Modeling the CO gas response of PEDOT:PSS/Fe(salen) thin film for a gas sensor

Document Type : Article


Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, P.O. Box: 71348-51154, Iran



Abstract. A thin film carbon monoxide (CO) gas sensor based on PEDOT:PSS/Fe (salen) has been developed using the spin coating technique on several glass pieces with interdigitated Au electrodes. The change in electrical resistance of the sensors with various content of dopants was measured in different CO gas concentrations and temperatures. It is found that Fe (salen) as a dopant can significantly improve the performance of PEDOT:PSS based gas sensors. Least square support vector regression (LSSVM) method was applied to predict the gas response characteristics of the films for different testing conditions. Modeling results show a satisfactory agreement with experimental findings.


1. Jan__k, M., Ublova, M., Kucerova, S., et al. Carbon monoxide-related fatalities: A 60-year single institution experience", J. Forensic Leg. Med., 48, pp. 23{29 (2017). 2. Roderique, J.D., Josef, C.S., Feldman, M.J., et al. A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement", Toxicology, 334(6), pp. 45{58 (2015). 3. Memarzadeh, R., Noh, H.B., Javadpour, S., et al. Carbon monoxide sensor based on a B2HDDT-doped PEDOT: PSS layer", Bull. Korean Chem. Soc., 34(8), pp. 2291{2296 (2013). 4. Aba, L., Sudiana, I.N., and Hastuti, V. Sensitivity improvement of conducting polymer based sensor to vehicle emission gas by using imprinting method", J. Adv. Mat. Res., 1123, pp. 360{363 (2015). 5. Memarzadeh, R., Panahi, F., Javadpour, S., et al. The interaction of CO to the Co (salen) complex in to PEDOT: PSS _lm and sensor application", Bull. Korean Chem. Soc., 33(4), pp. 1297{1302 (2012). 6. Park, S., Park, C., and Yoon, H. Chemo-electrical gas sensors based on conducting polymer hybrids", Polymers, 9, pp. 155{179 (2017). 7. Javadpour, S., Gharavi, A., Feizpour, A., et al. Morpholine doped poly (3,4-ethylenedioxy) thiophene-poly (styrenesulfonate) as a low temperature and quick carbon monoxide sensor", Sens. Actuators, B, 142(1), pp. 152{158 (2009). 8. Groenendaal, L., Jonas, F., Freitag, D., et al. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future", Adv. Mater., 12(7), pp. 481{494 (2000). 9. Arabloo, F., Javadpour, S., Memarzadeh, R., et al. The interaction of carbon monoxide to Fe (III)(salen)- PEDOT: PSS composite as a gas sensor", Synth. Met., 209, pp. 192{199 (2015). N. Anjabin et al./Scientia Iranica, Transactions C: Chemistry and ... 27 (2020) 1227{1233 1233 10. Gardner, J., Bartlett, P., and Pratt, K. Modelling of gas-sensitive conducting polymer devices, IEE proceedings-circuits", IEEP-Circ Dev. Syst., 142(5), pp. 321{333 (1995). 11. Gardner, J.W. and Bartlett, P. Design of conducting polymer gas sensors: modelling and experiment", Synth. Met., 57(1), pp. 3665{3670 (1993). 12. Hwang, B.J., Yang, J.Y., and Lin, C.W. A microscopic gas-sensing model for ethanol sensors based on conductive polymer composites from polypyrrole and poly (ethylene oxide)", J. Electrochem. Soc., 146(3), pp. 1231{1236 (1999). 13. Lamamra, K. and Rechem, D. Arti_cial neural network modelling of a gas sensor for lique_ed petroleum gas detection, modelling, identi_cation and control (ICMIC)", Proceeding of 8th IEEE international Conference on Modelling, Identi_cation and Control, pp. 163{168 (2016). 14. Timnaka, N., Jahangiriana, A., and Seyyedsalehi, S.A. An optimum neural network for evolutionary aerodynamic shape design", Sci. Iran., B, 24(5), pp. 2490{2500 (2017). 15. Burges, C.J.C. A tutorial on support vector machines for pattern recognition", Data Min. Knowl. Discov., 2(2), pp. 121{167 (1998). 16. Suykens, J.A., Van Gestel, T., and De Brabanter, J., Least Squares Support Vector Machines, Singapore: World Scienti_c (2002). 17. Suykens, J.A. and Vandewalle, J. Least squares support vector machine classi_ers", Neural Process. Lett., 9(3), pp. 293{300 (1999). 18. Fang, S., Wang, M., and Song, M. An approach for the aging process optimization of Al-Zn-Mg-Cu series alloys", Mater. Des., 30(7), pp. 2460{2467 (2009). 19. Huang, X. and Chen, S. SVM-based fuzzy modeling for the arc welding process", Mater. Sci. Eng. A, 427(1{2), pp. 181{187 (2006). 20. Fayazi, A., Arabloo, M., Shokrollahi, A., et al. Stateof- the-art least square support vector machine application for accurate determination of natural gas viscosity", Ind. Eng. Chem. Res., 53(2), pp. 945{958 (2013). 21. Arabloo, F., Memarzadeh, R., Panahi, F., et al. Low temperature CO sensor based on PEDOT: PSS/Fe(II)(salen) composite thin _lm", New Process in Mater. Eng., 12(1), pp. 10{17 (2018). In Persian. 22. Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York (1995). 23. Amezquita-Sancheza, J.P. and Adeli, H. Feature extraction and classi_cation techniques for health monitoring of structures", Sci. Iran., A, 22(6), pp. 1931{ 1940 (2015). 24. Sun, F., Li, X., Liao, H., et al. A Bayesian leastsquares support vector machine method for predicting the remaining useful life of a microwave component", Adv. Mech. Eng., 9(1), pp. 1{9 (2017). 25. Arabloo, M., Ziaee, H., Lee, M., et al. Prediction of the properties of brines using least squares support vector machine (LS-SVM) computational strategy", J. Taiwan Inst. Chem. E., 50, pp. 123{130 (2015). 26. Santhosh, P., Chavan, N.N., and Radhakrishnan, S. Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor", Synth. Met., 159, pp. 415{418 (2009). 27. Tai, H., Jiang, Y., Xie, G., et al. Inuence of polymerization temperature on NH3 response of PANI/TiO2 thin _lm gas sensor", Sens. Actuators B, 129(1), pp. 319{326 (2008). 28. Bai, H. and Shi, G. Gas sensors based on conducting polymers", Sensors, 7(3), pp. 267{307 (2007). 29. Reemts, J., Parisi, J., and Schlettwein, D. Electrochemical growth of gas-sensitive polyaniline thin _lms across an insulating gap", Thin solid Films, 446(1{2), pp. 320{325 (2004). 30. Xavier-de-Souza, S., Suykens, J.A., Vandewalle, J., et al. Coupled simulated annealing", IEEE Trans. Syst. Man Cybern., B, 40(2), pp. 320{335 (2010).