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Abstract. A thin �lm carbon monoxide (CO) gas sensor based on PEDOT:PSS/Fe(salen)
was developed in this study using the spin coating technique on several glass pieces with
interdigitated Au electrodes. The change in the electrical resistance of sensors with di�erent
dopant contents was measured in di�erent ranges of CO gas concentrations and tempera-
tures. It was found that Fe(salen) as a dopant element could signi�cantly improve the per-
formance of PEDOT:PSS-based sensors. Least Square Support Vector Machine (LSSVM)
method was applied to predict the response characteristics of the �lms in di�erent testing
conditions. Modeling results showed satisfactory agreement with experimental �ndings.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Many studies have investigated the process of monitor-
ing carbon monoxide (CO), due to its toxicity, odorless,
and colorless characteristics, and di�erent gas-sensitive
materials have been developed [1,2]. In this regard,
the performance of polymer-based gas sensors has
received much attention because of their low cost,
ease of manufacturing, and ultimate responsibility [3{
7]. PEDOT:PSS polymer (poly (3,4-ethylenedioxy)
thiophene-poly (styrenesulfonate)) is one of the promis-
ing candidates for sensing polar species such as CO gas
[6{8]. The performance of PEDOT:PSS-based sensors
has been improved by incorporating various dopants.
Javadpour et al. [7] added Fe, Al, and morpholine
to PEDOT:PSS for enhancing the sensitivity of the
sensors to the CO gas. Memarzadeh et al. [3] devel-
oped the PEDOT:PSS-based gas sensor with Co(salen)
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dopant for CO gas detection at room temperature.
They found that the highest sensitivity was achieved
at 1 wt.% of Co(salen) dopant. Arabloo et al. [9]
investigated the e�ects of the presence of Fe(salen)
dopant in the PEDOT:PSS-based sensor on CO gas
monitoring. The developed PEDOT:PSS/Fe(salen)
sensor exhibited high selectivity characteristics with
good stability.

In spite of the vast experimental investigations
performed on conductive polymers, there have been a
few attempts at modeling their gas sensing behavior.
Gardner et al. [10,11] developed a modeling approach
based on di�usion and adsorption equations for pre-
dicting the conductance of polymer gas sensors. In
their model, the governing equations are nonlinear
di�erential equations with no exact analytical solution
and, thus, must be solved by numerical techniques.
In addition, approximate analytical expressions have
been found for six limiting cases, including di�usion-
controlled, reaction-controlled, and four intermediate
processes. Gardner's model is complex and features
a number of constant parameters that should be de-
termined by �tting with the experimental data for
each testing condition. Hwang et al. [12] presented a
more simple model based on Langmuir isotherm for
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polymer-based gas sensors. However, their model did
not consider the dynamic response of the sensors and
only assumed the equilibrium state.

The Arti�cial Neural Network (ANN) is one of the
commonly used methods for solving complex dynamic
problems. This model can be simply implemented and
has shorter computation time than other numerical
methods [13,14]. A potential alternative to the tra-
ditional ANN model is the Support Vector Machine
(SVM) model. SVM relies on the theory of statistical
learning and convex optimization to make accurate
predictions. The main advantage of the SVM over
ANN is that this model often produces a unique global
solution [15]. However, SVM uses computationally
hard quadratic programming. Alternatively, Suykens
et al. [16,17] proposed the Least Square Support Vector
Machine (LSSVM) based approach, which solved a
set of linear equations and had less computational
complexity than standard SVM. This modeling tech-
nique was successfully applied in di�erent �elds of
engineering. For example, Fang et al. [18] proposed
a model based on LSSVM to predict electrical and
mechanical properties of the Al-Zn-Mg-Cu alloy during
thermal aging at various times and temperatures.
Huang and Chen [19] applied a technique based on
a fuzzy system for modeling the arc welding process.
In that study, the basic functions of the fuzzy system
were chosen using the SVM method. Fayazi et al. [20]
applied the LSSVM modeling for the estimation of
the natural gas viscosities at di�erent temperatures
and pressures. However, to the best knowledge of
the authors, this method has not been applied for the
response prediction of sensors.

In the present study, PEDOT:PSS-based gas sen-
sors with Fe(salen) dopants were fabricated by imple-
menting the spin-coating process. The response of the
sensors containing di�erent concentrations of Fe(salen)
to CO was studied by measuring the relative electrical
resistance changes. The performance of the sensors
was evaluated at di�erent temperatures at various
concentrations of CO gas. The LSSVM method was
used for estimating sensor response curves in di�erent
testing conditions, and the results were compared to
experimental data.

2. Materials and experimental procedure

A PEDOT:PSS aqueous solution containing
Fe(II)(salen) and Fe(III)(salen) with di�erent contents
(0-1 wt.%) was prepared at room temperature (the
details of the experimental procedure were reported
in [9,21]). Then, the doped solution of PEDOT:PSS
was coated on a glass substrate with Au electrodes
using the spin coating process. The electrodes were
interdigitated with 10.0 �m of gap width between
them (Figure 1). The developed thin �lm sensors,

Figure 1. Glass substrate with Au electrodes used for
coating.

with a thickness of 30 to 44 nm, were put in a test
chamber and the CO gas owed at 2.0-25.0 mL/sec.
The variations of resistance of sensors were examined
and recorded at di�erent temperatures of 25-150�C.

3. Modeling approach

SVM is a supervised machine learning technique intro-
duced in 1995 [22]. SVM was successfully applied to
study classi�cation and regression problems [16,17,23].
A major disadvantage of the original SVM is its high
computational cost because of constrained optimiza-
tion programming [16]. A modi�ed version of the SVM
known as LSSVM is then proposed to facilitate the
solution of the standard SVM. As briey discussed in
the following section, a set of linear equations is consid-
ered in the LSSVM instead of quadratic programming
problems, reducing the complexity of the optimization
process [17].

Consider a dataset containing the N points
f(x1; y1); (x2; y2); :::; (xN ; yN )g, where xi is the n-
dimensional input vector and yi is a scalar output
value. The function:

y(xi) = wT'(xi) + b; (1)

is applied to predict the output data from the input
values. Here, w is a weight vector, '(xi) is a nonlinear
function used for regression, and b is a bias term. In
the LSSVM model, the following optimization problem
is considered [16]:

minJ =
1
2
wTw +

1
2


NX
i=1

e2
i ; (2)

subject to:

y(xi) = wT'(xi) + b+ ei i = 1; :::; N; (3)

where  is a regularization parameter, and ei is the
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error of the ith data point. Through the Lagrange
multiplier ai, the above optimization problem is refor-
mulated as follows [16]:

minL =
1
2
wTw +

1
2


NX
i=1

fe2
i + ai[yi � wT'(xi)

�b� ei]g: (4)

The optimum condition is obtained by di�erentiating
the above equation from variables (b; w; ei; ai), result-
ing in the following:

NX
j=1

aj = 0; (5a)

y(xi) =
NX
j=1

ajk(xi; xj) + b+
ai

; i = 1; :::; N; (5b)

where k(xi; xj) is a kernel matrix. The radial basis
function is commonly used as a kernel function in the
LSSVM, which is de�ned as follows [24,25]:

k(xi; xj) = exp(�kxi � xjk2
.
�2); (6)

where � is the Gaussian function width.
Eqs. (5a) and (5b) represent (N + 1) equations

with (N + 1) unknowns (b; a1; a2; :::; aN ). By solving
these equations, the LSSVM parameters can be deter-
mined.

4. Results and discussion

4.1. Experimental results
The experimentally determined resistivity (R) of the
sensors is converted to the response of the sensor (S)
through the following relation:

%S =
Rgas �Rair

Rair
� 100; (7)

where Rgas is the measured thin �lm resistance in
gas, and Rair is the thin �lm resistance in the air.
The response of PEDOT:PSS/Fe(salen) gas sensors for
di�erent doping contents that are determined exper-
imentally is shown in Figure 2. From Figure 2(a),
by increasing the Fe(II)(salen) content from 0 to 0.02
wt.%, the response of sensors increased. However, by
increasing the dopant content to a greater degree, the
response of the sensor to CO gas decreased, which
could be associated with the interaction between the
Fe(II)(salen) particles. Therefore, the maximum re-
sponse was obtained at the dopant content of 0.02 wt.%
Fe(II)(salen). From Figure 2(b), a similar trend can be
observed for Fe(III)(salen) dopant. However, in this
case, the maximum response occurred at the dopant
content of 0.1 wt.%. According to the previous studies
on the gas response of conductive polymers [5,9,26],
for a given gas concentration and dopants type, there

Figure 2. The e�ect of doping content on the measured
sensor response: (a) Fe(II)(salen) and (b) Fe(III)(salen).

is an optimum concentration of the dopants at which
maximum response is observed. This behavior may
be related to the number of available interaction sites.
In fact, at higher concentrations of the dopants, the
excess material produced a shielding e�ect and a weak
response. Figure 3 shows the measured response of
the sensor to the optimum content of Fe(II)(salen)
and Fe(III)(salen) dopants along with the response of
pure PEDOT:PSS sensor. From this �gure, the PE-
DOT:PSS sensor containing 0.02 wt.% of Fe(II)(salen)
shows the highest response and can be a good choice
for the CO gas sensors. Figures 4 and 5 show the
e�ect of CO gas ow rate on the measured response
of PEDOT:PSS with 0.02 wt.% Fe(II)(salen) and 0.1
wt.% Fe(III)(salen), respectively. According to Figures
4 and 5, by increasing the CO gas ow rate, the
responsibility of sensors increased and the time to reach
the maximum responsibility decreased. In fact, at
a higher ow rate, the gas concentration in the test
chamber increases, which in turn accelerates the gas
absorption. The e�ect of environmental temperature
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Figure 3. Comparison between the measured response of
sensors containing optimum values of Fe(II)(salen) and
Fe(III)(salen) dopants and that of pure PEDOT:PSS.

Figure 4. The e�ect of CO gas ow rate on the measured
response of PEDOT:PSS with 0.02 wt.% Fe(II)(salen).

Figure 5. The e�ect of CO gas ow rate on the measured
response of PEDOT:PSS with 0.1 wt.% Fe(III)(salen).

Figure 6. The measured response of sensors at di�erent
testing temperatures and for di�erent doping types: (a)
Fe(II)(salen) and (b) Fe(III)(salen).

on the response of the measured sensors is shown in
Figure 6. According to the results depicted in Figure 6,
the response decreases as temperature increases. These
results are also in agreement with those obtained by Tai
et al. [27]. The gas-sensing mechanism in conductive
polymers involves two steps: the adsorption of gas
molecules in sensing material and the reaction between
them [28]. Temperature can inuence both the ab-
sorption and reaction steps. At low temperatures, ad-
sorption predominates desorption. However, increasing
temperature will reduce the number of gas molecules
bound to the �lm surface and shift the equilibrium to
desorption [27{29]. Moreover, at higher temperatures,
the reaction step is accelerated [28]. Here, the sensor
response reduces as temperature increases, which shows
that the adsorption/desorption is the predominant step
in the sensing mechanism.
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4.2. LSSVM modeling results of gas response
prediction

The experimental data presented in Figures 2 to 6
were used to construct a general and precise model
to estimate the sensor response in di�erent testing
conditions at di�erent levels of dopants. In doing
so, temperature, gas ow rate, dopant content, and
exposure time were taken as the input parameters, and
the absolute values of the sensor response were assigned
as the target (output) variable. During the model
implementation, the experimental data were randomly
divided into two sets of training and testing data. For
training the model, 65% of data points were used and
the remaining data were applied to assess the proposed
model capability to predict the unseen data. MATLAB
software was utilized for programming. The values of
model parameters, i.e.,  and �, signi�cantly a�ect the
performance of the model. In the present study, the
optimum values of parameters were achieved by apply-
ing the Coupled Simulated Annealing (CSA) algorithm
[30]. The predicted optimum values of  and � were
found to be 5:25 � 1010 and 0.3257 for Fe(II)(salen)
and 1:16 � 1010 and 0.9896 for Fe(III)(salen) dopants,
respectively. In order to evaluate the precision of
the developed model, several statistical parameters
including coe�cient of determination (R2), Root Mean
Square Error (RMSE), and Average Absolute Relative
Deviation (AARD) are considered as follows:

R2 = 1�
NP
i=1

(pi � ti)2

NP
i=1

(pi � �t)2
; (8a)

RMSE =

vuuut NP
i=1

(pi � ti)2

N
; (8b)

%AARD =
100
N

NX
i=1

���� (pi � ti)ti

����; (8c)

where pi is a predicted value, and ti is the correspond-
ing experimental value. �t is the average value of the
experimental data. The values of statistical parameters
for the constructed models are reported in Table 1.

Figure 7. Predicted CSA-LSSVM model against
experimental data for Fe(II)(salen): (a) Training data and
(b) testing data.

According to the results summarized in Table 1, the
high R2 values and low values of RMSE and AARD
show that the predicted error is quite low and the
model is reliable and accurate for the prediction of gas
sensor responses. Figures 7 and 8 show plots of the
developed model predictions against the experimental
(target) data. As is shown in these �gures, the data
points lie on a line with a unit slope, showing that
the proposed modeling approach is robust and precise.

Table 1. The values of statistical parameters of the developed Least Square Support Vector Machine (LSSVM) model for
gas response prediction.

Fe(II)(salen) Fe(III)(salen)
Statistical parameters Training data Testing data Training data Testing data

R2 0.9994 0.9987 0.9982 0.9984
% AARD 1.8252 6.2411 3.2404 5.6233

RMSE 0.3302 0.4522 0.4406 0.4201
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Figure 8. Predicted CSA-LSSVM model against
experimental data for Fe(III)(salen): (a) Training data
and (b) testing data.

These results imply that the gas response predictions
by LSSVM models are in very close agreement with
experimental data for all the training and test sub-
datasets.

5. Conclusion

In the current research, the CO gas response of the
PEDOT:PSS-based gas sensor with di�erent contents
of Fe(salen) dopants was studied at di�erent temper-
atures and gas ow rates. The main results are given
below:

� The presence of Fe(salen) dopants has a great
impact on the gas response of PEDOT:PSS-based
thin �lms. The maximum response is obtained at
the dopant content of 0.02 wt.% and 0.1 wt.% for
Fe(II)(salen) and Fe(III)(salen), respectively;

� The PEDOT:PSS gas sensor with the optimum con-

tent of Fe(II)(salen) (0.02 wt.%) shows the highest
gas response in comparison with pure PEDOT:PSS
and the sensor with Fe(III)(salen) dopants. Hence,
the PEDOT:PSS-based sensor containing 0.02 wt.%
of Fe(II)(salen) can be a good choice for the CO gas
sensor;

� The response of the developed gas sensors to CO
gas increases by increasing the gas ow rate, while
it decreases with an increase in the ambient temper-
ature;

� A modeling approach based on the Least Square
Support Vector Machine (LSSVM) framework was
proposed for the prediction of the response of the
gas sensors at di�erent dopant contents, ow rates,
and testing temperatures. All in all, the model
reproduced the experimental data with excellent
accuracy.
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