs(1,1,k,c) model from the Simpson numerical

integration formula. Considering the integration of

Eq. (5) at the interval [k — 1, k+ 1], it follows that:
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k+1 k41 k41 k+1
/d:v(l)(t)—i—a /x(l)(t)dt:b /tdt+c /dt. (9)
ko1 ko1 ko1 k1

From Eq. (9), we have:
kt1
W (k+1) =2 (k - 1)+a/x(1)(t)dt:2kb+2c.
e (10)
Applying the Simpson numerical integration formula,
we realize that:
k1
W (gt = Lo M COVPRNNINED
2 (®)dt=-2"(k=1)+ -2V (k) + -2 (k+1).
3 3 3
k=1 (11)
By substituting Eq. (11) into Eq. (10), it turns to be:
3+ a)z™ (k+1) 4+ 4azV (k) — 3 —a)eV(k —1)

= 6kb + 6c. (12)

It follows from Eq. (12) that:
Wk + 1) — wz™ (k)

a—3

- 2O — we ( —
=ty W (k=1)]

6b 6
o —2

+a+3 a+3’

(13)

where w = 7”“;:2’2“ Iterating Eq. (13) by itself, we
obtain that:

eV (k+1) — wz® (k)

_a-3 { a—3
~w(a+3) | w(a+3)

[xunk_ly_wxunk_zq}

ot [ o]
Tk 6b n 6¢
a+3 a+3
= (1022133))2 {x(l)(k — 1) —waM(k — 2)}

1 m
6¢c a—3
+a+3nzzo(w(a+3)>
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6b k—2 k—2
(k- — moo(14
cea s e

=) w [I(l)(k +1—i) —wzM(k - 2)}
=0

k—2

= Z wiak it [x(l)(Z) - wx(l)(l)]

=0

+aic32 > wa™ (15)

The 1-AGO sequence X1 of discrete NDGMs(1,1,k,c)
is:

FV(k+1) =0t (2)

aF=1 — (wa?)F-1
M9y — wzM(1
+ e (V@) w1
6 E2koicz
+a+3; mz::()wa (k—1i—m)

The TAGO on X(1) is applied to obtain:

2Ok +1) =2 (k+ 1) — M (k),
o —1. (17)
3.2. Parameters estimation of the discrete

NDGMs(1,1,k,c) model
Based on the definition of 1-AGO, we obtain:

k+1 k
2k +1) =2k -1) =" 20%) = > 20()
1=1 1=1

=20k + 1) + 20 (k).

Upon employing the Simpson numerical integration
formula, the background value of X is provided
below:

1 4 1
2W(k) = §x<1>(k -1+ g:1:<1>(1g) + ga:(l)(k +1),

k=2,3,...,n.
Substituting z(Y) (k) into Eq. (10), we have that:
2OF) + 2Ok + 1) + a2V (k) = 2kb + 2¢. (18)
It follows from Eq. (18) that:

2(0(2) + 2(9(3) = —azM(2) + 4b + 2¢,
#(0(3) + 29 (4) = —azM(3) + 6b + 2¢,

: (19)
2O (n - 1)+20(n)=—azV(n—1)+2(n—1)b+2c.

By applying the least squares estimation method, the
model parameters £ = (a,b,c)? of the NDGMg(1,1,k,c)
are:

§=(BTB)"'BY, (20)
where:
2(1(2) —4 -2
2(D(3) —6 -2
B = — . . 9
M —-1) —2(n—-1) =2

2O (n) + 200 (n - 1)

Here, we give a short explanation to demonstrate that
¢ is the least squares estimation of the model. It is
known that to determine the least squares estimation
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of the NDGMg(1,1,k,c) model is to pursuit an ¢, thus
making the subsequent equation minimum:

n—1

s(§)=>_ (x(o)(z')+x<°>(z’ + 1)+az(1)(i)—2ib—2c)2
=(Y - BE'(Y - BE) = |v - Bg|)*. (21)

If f is the least squares estimation of the model, there
must be s(§) > s(é) for any £ Let £ be the solution
of Eq. (20), that is, ¢ = (B7B)~'B?Y.

For any values of £, we have:

s(§) =(Y — B¢ + B¢ — BY)T(Y — B¢ + BE — B¢)
(Y —B¢)(B¢ - B¢)
+(B¢'-BE) (B¢~ BE)

=(Y =B (Y -B¢) +
+ (B¢ BT (Y-B¢)

=s(¢)+ (V"B - ¢"BTB)(¢ - ¢)

+(E -9"(B"Y - B"B¢)

s(€)+HIBE-€)°.
(22)

+(BE'-BE) (BE'-BE) =

This means that £ is the least square estimation of the
NDGMs(1,1,k,¢c) model. Furthermore, taking £ into
Eq. (22), we acquire that:

() =ser+ s e -)" 23

It follows from Eq. (23) that s(€) > s(£). As € is the
least square estimation of the model, we know that
s(§) < s(&). Thus, s(¢) = s(§) and B({' — &) = 0.
Then, BTBf = BTBé’ = B7Y which leads to 5 =
(BTB) 1BTY,

3.3. Modeling evaluation criteria

To examine the forecasting correctness of the
NDGMs(1,1,k,c) model, the Absolute Percentage Error
(APE), the mean absolute simulation percentage error
(MAPEgim,), the mean absolute prediction percentage
error (MAPE,,.q), and the overall mean absolute
percentage error (MAPE,.,) are applied. In general,
the APE, MAPEgi,,, MAPE 4, and MAPEq., are
defined as follows:

#(0)
APE == E B o0%, k=23 o,
#(O(k) (24)
1 i A(O)(k)
MAPEsixnu — v—1 i ]. - x(o)(k) X 100%, (25)
1 - 0 (k)
MAPE;cq = — Z 1— O x100%, (26)
k=v+1

28 (2021) 3379-3395 3383

MAPE yer = 71
n—1
k=2

x 100%.  (27)

3.4. Unbiased property of the
NDGMs(1,1,k,c) model

In this subsection, we prove that the NDGMg(1,1,k,c)

model is unbiased to simulate a linear sequence and a

homogeneous/non-homogeneous exponential sequence

without inaccuracy.

3.4.1. Sitmulate a linear sequence
Suppose that a linear sequence is X (9 = {rk+6,k =
1,2,--- ,n}. Then, we obtain:

Z 2O (3)

The 1-AGO of X(© is stated by:

k+1)kr+k6 (28)

(n+1)n

X(l):{r+9,3r+2976r+36, T-I—ne} - (29)

By using these expressions into the matrix B and Y, it
can be found that:

—19r/3 — 48 4 2
—37r/3 — 60 6 2
B= . . . ’
—r(3n?=3n+1)/3—(2n—2)8 2(n-1) 2
5r + 26
r+ 20
Y =
(2n —1)r 426

After some calculations, we acquire:

a . 0
b|=(BTB) BTy = r . (30)
r/24+0

Then, we can easily get:
w =1, a=—1.

Substituting these values into Eq. (16), we have:

iV (k4+1) = (3r +20) + %(% +9)
k—2k—1—2
+21“Z Z (k—i—m)
1=0 m=0
k—2k—i—2
+(T+29)Z Z (-
1=0 m=0
(=Dt
=(3r +26) + ~————(2r +6)
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K 3 v, k3 Then, we can easily get:
o2 [ - 1+ 2(-1 r_ 2 ) y get:
+r<4+8( )+2 8)
w=gq _ 4 + 2
S | : - T 2g+ 1
Further, we have:
k2 k :
:(r+kr+r+r>+(k+1)9 6b _ 36(1—g*)
2 2 a+3 2¢+1 7
—I—(Qr—l—g(—l)kr—gr—17’+T(—1)k+(—1)k_1r—7’> 6c  _ 9(1+4Q+92)+37’Q(1+Q).
4 44t a+3 2¢+1
L (e— 19 . Q(_ o Q(—l)l”*l 0 Substituting these values into Eq. (16), we have:
2 2 2 2
Dk +1) =¢" " (rg+r¢® +20)
kE+2)(k+1
:(L;Hr+(k+1)9:x(l)(k+1). (31) o
i k—i—1
From Eq. (31), the proposed NDGMsg(1,1,k,c) model +(rq+26 —qf) Zq
can simulate a linear sequence without errors. =0
3.4.2. Simulation of a homogeneous/non- =2 ; [ 6b(k — F&?
homogeneous exponential sequence + Z q o+ 3 a +3 Z a™
Assume that a non-homogeneous exponential sequence =0 me
is X0 = {r¢* + 86,k =1,2,--- ,n}. Then, we possess: b2 b—i2
: : TS
1)1y _ )y _ ra(l—4q") - a+3
x (k)—;x (1) = 4 + k9, i=0
=¢" rq+rd® +26)
k=1,2,---.n (32)
The 1-AGO of X(© is given by: =
e o is given by +(rq + 20 — ¢f) Zqz ki1
rq(1—¢%) rq(l —¢°) i=0
X =dpg40, —— L 429 - 2/
1-— 1—g¢q
k .
1_q) ,].—O{kilil
1—gn (k—1)
+397...7”1(1Q)+n9}. (33) Z 2¢+1 1-a
—q
Substituting.these expr.essions ipto the: matrices B and k-2 B(1+4g+¢2) +3rg(1 + ¢) 1—ab—i=1
Y, the equation shown in Box I is obtained. After some + Z q
. . ; 2g+1 1—«a
calculations, we obtain: i=0
3(1—¢?) )
T+Hg+q? kz: 0(1—q?)(q+2) (1 —qk-imt
a — )2
b|=(B"B)'BTY= 30(—g") : =0 a1 e
1+4q+q? 24 _
¢ ) . (34) C(k—i—1)ak 2
rq(1+¢)+0(1+49+4¢°)
1+4g+0° (1-a)
—(6+5¢+ ¢*) — 126 4 2 ) 5
. S+ 260
—(6+6q+5¢% + ¢°) — 186 6 2 e TTe
(6469 +5¢"+¢7) rq® +rgt + 26
B = : = .
n—3 .
- (6 +6 > ¢F +5¢" 2 + q”_l) —6(n—10 2(n—-1) 2 rq" "t g™ + 20
k=1

Box I
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Table 1. Results of the NGM(1,1,k,c) and NDGMg(1,1,k,c) models for a nonhomogeneous exponential sequence with
r=0.06, ¢ = 2.25, and 6 = 3.

_rq(1—¢*)

NGM(1,1,k,c) model

NDGMs(1,1,k,c) model

k  Actual value
2@ (k) APE(k)% 2 (k) APE(k)%
1 3.1350 3.1350 3.1350 0
2 3.3038 5.0186 51.9055 3.3038 0
3 3.6834 7.3563 99.7130 3.6834 4.8346 x 1011
4 4.5377 12.4014 173.2942 4.5377 8.8666 x 10"
5 6.4599 23.2891 260.5184 6.4599 1.5553 x 10~1°
6 10.7848 46.7861 333.8160 10.7848 2.0291 x 10~ '°
7 20.5158 97.4950 375.2202 20.5158 2.3222 x 10710
8 42.4105 206.9302  387.9227 42.4105 2.3950 x 1077
9 91.6735 443.1029 383.3489 91.6735 2.3462 x 107 1°
10 202.5154 952.7886 370.4771 202.5154 2.2340 x 1071
11 451.9097 2052.7440  354.2377 451.9097  2.0963 x 1071°
12 1013.0470 4426.5639 336.9556 1013.0467 1.9434 x 10~ '°
MAPEimu (%) 183.8494 9.9090 x 10!
MAPEpea(%) 368.0270 2.2228 x 10710
MAPEqve: (%) 284.3099 1.6629 x 10710
k—2 k—2
¢Hrg+re®) +rgY_gat ! +0> ¢+ (1—q)(k—i)]
1=0 =0
k—2 N 1— k+1)
3rq(l+q) 1 —ab-i-l . _rg(l—q _ )
20451 = +k+1)80 =2 (k+1). (35)
* Z g+l 1-a 4 1—¢
s From Eq. (35), the proposed NDGMs(1,1,k,c) model
i ki1 can attain an unbiased simulation of a homogeneous/
+40 Z < (2 —q .
—~ non-homogeneous exponential sequence.
= Next, we here provide a numerical experiment
+ (1= q)(k —i)(1 = ak—i71) to illustrate the accuracy of. the NGM(l,l,k,.c) and
NDGMsg(1,1,k,c) models to simulate and predict the
l+4¢+¢ (1—-q)(g+2)] 1—ak—i-1 non-homogeneous index sequence. Let 2(%) (k) = rg* +
{ % 1 1 % + 1 } I~ 4 0, k=1,2,--- 12, r > 0. For ease of referencing, the
q 4 following notation is defined:
: hi2(1—q)(g+2) . .
—(k—i—-1a o2+ 1 e=la—al+ (36)
rq(1—g*") k—2 where G and b are approximated parameters of
ML) L 9gqh 1403 ¢ {(2—g)ah NGM(1,1,k,c) and NDGMs(1,1,k.c) models. In addi-
1- i=0 tion, parameters a and b are determined using Eq. (34).
_ Table 1 gives results for r = 0.06, ¢ = 2.25,
+(1=q)(k—d)(1 - Oék_l_l) and 8 = 3. It can be seen in Table 1 that the

+(1—q)(k —i—1)a" "1}

1—¢

+20¢" !

maximum APEs for simulation of NGM(1,1,k,¢) and
NDGMg(1,1,k,c) are 333.8160% and 1.7146 x 10711 %
and those for prediction are 387.9227% and 2.0291 x
10719%. The MAPEgu, MAPE, 4, and MAPE,,.,
for the NGM(1,1,k,c) are 183.8494%, 368.0270%, and
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x107°

2.0

181

1.6

1.4}

1.2}

0 1 2 3 4 5
q

Figure 1. The values of ¢ for NDGMs(1,1,k,¢) model

under different values of r, g and 0.

284.3099%; those for the NDGMg(1,1,k,¢) are 9.9090 x
1071%, 2.2228 x 1071°%, and 1.6629 x 10719%, re-
spectively. Clearly, the APEs of the NDGMsg(1,1,k,c)
model are caused by the round-off error of computer,
while the APEs of the NGM(1,1,k,c) model are caused
by its inconsistency.

Further, we select the parameter ¢ given at the
interval [0.1,5.0] by the step 0.01 and the parameters
r and 6 randomly generated at the interval [1,15] and
[1,5] by the discrete uniform distribution, respectively.
Computational results are depicted in Figure 1. Ac-
cording to Figure 1, the maximum ¢ is only 1.8867 X
109, which is obviously a truncation error occurring
in the computer program process.

4. Applications

In this part, the NDGMg(1,1,k,c) model is utilized
to predict the primary energy consumption in Saudi
Arabia, India, Philippines, and Vietnam. Outcomes
are compared to those of discrete DGM(1,1) model,
non-homogeneous NGM(1,1,k) model, NGM(1,1,k,c)
model, ARIMA, and SVMs.

The raw data of the primary energy consumption
belonging to Saudi Arabia, India, Philippines, and
Vietnam are announced from the BP Statistical Review
of World Energy 2017. These observations are divided
into two categories: The observations from 2006 to
2013 utilized to construct different prediction models
and the observations from 2014 to 2016 used to verify
and differentiate the forecasting results. Raw observa-
tion of the primary energy consumption are given in
Table 2.

4.1. The primary energy consumption in
Saudi Arabia
We first take the NDGMg(1,1,k,c) model as an example

Table 2. Raw data of the primary energy consumption.

Year Saudi Arabia India Philippines Vietnam

2006 164.5 414.0 25.6 28.1
2007 171.4 450.2 26.7 30.6
2008 186.9 475.7 27.6 38.2
2009 196.5 513.2 28.0 39.3
2010 216.1 537.1 28.8 44.3
2011 222.2 568.7 29.5 50.3
2012 235.7 611.6 30.5 52.5
2013 237.4 621.5 32.5 54.8
2014 252.1 663.6 34.4 59.8
2015 260.8 685.1 37.7 63.7
2016 266.5 723.9 42.1 64.8

to explain how to build and calculate the simulation
and prediction values. From Table 2, the values of X(©),
XM and ZM of the Saudi Arabia are given below:

X = (164.5,171.4,186.9, 196.5, 216.1, 222.2,
235.7,237.4),

XW = (164.5,335.9,522.8,719.3,935.4, 1157.6,
1393.3,1630.7),

Z(M) = (676.9667, 1048.8, 1445.1333, 1872.8333,

2319.7, 2787.1667).

It follows from Subsection 3.2 that:

—676.9667 4 2 358.3
—1048.8 6 2 383.4

B= —1445.1333 8 2 v = 412.6
—1872.8333 10 2|’ 438.3
—2319.7 12 2 457.9
—2787.1667 14 2 473.1

The system parameters can be further resolved to:

a . 0.1262
b| =(BTB) BTY = 384235
144.1316

Moreover, the expression of the NDGMg(1,1,k,¢) model
is:

(k4 1) = (0.8815) 12V (2)

N (—1.0429)%~1 — (0.9587)k~1
1.9193

x (2 (2) — 0.8815z(1) (1))
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k—2k—i—2
+73.7425) Y (0.8815)"(—1.0429)™ (k—i—m)

=0 m=0

k—2k—1—2
+276.6278 Y > (0.8815)(—1.0429)™,

=0 m=0

E=1,2,...,10. (37)

Finally, the values of #(®)(k) are obtained through
Egs. (17) and (37).
Similarly, the expressions of DGM(1,1), NGM(1,

1,k), NGM(1,1,k,c), and ARIMA models are provided
below:

The DGM(1,1) model:
iV (k + 1) =1.05545 2 (1)

168.0427

— =220 (1 — 1.0554%).
00551 | 0554%) (38)
The NGM(1,1,k) model:
2V (k+1) =(zM (1) + 94.0293) 07090k
+ 229.0920k — 94.0293. (39)
The NGM(1,1,k,¢) model:
POk +1) =M (1) + 842.0723)e 01472k
+ 288.7666k — 1130.8389. (40)

The ARIMA model:
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Figure 2. Computational result of the primary energy
consumption for Saudi Arabia by DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA(1,1,1), and
SVMs models.

(1-0.9661B8)(1—B)z" (k)= (1 — 0.5342B)e),, (41)
where B and ¢, are the lag operator and error terms,
respectively.

The outcomes of the primary energy consumption
in Saudi Arabia are tabulated in Table 3 and Figure 2.
The errors are listed in Table 4 and Figure 3.

From Table 3 and Figure 2, We can notice that
DGM (1,1), NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA
(1,1,1), and SVMs models successfully catch the ten-
dency of the primary energy consumption in Saudi Ara-
bia. The numerical outcomes by the NDGMg(1,1,k,c)
model are usually closer to the raw data than the
outcomes of the other models.

Table 3. Computational results of the primary energy consumption for Saudi Arabia by the DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA(L,1,1), and SVMs models.

Year Data DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMsg(1,1,k,c) ARIMA(1,1,1) SVMs
2006  164.5 164.5 164.5 164.5 164.5 164.5 189.2396
2007 1714 177.1631 97.7947 150.9690 171.4 164.5 183.4264
2008  186.9 186.9856 164.4757 169.8332 185.2058 174.3795 186.9510
2009  196.5 197.3527 197.2919 186.1150 201.4061 195.1848 198.4368
2010  216.1 208.2945 213.4420 200.1677 211.4817 205.0715 211.9135
2011 222.2 219.8430 221.3901 212.2967 224.7475 229.1427 222.2509
2012 235.7 232.0318 225.3016 222.7653 231.8679 231.8020 229.6540
2013 2374 244.8963 227.2266 231.8007 242.9132 246.6592 237.4510
2014 252.1 258.4741 228.1740 239.5992 247.6754 243.9889 246.0452
2015  260.8 272.8047 228.6402 246.3301 257.0601 261.9677 250.5585
2016  266.5 287.9299 228.8697 252.1396 259.9228 269.8285 246.5711
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Table 4. Errors of the primary energy consumption for Saudi Arabia by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c),
NDGMs(1,1,k,c), ARIMA(1,1,1), and SVMs models.

Year DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMsg(1,1,k,c) ARIMA(1,1,1) SVMs
2006 0 0 0 0 0 15.0393
2007 3.3624 42.9436 11.9200 0 4.0257 7.0166
2008 0.0458 11.9980 9.1315 0.9065 6.6990 0.0273
2009 0.4339 0.4030 5.2850 2.4967 0.6693 0.9856
2010 3.6120 1.2299 7.3726 2.1371 5.1034 1.9373
2011 1.0608 0.3645 4.4569 1.1465 3.1245 0.0229
2012 1.5563 4.4117 5.4878 1.6258 1.6538 2.5651
2013 3.1577 4.2853 2.3586 2.3223 3.9003 0.0215
2014 2.5284 9.4907 4.9587 1.7551 3.2174 2.4017
2015 4.6030 12.3312 5.5483 1.4340 0.4477 3.9270
2016 8.0412 14.1202 5.3885 2.4680 1.2490 7.4780
MAPEimu 1.8898 9.3766 6.5732 1.5193 3.5966 1.7966
MAPE, ed 5.0576 11.9807 5.2985 1.8857 1.6380 4.6022
MAPEover 2.8402 10.1578 6.1908 1.6292 3.0090 2.6383
45 ' ' ' - JSGMl(l,l) : ' 11.9807] —@ DGM(1,1) [ PIevaEs
10 | B NGM(1,1,k) 12 NGM(1,1,k) [ INGM(1,L,k)
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35 | 1 NDGMs(1,1,k,¢) || ol — @ NDGMs(1,1,k,0)| 101578 INDGMS(1,1,,0)
I ARIMA(1,1,1) ) ARIMA(1,1,1) B ARIMA(L,1,1)
30l Il SVMs @ SVMs s vus
8 r ]
g 25 ¢ MAPE 6 1008 MAPE_
& 20} 61 ps7e 52085
< » 46022
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Figure 3. Error values of the primary energy consumption for Saudi Arabia by the DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA(L,1,1), and SVMs models.

As shown in Table 4, MAPE;c.qa and MAPEq e,
for the NDGMg(1,1,k,c) model are 1.8857% and
1.6292%; those for the DGM(1,1) model are 5.0576%
and 2.8402%; those for the NGM(1,1,k) model are
11.9807% and 10.1578%; those for the NGM(1,1,k,c)
model are 5.2985% and 6.1908%; those for the ARIMA
model are 1.6380% and 3.0090%; and those for the
SVM model are 4.6022% and 2.6383%, respectively.

It can be concluded that the new model exceeds
other models in this application.

4.2. The primary energy consumption of India
This subsection studies the performance of DGM(1,1),
NGM(1,1,k),NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA,
and SVMs models in predicting the primary energy

consumption in India. Computation results and raw
data are shown in Tables 5 and 6 and Figures 4 and 5.

It can be seen in Table 6 that MAPEgy.,
MAPEped, and MAPEq., for the DGM(1,1) are
1.0430%, 2.5142%, and 1.4844%; those for the NGM
(1,1,k) model are 9.9016%, 14.6999%, and 11.3411%;
those for the NGM(1,1,k,c) model are 3.8010%,
3.8784%, and 3.8242%; those for the NDGMg (1,1,k,c)
model are 0.7936%, 0.7412%, and 0.7778%; those
for the ARIMA(1,1,1) model are 3.0268%, 2.9249%,
and 2.9962%; and those for the SVMs are 1.4642%,
5.1280%, and 2.5633%, respectively.

According to Tables 5 and 6 as well as Figures 4
and 5, the predicted values from the NDGMg(1,1,k,c)
model are closer to raw samples than other prediction
models. The computation results illustrate that the
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Table 5. Computational results of the primary energy consumption for India by the DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA(1,1,1), and SVMs models.
Year Data DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMsg(1,1,k,c) ARIMA(1,1,1) SVMs
2006 414 414 414 414 414 414 482.4519
2007  450.2 454.3107 253.8983 425.7561 450.2 414 471.0947
2008  475.7 480.1950 422.8578 458.4002 475.8445 477.7045 485.5684
2009  513.2 507.5540 506.8931 490.1910 512.0522 498.6237 513.0450
2010  537.1 536.4717 548.6897 521.1506 537.7097 544.6501 541.1383
2011 568.7 567.0371 569.4781 551.3010 573.9289 559.3171 568.5450
2012 611.6 599.3439 579.8176 580.6631 599.5994 595.5762 595.0908
2013 621.5 633.4914 584.9602 609.2577 635.8302 647.6630 621.6551
2014  663.6 669.5845 587.5180 637.1048 661.5137 633.6752 648.4537
2015  685.1 707.7339 588.7901 664.2239 697.7562 697.1583 663.1702
2016 723.9 748.0569 589.4228 690.6341 723.4526 705.7656 652.2294
Table 6. Errors of the primary energy consumption for India by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c),
NDGMs(1,1,k,c), ARIMA(1,1,1), and SVMs models.
Year ~ DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMs(1,1,k,c) ARIMA(1,1,1) SVMs
2006 0 0 0 0 0 16.5343
2007 0.9131 43.6032 5.4296 0 8.0409 4.6412
2008 0.9449 11.1083 3.6367 0.0304 0.4214 2.0745
2009 1.1002 1.2289 4.4834 0.2237 2.8403 0.0302
2010 0.1169 2.1578 2.9695 0.1135 1.4057 0.7519
2011 0.2924 0.1368 3.0594 0.9195 1.6499 0.0273
2012 2.0039 5.1966 5.0583 1.9622 2.6200 2.6993
2013 1.9294 5.8793 1.9698 2.3058 4.2097 0.0250
2014 0.9018 11.4650 3.9926 0.3144 4.5095 2.2824
2015 3.3037 14.0578 3.0472 1.8473 1.7601 3.2010
2016 3.3370 18.5768 4.5954 0.0618 2.5051 9.9006
MAPEsimu 1.0430 9.9016 3.8010 0.7936 3.0268 1.4642
MAPE, ed 2.5142 14.6999 3.8784 0.7412 2.9249 5.1280
MAPEqver 1.4844 11.3411 3.8242 0.7778 2.9962 2.5633

NDGMs(1,1,k,c) model outperforms the DGM(1,1),
GNM(1,1,k), NGM(1,1,k,c), ARIMA(1,1,1), and SVMs
models; in addition, the NGM(1,1,k) has the worst
performance.

4.3. The primary energy consumption of
Philippines
The simulation and forecasting results of the primary
energy consumption of Philippines are tabulated in
Table 7 and Figure 6, while the errors are tabulated
in Table 8 and Figure 7.
From Table 7 and Figure 6, we can no-
tice that DGM(1,1), NGM(1,1,k), NDGMg(1,1,k,c),
ARIMA(2,1,2), and SVMs models successfully catch

the tendency of the primary energy consump-
tion in Philippines. The numerical results of the
NDGMs(1,1,k,c) model are closer to the raw data than
the results of the other models.

As shown in Table 8, MAPEgm,, MAPE.q,
and MAPEy., for the DGM(1,1) model are 1.1396%,
10.6679%, and 3.9981%; those for the NGM(1,1,k)
model are 9.6444%, 21.0239%, and 13.0582%; those
for the NGM(1,1,k,c) model are 30.9143%, 76.0195%,
and 44.4459%; those for the NDGMg(1,1,k,¢) model
are 0.8213%, 3.2315%, and 1.5443%; those for the
ARIMA model are 3.0352%, 3.2165%, and 3.0896%;
and those for the SVMs model are 0.3125%, 4.7765%,
and 1.6517%, respectively. Obviously, according to
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Figure 4. Computational result of the primary energy
consumption for India by the DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA(1,1,1), and
SVMs models.

Table 8 and Figure 7, the proposed model outperforms
the other models in the case.

4.4. The primary energy consumption in

Vietnam
This subsection studies the performance of DGM(1,1),
NGM(1,1,k), NGM(1,1,k,c), NDGMs(1,1,k,c), ARIMA,
and SVMs models in predicting the primary energy
consumption in Vietnam. Computation results and
raw data are shown in Tables 9 and 10 as well as Figures
8 and 9.

As can be seen in Table 10, the MAPEg .,
MAPE;req, and MAPE., for the DGM(1,1) are
3.7971%, 8.4716%, and 5.1995%; those for the
NGM(1,1,k) model are 10.3366%, 14.0915%, and
11.4631%; those for the NGM(1,1,k,c) model are
7.4440%, 6.7516%, and 7.2363%; those for the
NDGMs(1,1,k,c) model are 2.1315%, 3.1512%, and

5 B DGM(11)
B NGM(1,1,k)
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[ NDGMsg(1,1,k,c)|
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Figure 6. Computational results of the primary energy
consumption for Philippines by the DGM(1,1),
NGM(1,1,k), NGM(1,1,k,c), NDGMs(1,1,k,c),
ARIMA(2,1,2), and SVMs models.

2.4374%; those for the ARIMA(1,1,2) model are
10.6703%, 9.0352%, and 10.1798%:; and those of the
SVMs are 4.0866%, 3.6375%, and 3.9519%, respec-
tively. Based on Tables 9 and 10 as well as Figures 8
and 9, the predicted values by the NDGMg(1,1,k,c)
model are much closer to the raw data than the
other models. The computation results illustrate that
the NDGMs(1,1,k,c) model exceeds the DGM(1,1),
GNM(1,1,k), NGM(1,1,k,c), ARIMA(1,1,1), and SVMs
models; besides, the NGM(1,1,k) has the bad perfor-

mance.

4.5. Discussions and suggestions

The primary energy consumption for Saudi Arabia,
India, Philippines, and Vietnam is systematically dis-
cussed in this paper by using the DGM(1,1), NGM
(1,1,k), NGM(1,1,k,c), NDGMs(1,1,k,c), ARIMA, and
SVMs models and based on the actual date from 2006
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Figure 5. Error values of the primary energy consumption for India by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c),

NDGMs(1,1,k,c), ARIMA(1,1,1), and SVMs models.
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Table 7. Computational results of the primary energy consumption for Philippines by the DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA(2,1,2), and SVMs models.
Year Data DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMs(1,1,k,c) ARIMA(2,1,2) SVMs
2006 25.6 25.6 25.6 25.6 25.6 25.6 26.3584
2007 26.7 26.4819 14.9267 30.7052 26.7 25.6 26.7165
2008 27.6 27.3055 25.0760 32.2316 27.7639 25.9164 27.5835
2009 28.0 28.1546 28.3283 34.2071 27.7091 26.6613 28.2206
2010 28.8 29.0302 29.3705 36.7638 28.9468 27.6595 28.7835
2011 29.5 29.9329 29.7045 40.0728 29.3329 28.9488 29.4929
2012 30.5 30.8638 29.8116 44.3552 30.9366 30.5619 30.5165
2013 32.5 31.8236 29.8459 49.8976 31.9773 32.5695 32.1285
2014 34.4 32.8133 29.8568 57.0707 34.2522 35.3050 34.4165
2015 37.7 33.8337 29.8604 66.3542 36.3111 38.8936 36.6577
2016 42.1 34.8859 29.8615 78.3689 39.7505 43.7219 37.2514
Table 8. Errors of the primary energy consumption for Philippines by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c),
NDGMg(1,1,k,c), ARIMA(2,1,2), and SVMs models.
Year DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMs(1,1,k,c) ARIMA(2,1,2) SVMs
2006 0 0 0 0 0 2.9625
2007 0.8168 44.0947 15.0007 0 4.1199 0.0618
2008 1.0672 9.1451 16.7812 0.5937 6.1000 0.0598
2009 0.5521 1.1726 22.1682 1.0389 4.7812 0.7879
2010 0.7991 1.9811 27.6522 0.5096 3.9601 0.0572
2011 1.4676 0.6933 35.8399 0.5666 1.8684 0.0239
2012 1.1928 2.2572 45.4270 1.4316 0.2031 0.0540
2013 2.0812 8.1666 53.5312 1.6084 0.2137 1.1430
2014 4.6126 13.2069 65.9032 0.4296 2.6309 0.0480
2015 10.2555 20.7948 76.0057 3.6840 3.1662 2.7647
2016 17.1357 29.0701 86.1494 5.5809 3.8525 11.5169
MAPE;imu 1.1396 9.6444 30.9143 0.8213 3.0352 0.3125
MAPE, ea 10.6679 21.0239 76.0195 3.2315 3.2165 4.7765
MAPEover 3.9981 13.0582 44.4459 1.5443 3.0896 1.6517
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Figure 7. Error values of the primary energy consumption for Philippines by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c),
NDGMs(1,1,k,c), ARIMA(1,1,1), and SVMs models.
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Table 9. Computational results of the primary energy consumption for Vietnam by DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMg(1,1,k,c), ARIMA(1,1,2), and SVMs models.

Year Data DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMs(1,1,k,c) ARIMA(1,1,2) SVMs
2006 28.1 28.1 28.1 28.1 28.1 28.1 38.7583
2007 30.6 33.4598 18.7478 26.9497 30.6 28.1 37.5079
2008 38.2 36.5603 30.8373 32.5806 37.8519 33.2028 38.1755
2009 39.3 39.9482 38.9456 37.6267 39.3964 43.6051 40.3060
2010 44.3 43.6500 44.3837 42.1488 46.2959 35.4189 44.3244
2011 50.3 47.6948 48.0309 146.2012 47.3175 53.7805 149.0752
2012 52.5 52.1145 50.4770 19.8328 53.9123 47.6229 52.4755
2013 54.8 56.9437 52.1176 53.0872 54.4497 58.2137 55.2775
2014 59.8 62.2204 53.2180 56.0036 60.7831 52.2579 58.9776
2015 63.7 67.9860 53.9559 58.6171 60.8705 68.3572 61.6825
2016 64.8 74.2860 54.4509 60.9593 66.9822 60.1459 60.6723

Table 10. Errors of the primary energy consumption for Vietnam by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c),
NDGMg(1,1,k,c), ARIMA(1,1,2), and SVMs models.

Year DGM(1,1) NGM(1,1,k) NGM(1,1,k,c) NDGMs(1,1,k,c) ARIMA(1,1,2) SVMs
2006 0 0 0 0 0 37.9298
2007 9.3457 38.7327 11.9291 0 8.1699 22.5747
2008 4.2923 19.2740 14.7104 0.9112 13.0817 0.0640
2009 1.6494 0.9018 4.2577 0.2452 10.9546 2.5597
2010 1.4673 0.1889 4.8560 4.5054 20.0475 0.0552
2011 5.1792 4.5111 8.1487 5.9294 6.9195 2.4350
2012 0.7343 3.8532 5.0804 2.6901 9.2897 0.0466
2013 3.9118 4.8948 3.1256 0.6393 6.2294 0.8714
2014 4.0474 11.0068 6.3485 1.6440 12.6123 1.3752
2015 6.7285 15.2968 7.9794 4.4419 7.3111 3.1673
2016 14.6388 15.9709 5.9271 3.3676 7.1823 6.3700
MAPEsimu 3.7971 10.3366 7.4440 2.1315 10.6703 4.0866
MAPE, ed 8.4716 14.0915 6.7516 3.1512 9.0352 3.6375
MAPEover 5.1995 11.4631 7.2363 2.4374 10.1798 3.9519
to 2016. The computational results show that the energy can produce harmful gases that pollute the

NDGMs(1,1,k,c) model outperforms the other predic-
tion models in primary energy consumption.

The BP Statistical Review of World Energy states
that the energy mix inches towards cleaner, lower
carbon fuels determined by the environment needs and
the technological progress. This result points out that
the growth of worldwide primary energy consumption
remained low in 2016. This growth is below average
in all states except Europe (Saudi Arabia) & Eurasia
(India, Philippines, Vietnam). As known, the fossil

environment and lead to ecological problems. More-
over, the government will play its role in meeting the
dual challenge of supplying the energy for the na-
tion’s needs to grow and prosper and reducing carbon
emissions. The mentioned entity should reduce the
traditional energy consumption and greatly increase
clean energy consumption in the future. We hope
that our computational results can provide a guidance
for the government to formulate and adjust energy
policies.
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Figure 8. Computational results of the primary energy
consumption for Vietnam by DGM(1,1), NGM(1,1,k),
NGM(1,1,k,c), NDGMs(1,1,k,c), ARIMA(1,1,2), and
SVMs models.

5. Conclusions

This research study investigated the discrete
NDGMs(1,1,k,c) model with Simpson formula.
Mathematical analysis was carried out to determine
the properties of the proposed model.  Further,
the primary energy consumption for Saudi Arabia,
India, Philippines, and Vietnam was carried out to
verify the performarnce of our model with the DGM
(1,1), NGM(1,1,k), NGM(1,1,k,c), Auto-Regressive
Integrated Moving Average (ARIMA), and the
Support Vector Machines (SVMs) models. The results
showed that the new NDGMg(1,1,k,¢) model had high
potential in the primary energy consumption with
higher accuracy than the other models.

It needs to be pointed out that the GM(1,1),
DGM(1,1), and their generalized models are homo-
geneous exponential models. However, it is difficult

40 T T T T T T T T T
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to meet data sequences with the significant growth of
homogeneous exponent in real situations. This result
illustrates that the homogeneous exponent models
are inapplicable. According to the analysis of the
NDGMs(1,1,k,c) model, it is known that the new
model can be used as either a homogeneous exponent
model or an non-homogenous model, which has a wide
range of applications in the real world. Moreover,
the proposed model is suitable for simulation and
prediction data sequences with only a few samples
(not less than four). However, the time series analysis
and the computational intelligence technology require
a large amount of data. It is sometimes impossible to
get as many as observed samples in the real world.

In the future, the new NDGMg(1,1,%,¢) model can
be used for data forecasting such as nuclear energy
consumption, the production of shale gas, etc. Further,
the method for the NDGMg(1,1,k,c) model can be
applied to analyze other grey models such as GM(1,n)
or Verhulst models.
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