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Abstract. Several researchers have investigated the e�ect of measurement errors on
adaptive Shewhart charts. However, the e�ect of measurement errors on the performance
of Variable Sample Size Exponentially Weighted Moving Average (VSS EWMA) control
charts has not been evaluated yet. In this regard, the present study aims to investigate the
performance of the VSS EWMA chart in the presence of measurement errors using a linear
covariate error model and Markov chain method. The results indicated that the presence
of measurement errors could signi�cantly a�ect the performance of the VSS EWMA chart.
In addition, the e�ect of taking multiple measurements for each item in a subgroup on
the performance of the VSS EWMA chart was evaluated. Moreover, the performance of
the VSS EWMA control chart was compared with those of several other control charts
in the presence of measurement errors. Finally, an illustrative example was presented to
demonstrate the application of the VSS EWMA control chart with measurement errors.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Although the Shewhart �X control chart is e�ectively
used for detecting large process mean shifts, Expo-
nentially Weighted Moving Average (EWMA) control
chart has a better performance in detecting small
and moderate shifts. Many developments have been
made to improve the performance of control charts in
detecting the process mean shifts. One of the main
approaches to improving the performance of EWMA
charts is using adaptive procedures and designing
adaptive control charts. An adaptive control chart is
a chart where at least one of its parameters (sample
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size, sampling interval, and control limit coe�cient) is
regarded as variable throughout the process.

A number of researches have been conducted to
develop adaptive control charts and according to the
�ndings, they outperformed their Fixed Sampling Rate
(FSR) control chart counterparts in detecting small
and moderate shifts. In this section, the literature
concerning adaptive Shewhart �X control charts is
reviewed. Prabhu et al. [1] and costa [2] presented the
Variable Sample Size (VSS) �X control chart. Reynolds
[3] investigated the Variable Sampling Interval (VSI)
�X control chart. Amiri et al. [4] investigated the

economic-statistical design of VSI and VSS �X con-
trol charts through Taguchi's loss function approach.
Prabhu et al. [5] and Costa [6] studied the combined
Variable Sample Size and Sampling Interval (VSSI) �X
control schemes. Costa [7] examined the �X chart with
Variable Parameters (VP). The next section briey
introduces the studies conducted on the Adaptive
EWMA (AEWMA) charts.
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In addition to the studies on adaptive Shewhart
�X control chart, further researches have also been

conducted on the AEWMA control chart. For instance,
Saccucci et al. [8] investigated the VSI EWMA control
chart. Reynolds Jr and Arnold [9] considered the VSS
and VSI EWMA control charts and developed integral
equation and Markov chain methods to evaluate the
statistical performance of these charts. Castagliola
et al. [10,11] presented the VSI R-EWMA and
VSI S2-EWMA control charts to monitor the process
variance. Kazemzadeh et al. [12] designed a VSI
EWMA control chart based on the t distribution. In
addition, Tran et al. [13] evaluated the e�ciency of
the VSI EWMA- ~X (median) control chart. Ugaz et
al. [14] proposed an AEWMA control chart with the
time-varying smoothing parameter. Tang et al. [15]
introduced an optimal design of the AEWMA chart
for the mean based on both median run and expected
median run lengths. Amiri et al. [16] designed a new
adaptive Variable Sample Size EWMA (VSS EWMA)
control chart. Capizzi and Masarotto [17] proposed
an AEWMA- �X control chart. Ong et al. [18] studied
the VSI EWMA chart when the process parameters
were unknown. Tran et al. [19] presented an EWMA-
type control chart to monitor the ratio of two normal
quality characteristics. Teoh et al. [20] investigated
the VSI EWMA �X chart when the process parameters
were unknown. Haq and Khoo [21] introduced an
Adaptive Multivariate EWMA (AMEWMA) chart and
calculated the run length characteristics of this chart
using the Monte Carlo simulation runs.

The above-mentioned studies did not take into
account the measurement errors. However, in real
world, there are measurement errors in many processes.
Some researchers have studied the e�ect of measure-
ment errors on the performance of Shewhart control
charts. For instance, Bennet [22] introduced the e�ect
of measurement errors using the model X = Y + ",
where X is the observed value, Y the true value of the
quality characteristic, and " a random measurement
error. Linna and Woodall [23] suggested using the
linearly covariate model X = A + BY + ", where A
and B were two constants.

Here, a brief summary of the studies on the
e�ect of measurement errors on the adaptive She-
whart charts is given. Linna and Woodall [23] and
Kanazuka [24] evaluated the e�ect of measurement
errors on the performance of �X-R control charts. Costa
and Castagliola [25] investigated the e�ect of measure-
ment errors on the �X control chart with autocorrelated
data, and Hu et al. [26] evaluated this e�ect on the
synthetic �X control chart. Linna et al. [27] analyzed
the performance of the FSR Hotelling's T 2 control
chart in the presence of measurement errors. Hu
et al. [28,29] considered the e�ect of measurement
errors on the performance of the VSS �X and VSI �X

control charts, respectively. Sabahno and Amiri [30]
investigated the e�ect of measurement errors on the
performance of the VSSI �X control chart. Sabahno
et al. [31{33] investigated the e�ect of measurement
errors on the performance of VP �X, VSS-T 2 and
VSI-T 2 control charts, respectively. Ghashghaei et
al. [34] delved into the e�ect of measurement errors
on the joint monitoring of the process mean and
variability under Ranked Set Sampling (RSS) scheme.
Amiri et al. [35] investigated the e�ect of measurement
errors on the performance of Exponentially-weighted
Likelihood Ratio (ELR) control chart for simultaneous
monitoring of the mean vector and covariance matrix
in the multivariate normal processes. Maleki et al. [36]
considered the ELR control chart for simultaneous
monitoring of the mean vector and covariance matrix
and evaluated the e�ect of measurement errors with
linearly increasing error variance on the performance
of this control chart. Nguyen et al. [37] assessed
the performance of a VSI Shewhart control chart
monitoring the coe�cient of variation in the presence of
measurement errors. Finally, Tran et al. [38] evaluated
the performance of coe�cient of variation charts in the
presence of measurement errors.

Stemann and Weihs [39] took into account the
AEWMA-type charts in the presence of measurement
errors to introduce the EWMA- �X-S control chart and
evaluate its performance. Maravelakis et al. [40]
considered the EWMA control chart with measure-
ment errors. Yang et al. [41] evaluated the e�ect
of measurement errors on the performance of an
EWMA control chart for monitoring two dependent
process steps. Haq et al. [42] investigated the e�ect
of measurement errors on the EWMA control chart
under RSS scheme. Abbasi [43,44] studied the e�ect
of measurement errors on the EWMA control chart
with two-component measurement errors (i.e., additive
as well as multiplicative ones). Saghaei et al. [45]
investigated the economic design of an EWMA control
chart with measurement errors using a genetic algo-
rithm. Cheng and Wang [46] explored the e�ect of
measurement errors on the EWMA- ~X and CUSUM- ~X
control charts. Most of studies on the AEWMA control
charts have been carried out without considering the
measurement errors. Tang et al. [47] examined the
e�ect of measurement errors on the AEWMA- �X chart.

Maleki et al. [48] conducted a review of the e�ect
of measurement errors on control charts. To the best
of the authors' knowledge and based on this review,
the e�ect of measurement errors on the VSS EWMA-
�X control chart has not been investigated yet. Hence,

this study aims to evaluate the e�ect of measurement
errors on the performance of the VSS EWMA chart.
To this end, the linear covariate error model proposed
by Linna and Woodall [23] was employed and both
�xed and linearly increasing error variances were taken
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into account. Then, the e�ects of the measurement
errors, multiple measurements, and constant B on the
performance of the adaptive VSS EWMA control chart
were evaluated. A modi�ed Markov chain method
(inspired by the one proposed by Lucas and Saccucci
[49]) was also used for calculating the run length
properties of the VSS EWMA control chart. Further,
this study compared the performance of the proposed
VSS EWMA with that of FSR EWMA and also that
of the Shewhart VSS �X with VSI �X control charts
proposed by Hu et al. [28,29] in detecting step shifts
in the process mean in terms of Average Run Length
(ARL).

This study is organized as follows. The next
section introduces the linearly covariate error model.
Section 3 discusses the VSS EWMA control chart with
measurement errors in detail. Section 4 evaluates the
e�ect of the measurement errors and multiple measure-
ments on the performance of the VSS EWMA in terms
of the ARL and Average Number of Observations to
Signal (ANOS) using the Markov chain. Section 5
compares the performances of both VSS EWMA and
FSR EWMA control charts. Section 6 presents an
illustrative example based on a real case. Finally,
Section 7 concludes the study and provides further
suggestions for future researches.

2. Linearly covariate error model

The linearly covariate measurement error model was
�rst introduced by Linna and Woodall [23]. Assume
that Yij , the jth observation of the quality charac-
teristic at time i (i = 1; 2; :::; and j = 1; 2; :::; ns)
with ns = fn1; n2g, where n1 and n2 are respectively
the small and large sample sizes, follow a normal
N
�
�0 + ��0; �2

0
�

distribution, where �0 and �0 are the
in-control mean and standard deviation of the process,
respectively, both considered known. Here, � is the
magnitude of the mean shift in unit �0 (note that when
the process is in-control, � = 0). In practice, the true
value of the quality characteristic Yij is not directly
observed, but it can be estimated from k = 1; :::;m
measurements Xijk related to the true value Yij using
the linearly covariate model:

Xijk = A+BYij + "ijk; (1)

where A and B are constants, and "ijk is the random
error term that is assumed to be normally distributed
with mean 0 and variance �2

M . Assume that we have
N standard parts with known but di�erent quality
characteristic values. The quality characteristic of
these standard parts is measured through some mea-
surement systems. Due to the presence of measurement
errors, the observed values are di�erent from the real
ones. The parameters A, B, and �2

M are estimated

using the true and observed values for the quality
characteristics and �tting a simple linear regression. In
addition, �X and �2

X can be easily estimated using the
sample mean �X and sample standard deviation �X
of the measured values for the quality characteristic.
Then, the values �Y and �2

Y are estimated through the
following equations:

�Y =
�X �A
B

and �2
Y =

�2
X � �2

M
B2 :

According to Montgomery and Runger [50] and Linna
and Woodall [23], there are two possible scenarios for
�2
M : �rst, �2

M is considered as a constant and in the
second one, �2

M = C + D�Y where C and D are
two extra constants. Similar to parameters A and
B, parameters C and D can be estimated through a
dedicated simple linear regression model.

At time i = 1; 2; :::; the sample mean �Xi of the
subgroup fXi11; :::; Xi1m; :::; Xin1; :::; Xinmg is equal
to:

�Xi =
1

mns

nsX
j=1

mX
k=1

Xijk: (2)

By substituting Eq. (1) into Eq. (2), we have:

�Xi = A+
1
ns

0@B nsX
j=1

Yij +
1
m

nsX
j=1

mX
k=1

"ijk

1A : (3)

It can be easily shown that the expected value and the
variance of �Xi, are respectively equal to:

E
� �Xi

�
= A+B (�0 + ��0) ; (4)

Var
� �Xi

�
=

1
ns

�
B2�2

0 +
�2
M
m

�
: (5)

3. VSS EWMA control chart with
measurement errors

As mentioned earlier, in case the sample sizes are
variable, the control chart for this scheme is called VSS
control chart. As mentioned in the previous section, in
this study, we assumed that there were two types of
sample sizes (n1 < n2). It can be clearly stated that
based on Eq. (1) related to Y and X, X is normally
distributed with the mean of A + B (�0 + ��0) and
variance of B2�2

0 + �2
M . With the assumption that

ns = fn1; n2g at each sampling point, the mean of
these observations can be calculated as �Xi standardized
below:

Ui =
�Xi � �0 �Xi

� �Xi
; (6)

where � �Xi is the standard deviation of �Xi obtained
from taking the square root of Eq. (5) and �0 �Xi

the
in-control expected value of �Xi obtained from Eq. (4).
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Then, Ui � N (0; 1) when the process is in-control.
Further, Ui is used in the EWMA statistic, as shown
in the following:

Zi = �Ui + (1� �)Zi�1; (7)

where Zi follows a normal distribution with the follow-
ing mean and asymptotic variance �Zi = 0; �2

Zi = �
2�� ,

respectively. Hence, the steady state upper and lower
control limits of the VSS EWMA chart are obtained by
Eqs. (8) and (9), respectively:

UCL = L
r

�
2� �; (8)

LCL = �L
r

�
2� �: (9)

Similarly, the steady state upper and lower warning
limits are respectively as follows:

UWL = W
r

�
2� �; (10)

LWL = �W
r

�
2� �; (11)

where 0 < W < L. The VSS strategy is as follows:

- If Zi 2 
1 = [LWL;UWL] ; the process is identi�ed
as \in-control", and the small sample size n1 is taken
for the next sampling period;

- If Zi 2 
2 = [LCL;LWL) [ (UWL;UCL] ; the
process is also identi�ed as \in-control", but the
large sample size n2 is chosen for the next sampling
period;

- If Zi =2 
3 = [LCL;UCL] ; the process is declared as
\out-of-control" and the corrective actions must be
undertaken.

For transient states, we have:

Pr(Zi 2 
1) = �(W )� �(�W ) = 2�(W )� 1; (12)

Pr(Zi 2 
2) = �(K)� �(W ) + �(�W )� �(�K)

= 2(�(K)� �(W )); (13)

Pr(Zi 2 
3) = � (K)� �(�K) = 2�(K)� 1; (14)

where �(:) denotes the cumulative distribution func-
tion (c.d.f) of the N(0; 1) distribution. To obtain
the warning limit coe�cient, the balanced equation
n0 = n1P1 +n2P2; is employed where n0 is the average
sample size (the weighted mean of n1 and n2), and P1
and P2 are the conditional probabilities of Zi falling

in 
1 and 
2, respectively, provided that Zi is \in-
control"(
3). Hence, we have:

n0 = n1
Pr(Zi 2 
1)
Pr(Zi 2 
3)

+ n2
Pr(Zi 2 
2)
Pr(Zi 2 
3)

: (15)

By substituting Eqs. (12){(14) into Eq. (15) and
determining W , the following equation is obtained:

W = ��1
�

2� (L) (n0 � n2)� n0 + n1

2 (n1 � n2)

�
; (16)

where ��1(:) denotes the inverse c.d.f. of the N(0; 1)
distribution.

4. The e�ect of measurement errors on the
VSS EWMA control chart

In this section, the main focus is given to the perfor-
mance of VSS EWMA control chart with a linearly
covariate error model over a range of shift sizes.
Following the calculation of W and consideration of the
other parameters (n1; n2; n0;m;A;B;L) ; we compare
the performance of the VSS EWMA control chart in
terms of ARL and ANOS. In addition, Markov chain
approach is employed to compute the ARL and ANOS
for EWMA control chart, according to the method
presented by Lucas and Saccucci [49]. The distance
between the control limits is divided into 2p+ 1 states.
Each state has a width of 2d, where 2d = UCL�LCL

2p+1 .
The midpoint of each state is ft; t 2 f�p; :::; pg. The
statistic Zi is in the state t if ft�d � Zi � ft+d: In case
Zi is within the control limits, it is in a transient state;
and in case Zi is outside the control limits, it enters the
absorbing state. Let Q be the (2p+ 1; 2p+ 1) matrix
of transition probabilities Qgh of from state g to state
h:
Qgh = Pr(fh � d < Zi < fh + d jZi�1 = fg ); (17)

Qgh = Pr(Zi < fh + d jZi�1 = fg )

�Pr(Zi < fh � d jZi�1 = fg ): (18)

By replacing Zi with Ui based on Eq. (7), we have:

Qgh = Pr
�
Ui <

fh + d� (1� �) fj
�

�
�Pr

�
Ui <

fh � d� (1� �) fg
�

�
: (19)

Substituting Ui with �Xi based on Eq. (6), Qgh is
obtained as follows:

Qgh=Pr
�

�Xi<
�
fh+d�(1��) fg

�

�
� �Xi+�0 �Xi

�
�Pr

�
�Xi<

�
fh�d�(1��) fg

�

�
� �Xi+�0 �Xi

�
:
(20)

For computing this probability, Eq. (20) should be
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standardized; hence, by using Eqs. (4) and (5), we
have:

Qgh = Pr

 
�Xi � � �Xi
� �Xi

<

�� fh+d�(1��)fg
�

�
� �Xi + �0 �Xi

� � �Xi

�
� �Xi

!
�Pr

 
�Xi � � �Xi
� �Xi

<

�� fh�d�(1��)fg
�

�
� �Xi + �0 �Xi

� � �Xi

�
� �Xi

!
:

(21)

Considering �0 �Xi
= A + B�0 (when � = 0), � �Xi =

A + B (�0 + ��0), and � �Xi =
r

1
n

�
B2�2

0 + �2
M
m

�
and

some simpli�cations in Eq. (21), we have:

Qgh = �
��

fh + d� (1� �) fg
�

�
� B��0

� �Xi

�
��

��
fh � d� (1� �) fg

�

�
� B��0

� �Xi

�
: (22)

Let q and n be the (2p + 1; 1) vector of the initial
probabilities and (2p+ 1; 1) vector of the sample sizes,
respectively, associated with each transient state, i.e.:

qt =

(
0 if Zi =2 (ft � d; ft + d]
1 if Zi 2 (ft � d; ft + d]

(23)

nt =

(
nS if LWL � ft � UWL
nL otherwise

Finally, the ARL and ANOS of the VSS EWMA control
chart can be obtained using:

ARL1 = qT (I�Q)�1 1; (24)

ANOS1 = qT (I�Q)�1 n; (25)

where I is the (2p+ 1; 2p+ 1) identity matrix and 1 is
the (2p+ 1; 1) unit column vector.

To evaluate the e�ect of measurement errors on
the performance of the VSS EWMA chart, � = 0:2
and L = 2:962 were employed to achieve an in-control
ARL of 500. In addition, the 2p + 1 states were used
for the implementation of the Markov chain approach
where p = 105 based on Maravelakis et al. [40].
Moreover, in the present study, the variances of both
constant measurement errors as well as those of the
linearly increasing measurement errors were taken into
account.

4.1. A constant measurement error variance
The ARL1 and ANOS1 for the VSS EWMA chart
with a linearly covariate error model are listed in Ta-
ble 1 for di�erent combinations of measurement errors�
�2
M = 0; 0:3; 0:7; 1

�
and shift magnitudes in process

mean (� = 0:1; 0:5; 1; 2), n1 = 1; 3; 5, and n2 = 6; 7; 10
whenm = 1 and B = 1. According to this table, in case
the variance of measurement errors (�2

M ) increases, the
ARL1 and ANOS1 also increase, thus increasing the
negative e�ect of measurement errors. For example, if
� = 0:1; n1 = 1; n2 = 6, and �2

M = 0, we have ARL1 =
184:8 and ANOS1= 691:6; and if �2

M = 1, we have
ARL1 = 276:43 and ANOS1= 1004:11. Table 2 shows
the e�ect of the number of measurements (m) when
�1
M = 1 and B = 1 for di�erent shifts in the process

mean (� = 0:1; 0:5; 1; 2). According to Table 2, using
multiple measurements can attenuate the negative ef-
fect of measurement errors. For example, if we consider
the combination (m = 1; � = 0:1; n1 = 1; n2 = 6), we
have ARL1= 276:43 and ANOS1= 1004:11; and if m =
2 we have ARL1= 238:2 and ANOS1= 874:5.

Table 3 presents the results of sensitivity analysis
of the parameter B. According to this table, in
case �2

M = 1 and m = 1 for di�erent shifts in
the process mean, the positive e�ect of parameter
B can signi�cantly reduce the negative e�ects of
measurement errors. For example, considering the
combination (� = 0:1; n1 = 1; n2 = 6) for B = 1 leads
to ARL1= 276:43 and ANOS1= 1004:11 while, for the
same combination and B = 2, we have ARL1= 213:9
and ANOS1= 791:6. Table 4 shows the ARL and
ANOS of the VSS EWMA chart at di�erent values of
�2
M when m = 5 and B = 1. A comparison between

the results of Tables 1 and 4 shows that increasing m
at di�erent values of �2

M reduces the negative e�ect
of the measurement errors. For example, considering
the combination (� = 0:1; n1 = 5; n2 = 10; �2

M = 0:3)
and m = 1 and m = 5 lead to ARL1= 139:2 and
ARL1= 117:4, respectively. Table 5 reports ARL1 and
ANOS1 for di�erent values of B, �1

M = 1, and m = 5.
A comparison between Tables 5 and 3 shows that when
m = 5, the e�ect of measurement errors is greater
than that when m = 1. For example, considering the
combination (� = 0:1; n1 = 5; n2 = 10) when B = 3
and m = 1, ARL1 is equal to 122.3 while when m = 5,
the ARL1 decreases to 113.8.

4.2. Linearly increasing measurement errors
variance

In the case of linearly increasing measurement errors
variance, we have �2

M = C + D�Y . We investigate
the e�ect of parameter D on the performance of the
VSS EWMA chart. Table 6 presents the ARL1 and
ANOS1 performances of the VSS EWMA chart with
linearly increasing variance for di�erent values of D,
B = 1, C = 0, and m = 1. From Table 6, increasing
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Table 1. ARL1, and ANOS1 when ARL0 = 500, k = 2:962, � = 0:2, B = 1, m = 1.

n1; n2

W
n1 = 1; n2 = 6

0.672
n1 = 5; n2 = 10

0.672
n1 = 3; n2 = 7

0.672
n1 = 3; n2 = 10

0.672
ANOS0 1753.6 3751.7 2501.8 3254.2

�2
M = 0

� = 0:1 (184.8, 691.6) (111.6, 892.6) (152.4, 805.27) (118.07, 838.01)
� = 0:5 (9.54, 40.07) (5.68, 47.55) (7.47, 43.00) (6.16, 45.96)
� = 1 (4.13, 15.16) (2.59, 20.31) (3.18, 17.05) (2.86, 19.47)
� = 2 (2.25, 7.51) (1.67, 11.78) (1.94, 9.56) (1.93, 12.30)

�2
M = 0:3

� = 0:1 (219.1, 809.4) (139.2, 1099.7) (184.5, 964.4) (146.7, 1024.5)
� = 0:5 (11.65, 50.06) (6.82, 57.73) (9.14, 53.19) (7.36, 55.91)
� = 1 (4.74, 17.79) (2.95, 23.42) (3.66, 19.88) (3.25, 22.51)
� = 2 (7.51, 8.26) (1.84, 13.46) (2.03, 10.12) (2.00, 12.82)

�2
M = 0:7

� = 0:1 (254.99, 931.39) (170.7, 1335.2) (219.3, 1136.01) (179.2, 1234.02)
� = 0:5 (14.57, 63.67) (8.35, 71.37) (11.42, 67.03) (8.95, 69.24)
� = 1 (5.49, 21.18) (3.39, 27.31) (4.26, 23.47) (3.73, 26.27)
� = 2 (2.75, 9.42) (1.95, 14.53) (2.18, 11.02) (2.08, 13.41)

�2
M = 1

� = 0:1 (276.43, 1004.11) (191.16, 1486.8) (240.8, 1241.7) (200.0, 1367.5)
� = 0:5 (16.85, 74.06) (9.51, 81.72) (13.17, 77.63) (10.16, 79.35)
� = 1 (6.04, 23.67) (3.71, 30.10) (4.69, 26.08) (4.07, 28.97)
� = 2 (2.96, 10.28) (2.02, 15.14) ( 2.31, 11.81) (2.16, 14.02)

D signi�cantly increases ARL1 and ANOS1, indicating
the negative e�ect of the linearly increasing variance
on the performance of the VSS EWMA chart. Table 7
shows ARL1 and ANOS1 based on di�erent values of
D for m = 5. Comparison between Tables 6 and 7
shows that when m = 5, the e�ect of parameter D on
increasing ARL1 and ANOS1 is less than that in the
case of m = 1.

5. Performance validation of the VSS EWMA

In this section, we provide a comparison between
the VSS EWMA, FSR EWMA, adaptive Shewhart
control charts (VSS �X and VSI �X) for a wide
range of mean shifts (� = [0; 0:9]) with and without
measurement errors in terms of the ARL criterion.
For this aim, we considered the following parame-
ters (� = 0:2; n1 = 3; n2 = 7; n0 = 5; B = 1) and an in-
control ARL equal to 500 for all control charts. As a
�rst case, it is assumed that there are no measurement
errors (�2

M = 0) and the results are shown in Figure 1.
As illustrated in this �gure, the VSS EWMA control
chart outperforms the FSR EWMA, VSS, and VSI �X
charts for detecting shifts in the process mean. For
example, when � = 0:2, ARL1 for the VSS EWMA is

equal to 41.28, while this value is equal to 52.48, 224.8,
and 231.8 for the FSR EWMA, VSS �X, and VSI �X
control charts, respectively.

Figure 1. The comparison of the performance of Variable
Sample Size Exponentially Weighted Moving Average
(VSS EWMA) control chart with those of FSR EWMA,
Variable Sample Size (VSS) �X, and Variable Sampling
Interval (VSI) �X control charts with no measurement
errors.
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Table 2. ARL1 and ANOS1 when ARL0 = 500, k = 2:962, � = 0:2, B = 1, �2
M = 1.

n1; n2

W
n1 = 1; n2 = 6

0.672
n1 = 5; n2 = 10

0.672
n1 = 3; n2 = 7

0.672
n1 = 3; n2 = 10

0.672
ANOS0 1753.6 3751.7 2501.8 3254.2

m = 1

� = 0:1 (276.43, 1004.11) (191.16, 1486.8) (240.8, 1241.7) (200.0, 1367.5)
� = 0:5 (16.85, 74.06) (9.51, 81.72) (13.17, 77.63) (10.16, 79.35)
� = 1 (6.04, 23.67) (3.71, 30.10) (4.69, 26.08) (4.07, 28.97)
� = 2 (2.96, 10.28) (2.02, 15.14) ( 2.31, 11.81) (2.16, 14.02)

m = 2

� = 0:1 (238.2, 874.5) (155.6, 1222.7) (202.9, 1055.19) (163.7, 1134.2)
� = 0:5 (13.10, 56.82) (7.58, 64.53) (10.27, 60.07) (8.15, 62.56)
� = 1 (5.12, 19.50) (3.17, 25.40) (3.96, 21.69) (3.498, 24.423)
� = 2 (2.60, 8.84) (1.91, 14.07) (2.10, 10.54) (2.03, 13.09)

m = 3

� = 0:1 (222.5, 820.9) (142.06, 1121.06) (187.7, 980.3) (149.6, 1043.5)
� = 0:5 (11.89, 51.18) (6.95, 58.86) (9.33, 54.33) (7.49, 57.02)
� = 1 (4.80, 18.08) (2.99, 23.76) (3.71, 20.19) (3.29, 22.83)
� = 2 (2.48, 8.35) (1.85, 13.58) (2.043, 10.19) (2.00, 12.86)

m = 4

� = 0:1 (213.9, 791.6) (134.8, 1067.2) (179.6, 939.9) (142.2, 995.37)
� = 0:5 (11.30, 48.38) (6.63, 56.04) (8.86, 51.48) (7.16, 54.25)
� = 1 (4.64, 17.36) (2.89, 22.9) (3.58, 19.42) (3.19, 22.02)
� = 2 (2.42, 8.12) (1.82, 13.26) (2.01, 10.03) (1.99, 12.75)

m = 5

� = 0:1 (208.5, 773.1) (130.4, 1033.9) (174.50, 914.6) (137.6, 965.4)
� = 0:5 (10.94, 46.71) (6.44, 54.3) (8.58, 49.78) (6.96, 52.60)
� = 1 (4.54, 16.93) (2.83, 22.41) (3.5, 18.95) (3.12, 21.52)
� = 2 (2.38, 7.99) (1.80, 13.04) (2.00, 9.93) (1.98, 12.68)

Figure 2 shows the ARL curves for the considered
charts in the presence of measurement errors (�2

M =
1). In fact, a comparison was made between the
performance of the proposed control chart and those of
the FSR EWMA and adaptive Shewhart control charts
(VSS �X and VSI �X), suggested by Hu et al. [28,29].
The curves were plotted by taking into account m = 1
as well as the parameters mentioned in the previous
comparison. According to Figure 2, the proposed
VSS EWMA chart outperforms its counterparts, i.e.,
FSR EWMA, VSS �X, VSI �X. To be speci�c, when
� = 0:2, the ARL1 values for the VSS EWMA and
FSR EWMA as well as VSS �X and VSI �X charts are
equal to 83.49 and 101.9 as well as 318.9 and 322.5,
respectively. In Figure 3, we again considered the
parameters used in Figure 2. However, the number of
measurements increased to m = 5. The results showed
high sensitivity for all control charts since the out-of-
control ARL values obtained for m = 5 were smaller

Figure 2. The comparison of the performance of Variable
Sample Size Exponentially Weighted Moving Average
(VSS EWMA) control chart with those of FSR EWMA,
Variable Sample Size (VSS) �X, and Variable Sampling
Interval (VSI) �X control charts when �2

M = 1 and m = 1.
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Table 3. ARL1 and ANOS1 when ARL0 = 500, k = 2:962, � = 0:2, m = 1, �2
M = 1.

n1; n2

W
n1 = 1; n2 = 6

0.672
n1 = 5; n2 = 10

0.672
n1 = 3; n2 = 7

0.672
n1 = 3; n2 = 10

0.672
ANOS0 1753.6 3751.7 2501.8 3254.2

B = 1

� = 0:1 (276.43, 1004.11) (191.16, 1486.8) (240.8, 1241.7) (200.0, 1367.5)
� = 0:5 (16.85, 74.06) (9.51, 81.72) (13.17, 77.63) (10.16, 79.35)
� = 1 (6.04, 23.67) (3.71, 30.10) (4.69, 26.08) (4.07, 28.97)
� = 2 (2.96, 10.28) (2.02, 15.14) ( 2.31, 11.81) (2.16, 14.02)

B = 2

� = 0:1 (213.9, 791.6) (134.8, 1067.2) (179.6, 939.9) (142.2, 995.37)
� = 0:5 (11.30, 48.38) (6.63, 56.04) (8.86, 51.48) (7.16, 54.25)
� = 1 (4.64, 17.36) (2.89, 22.92) (3.58, 19.42) (3.19, 22.02)
� = 2 (2.42, 8.12) (1.82, 13.26) (2.01, 10.03) (1.99, 12.75)

B = 3

� = 0:1 (198.4, 738.5) (122.3, 972.7) (165.04, 867.7) (129.1, 910.4)
� = 0:5 (10.31, 43.75) (6.10, 51.32) (8.09, 46.76) (6.60, 49.65)
� = 1 (4.36, 16.15) (2.73, 21.49) (3.36, 18.12) (3.01, 20.62)
� = 2 (2.32, 7.76) (1.75, 12.56) (1.97, 9.77) (1.96, 12.53)

B = 4

� = 0:1 (192.6, 718.5) (117.7, 938.2) (159.6, 841.00) (124.3, 879.2)
� = 0:5 (9.97, 42.14) (5.92, 49.67) (7.82, 45.11) (6.41, 48.04)
� = 1 (4.26, 15.72) (2.67, 20.98) (3.28, 17.66) (2.95, 20.12)
� = 2 (2.29, 7.65) (1.72, 12.25) (1.96, 9.68) (1.95, 12.44)

Table 4. ARL1 and ANOS1 when ARL0 = 500, k = 2:962, � = 0:2, B = 1, m = 5.

n1; n2

W
n1 = 1; n2 = 6

0.672
n1 = 5; n2 = 10

0.672
n1 = 3; n2 = 7

0.672
n1 = 3; n2 = 10

0.672
ANOS0 1753.6 3751.7 2501.8 3254.2

�2
M = 0

� = 0:1 (184.8, 691.6) (111.6, 892.6) (152.4, 805.27) (118.07, 838.01)
� = 0:5 (9.54, 40.07) (5.68, 47.55) (7.47, 43.00) (6.16, 45.96)
� = 1 (4.13, 15.16) (2.59, 20.31) (3.18, 17.05) (2.86, 19.47)
� = 2 (2.25, 7.51) (1.67, 11.78) (1.94, 9.56) (1.93, 12.30)

�2
M = 0:3

� = 0:1 (192.3, 717.4) (117.4, 936.4) (159.3, 839.6) (124.1, 877.6)
� = 0:5 ( 9.96, 42.05) (5.91, 49.59) (7.81, 45.03) (6.40, 47.95)
� = 1 (4.26, 15.69) (2.67, 20.95) (3.28, 17.63) (2.94, 20.10)
� = 2 (2.29, 7.64) (1.72, 12.23) (1.96, 9.68) (1.95, 12.44)

�2
M = 0:7

� = 0:1 (201.8, 750.02) (124.9, 992.9) (168.1, 883.3) (131.9, 928.5)
� = 0:5 (10.52, 44.71) (6.21, 52.30) (8.25, 47.74) (6.72, 50.61)
� = 1 (4.42, 16.40) (2.76, 21.79) (3.41, 18.39) (3.05, 20.92)
� = 2 (2.34, 7.83) (1.77, 12.73) (1.98, 9.82) (1.97, 12.58)

�2
M = 1

� = 0:1 (208.5, 773.1) (130.4, 1033.9) (174.50, 914.6) (137.6, 965.4)
� = 0:5 (10.94, 46.71) (6.44, 54.3) (8.58, 49.78) (6.96, 52.60)
� = 1 (4.54, 16.93) (2.83, 22.41) (3.5, 18.95) (3.12, 21.52)
� = 2 (2.38, 7.99) (1.80, 13.04) (2.00, 9.93) (1.98, 12.68)
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Table 5. ARL1 and ANOS1 when ARL0 = 500; k = 2:962, � = 0:2, m = 5, �2
M = 1.

n1; n2

W
n1 = 1; n2 = 6

0.672
n1 = 5; n2 = 10

0.672
n1 = 3; n2 = 7

0.672
n1 = 3; n2 = 10

0.672
ANOS0 1753.6 3751.7 2501.8 3254.2

B = 1

� = 0:1 (208.5, 773.1) (130.4, 1033.9) (174.5, 914.6) (137.6, 965.4)
� = 0:5 (10.94, 46.71) (6.44, 54.34) (8.58, 49.78) (6.96, 52.60)
� = 1 (4.54, 16.93) (2.83, 22.41) (3.50, 18.95) (3.12, 21.52)
� = 2 (2.38, 7.99) (1.8, 13.04) (2.00, 9.93) (1.98, 12.68)

B = 2

� = 0:1 (191.09, 713.2) (116.5, 929.2) (158.2, 833.9) (123.1, 871.1)
� = 0:5 (9.89, 41.72) (5.87, 49.25) (7.75, 44.69) (6.36, 47.62)
� = 1 (4.23, 15.61) (2.65, 20.84) (3.26, 17.54) (2.93, 20.00)
� = 2 (2.28, 7.62) (1.71, 12.16) (1.95, 9.66) (1.950, 12.42)

B = 3

� = 0:1 (187.6, 701.3) (113.8, 909.03) (155.04, 818.14) (120.3, 852.8)
� = 0:5 (9.69, 40.80) (5.76, 48.30) (7.60, 43.75) (6.25, 46.70)
� = 1 (4.181, 15.36) (2.62, 20.55) (3.22, 17.27) (2.89, 19.70)
� = 2 (2.269, 7.56) (1.69, 11.96) (1.949, 9.60) (1.943, 12.36)

B = 4

� = 0:1 (186.4, 697.1) (112.9, 901.9) (153.9, 812.54) (119.3, 846.3)
� = 0:5 (9.62, 40.48) (5.73, 47.97) (7.54, 43.42) (6.21, 46.38)
� = 1 (4.161, 15.27) (2.61, 20.45) (3.20, 17.17) (2.88, 19.60)
� = 2 (2.263, 7.542) (1.68, 11.88) (1.946, 9.58) (1.940, 12.33)

Table 6. ARL1 and ANOS1 when ARL0 = 500, k = 2:962, � = 0:2, m = 1, B = 1.

n1; n2

W
n1 = 1; n2 = 6

0.672
n1 = 5; n2 = 10

0.672
n1 = 3; n2 = 7

0.672
n1 = 3; n2 = 10

0.672
ANOS0 1753.6 3751.7 2501.8 3254.2

D = 1
� = 0:1 (438.8, 1550.4) (393.5, 2976.1) (422.2, 2126.8) (399.8, 2629.4)
� = 0:5 (98.12, 388.2) (52.78, 440.02) (77.02, 424.6) (55.98, 421.5)
� = 1 (24.91, 109.4) (13.51, 117.1) (19.33, 114.04) (14.36, 113.8)
� = 2 (8.23, 33.91) (4.96, 41.13) (6.44, 36.68) (5.40, 39.70)

D = 2
� = 0:1 (465.9, 1641.3) (438.2, 3303.6) (456.1, 2291.1) (442.2, 2895.8)
� = 0:5 (168.6, 636.05) (99.63, 801.3) (137.8, 732.3) (105.4, 755.01)
� = 1 (49.06, 206.8) (25.57, 220.2) (37.81, 217.8) (27.08, 213.4)
� = 2 (13.56, 58.95) (7.82, 66.67) (10.63, 62.24) (8.40, 64.64)

D = 3
� = 0:1 (476.3, 1676.05) (456.4, 3436.7) (469.3, 2355.3) (459.3, 3003.02)
� = 0:5 (219.1, 809.4) (139.2, 1099.7) (184.5, 964.4) (146.7, 1024.5)
� = 1 (73.29, 298.04) (38.49, 326.1) (56.87, 319.7) (40.80, 314.3)
� = 2 (19.30, 85.01) (10.74, 92.63) (15.05, 88.84) (11.45, 90.00)

D = 4
� = 0:1 (481.8, 1694.3) (466.3, 3508.8) (476.3, 2389.5) (468.6, 3060.8)
� = 0:5 (256.5, 936.6) (172.2, 1345.9) (220.9, 1143.6) (180.7, 1243.4)
� = 1 (96.13, 381.0) (51.60, 430.6) (75.38, 416.2) (54.72, 412.7)
� = 2 (25.43, 111.6) (13.77, 1.194) (19.73, 116.3) (14.63, 116.09)
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Table 7. ARL1 and ANOS1 when ARL0 = 500, k = 2:962, � = 0:2, m = 5, B = 1.

n1; n2

W
n1 = 1; n2 = 6

0.672
n1 = 5; n2 = 10

0.672
n1 = 3; n2 = 7

0.672
n1 = 3; n2 = 10

0.672
ANOS0 1753.6 3751.7 2501.8 3254.2

D = 1
� = 0:1 (327.7, 1177.5) (245.1, 1886.3) (294.6, 1504.8) (254.6, 1714.6)
� = 0:5 (25.75, 113.01) (13.93, 120.7) (19.97, 117.75) (14.79, 117.41)
� = 1 (8.15, 33.50) (4.91, 40.70) (6.37, 36.26) (5.34, 39.28)
� = 2 (3.81, 13.79) (2.41, 18.68) (2.93, 15.57) (2.65, 17.85)

D = 2
� = 0:1 (381.6, 1358.7) (310.9, 2370.7) (354.4, 1796.9) (319.8, 2126.8)
� = 0:5 (44.14, 187.6) (23.07, 199.1) (34.02, 197.00) (24.42, 193.2)
� = 1 (12.01, 51.75) (7.01, 59.43) (9.42, 54.90) (7.55, 57.57)
� = 2 (5.02, 19.07) (3.12, 24.91) (3.89, 21.24) (3.43, 23.95)

D = 3
� = 0:1 (409.7, 1453.2) (349.8, 2655.7) (387.3, 1956.7) (357.7, 2365.1)
� = 0:5 (62.84, 259.2) (32.80, 279.9) (48.58, 275.8) (34.75, 270.4)
� = 1 (16.08, 70.58) (9.12, 78.26) (12.58, 74.08) (9.76, 75.97)
� = 2 (6.13, 24.08) (3.76, 30.55) (4.76, 26.51) (4.12, 29.41)

D = 4
� = 0:1 (427.09, 1511.2) (375.3, 2843.3) (408.02, 2057.4) (382.4, 2520.3)
� = 0:5 (80.95, 326.1) (42.79, 360.6) (63.02, 352.02) (45.36, 346.9)
� = 1 (20.39, 89.87) (11.28, 97.48) (15.89, 93.83) (12.02, 94.73)
� = 2 (7.19, 29.00) (4.37, 35.91) (5.61, 31.63) (4.77, 34.62)

Figure 3. The comparison of the performance of Variable
Sample Size Exponentially Weighted Moving Average
(VSS EWMA) control chart with those of FSR EWMA,
Variable Sample Size (VSS) �X, and Variable Sampling
Interval (VSI) �X control charts when �2

M = 1 and m = 5.

than those obtained for m = 1. Moreover, VSS EWMA
control chart still outperformed the FSR EWMA, VSS
�X, and VSI �X control charts in this case, too.

6. An illustrative example

This section illustrates the application of the VSS

EWMA control chart with measurement errors. To
this end, a Costa and Castagliola [25] case is used
corresponding to a production line of yogurt. The
quality characteristic to be monitored is the weight
of each yogurt cup. From a historical perspective, we
know that �0 = 124:9, �2

0 = 0:578, and �2
M = 0:058.

We also assume that � = 0:2, L = 2:962, A = 0,
B = 1, m = 2, n1 = 2, and n2 = 5 for monitoring
purposes based on Eqs. (8){(11); then, we obtained
UCL= 0.987, LCL= �0:987, UWL = 0.224, and LWL
= �0:224. Then, based on the mentioned parameters,
we generated new data, computed the statistics �Xi, Ui,
and Zi until the VSS EWMA control chart would signal
the out-of-control status. The results are reported
in Table 8 and graphically presented in Figure 4.
According to the results, the statistic Zi is located
below LCL in sample 20, signaling an `out-of-control'
situation. Hence, the process needs corrective actions.

7. Conclusion and suggestions for future
research

The main objective of the present study was to evaluate
the e�ect of measurement errors on the Variable Sam-
ple Size Exponentially Weighted Moving Average (VSS
EWMA) control chart using covariate error model.
The performance of the proposed VSS EWMA chart
was evaluated in terms of the Average Run Length
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Table 8. The sample size n and statistics �Xi, Ui, Zi and
process status for simulated data generated based on the
parameters reported by Costa and Castagliola [25].

Time (i) ni �Xi Ui Zi Status

1 2 124.86 {1.12 {0.12 In-control
2 2 124.69 {1.43 {0.38 In-control
3 5 125.49 0.02 {0.30 In-control
4 5 125.11 {1.06 {0.45 In-control
5 5 125.58 0.28 {0.30 In-control
6 5 125.53 0.14 {0.21 In-control
7 2 125.59 0.19 {0.13 In-control
8 2 125.69 0.38 {0.03 In-control
9 2 124.88 {1.08 {0.24 In-control
10 5 125.45 {0.08 {0.21 In-control
11 2 125.54 0.10 {0.14 In-control
12 2 124.79 {1.24 {0.36 In-control
13 5 125.82 0.97 {0.09 In-control
14 2 126.68 2.16 0.35 In-control
15 5 125.64 0.45 0.37 In-control
16 5 125.93 1.28 0.55 In-control
17 5 125.99 1.44 0.73 In-control
18 5 126.15 1.91 0.97 In-control
19 5 125.61 0.37 0.85 In-control
20 5 126.06 1.64 1.01 Out-of-control

Figure 4. Variable Sample Size Exponentially Weighted
Moving Average (VSS EWMA) control chart for a
real-case example.

(ARL) and Average Number of Observations to Signal
(ANOS) performance measures through the Markov
chain approach. The results pointed to the negative
e�ect of the measurement errors on the performance
of the VSS EWMA control chart. In addition, upon
increasing multiple measurements as well as the param-
eter B, the negative e�ect of the measurement errors

on the performance of the VSS EWMA control chart
would be attenuated. Moreover, the performance of
the proposed VSS EWMA control chart was compared
with those of FSR EWMA, Variable Sample Size (VSS)
�X, and Variable Sampling Interval (VSI) �X control

charts in terms of ARL criterion in the presence of
measurement errors, the results of which indicated that
the VSS EWMA chart outperformed its counterparts
in detecting shifts in the process mean in the presence
of measurement errors.

Statistical and economic-statistical designing
of other adaptive procedures such as VSI, VSSI,
and Variable Parameters (VP) for the Exponentially
Weighted Moving Average (EWMA) control chart
was suggested for future study. In this study, the
application of multiple measurements, which is the
most common solution for reducing the e�ect of mea-
surement errors, was taken into account. Evaluating
other methods for reducing the e�ect of measurement
errors on the performance the VSS EWMA control
chart as well as for other adaptive EWMA control
charts can be considered for future studies (see
Ghashghaei et al. [34] and Amiri et al. [35]).
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Appendix A

The proof of Zi distribution
Based on Eqs. (4) and (5), we have:

�Xi � N(A+B (�0 + ��0) ;
1
n
�
B2�2

0 + �2
M
�
):

Let Ui be the standardized version of the statistic �Xi:

Ui =
�Xi � �0 �Xi

� �Xi
: (A.1)

Since �Xi follows the normal distribution with the mean
of �0 �Xi

and variance of �2
�Xi

, we have Ui � N (0; 1).
Here, Ui is used in the EWMA statistic, as shown in
the following:

Zi = �Ui + (1� �)Zi�1: (A.2)

The expansion of is provided as shown in Eqs. (A.3){
(A.5):

Zi = �Ui + (1� �)
�
�Ui�1 + (1� �)Zi�2

�
; (A.3)

where:

Zi�2 = �Ui�2 + (1� �)Zi�3;

and in the same way:

Zi = �Ui + (1� �)
�
�Ui�1 + (1� �)

(�Ui�2 + (1� �)Zi�3)
�
: (A.4)

Finally, Zi is expanded as presented below:
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Zi =
i�1X
e=0

� (1� �)eUi�e + (1� �)i Z0; (A.5)

where Z0 = �Ui . In addition, the expected value and
variance of Zi are obtained as follows:

E (Zi) = E

 
i�1X
e=0

� (1� �)eUi�e + (1� �)i �Ui

!
= �Ui

�
1� (1� �)i

�
+ �Ui (1� �)i

= �Ui: (A.6)

Var (Zi) = Var

 
i�1X
e=0

� (1� �)eUi�e + (1� �)i �Ui

!

= �2
Ui

i�1X
e=0

�2 (1� �)2e + 0

= �2
Ui

�2
�

1� (1� �)2i
�

1� (1� �)2

= �2
Ui

�
�

1� (1� �)2i
�

2� � : (A.7)

Thus:

Zi � N
0@�Ui; �2

Ui

�
�

1� (1� �)2i
�

2� �
1A ;

and for asymptotic variance, we have �2
Ui

�
2�� . Since

Ui � N (0; 1), Zi � N
�

0; �
2��

�
.

Biographies

Zeynab Hassani is a graduated MSc in Industrial
Engineering at Shahed University, Iran. She received
her BSc degree from Torbat Heydarieh University,
Iran. Her research interests include statistical process
monitoring, measurement errors, and adaptive control
charts. In addition, she is interested in the location
emergency equipment and stochastic problems.

Amirhossein Amiri is a Full Professor at Shahed
University, Iran. He holds his BSc, MSc, and PhD
degrees in Industrial Engineering from Khajeh Nasir
University of Technology, Iran University of Science
and Technology, and Tarbiat Modares University, Iran,
respectively. He is now the Director of Postgraduate
Education at Shahed University and a member of the
Iranian Statistical Association. His research interests
include statistical process monitoring, pro�le monitor-
ing, and change point estimation. He has published
many papers in the area of statistical process control in
high-quality international journals such as Quality and
Reliability Engineering International, Communications
in Statistics, Computers & Industrial Engineering,
Journal of Statistical Computation and Simulation,
Soft Computing, and so on. He has also published
a book with John Wiley and Sons in 2011 entitled
\Statistical Analysis of Pro�le Monitoring".

Philippe Castagliola graduated (PhD 1991) from
the Universit�e de Technologie de Compi�egne, France
(UTC). He is currently a Professor at the Universit�e
de Nantes, Nantes, France and also a member of the
Laboratoire des Sciences du Num �erique de Nantes
(LS2N), UMR CNRS 6004. He is an Associate Editor
of the Journal of Quality Technology, Communications
in Statistics (LSTA, LSSP, UCAS), Quality Technology
and Quantitative Management, International Journal
of Reliability, and Quality and Safety Engineering.
His research activities include developments of new
statistical process monitoring techniques.




