Gas separation properties of polyacrylonitrilepolysulfone-iron oxide nanocomposite membrane

Document Type : Research Note


Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, 73711-13119, Iran



Gas separation process by the membrane is performed without changing the phase. For this reason, the costs are decreased. This study examined gas separation in Polyacrylonitrile (PAN) and Polysulfone (PSF) blend membranes. The ratio of polymers to mixed matrix membranes was considered 100% PAN, 100% PSF, (95% PAN -5% PSF), (90% PAN-10% PSF), (85% PAN-15% PSF). The best combi-nation of mixture was determined. Then, iron oxide nanoparticles with different weight percentages were placed on the membrane. The impact of adding different values of iron oxide nanoparticles in membrane was examined on separation of gas. Adding iron oxide nanoparticles to the membrane by 10% weight and measuring the value of permeability, it was observed that the permeability of this membrane for carbon dioxide, oxygen, nitrogen, and methane gases increased by 117%, 137%, 95%, and 53% compared to membranes without iron oxide nanoparticles. Examining the findings, it was re-vealed that the optimal value of adding iron oxide to improve the membrane properties was 10% by weight.


1. Shi, H., Huang, M., Huang, Y., Cui, M., and Idem, R. CO2 absorption e_ciency of various MEA-DEA bled with aid of CaCO3 and MgCO3 batch and semibatch processes", Sep. Purif. Technol., 220, pp. 102{ 113 (2019). 2. Wang, J., Deng, S., Sun, T., Xu, Y., Li, K., and Zhao, J. Thermodynamic and cycle model for MEA-based chemical CO2 absorption", Energy Procedia, 158, pp. 4941{4946 (2019). 3. Yin, Y., Fu, T., Zhu, Ch., Guo, R., Ma, Y., and Li, H. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solution in a microchannel", Sep. Purif. Tech-nol., 210, pp. 541{552 (2019). 4. Akinola, T.E., Oko, E., and Wang, M. Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation", Fuel, 236, pp. 135{146 (2019). 5. Gao, H., Bai, L., Han, J., Yang B., Zhang, S., and Zhang, X. Functionalized ionic liquid membrane for CO2 separation", Chem. Commun., 54, pp. 12671{ 12685 (2018). 6. Zhao, Y., Gani, R., Afzal, R.M., Zhang, X., and Zhang, S. Ionic liquids for absorption and separation of gases: An extensive database and a systematic screening method", AIChE J., 63, pp. 1353{1367 (2017). 7. Zhao, Y., Pan, M., Kang, X., Tu, W., and Gao, H. Gas separation by ionic liquids: A theorethical study", Chem. Eng. Sci., 189, pp. 43{55 (2018). 8. Sasikumar, B., Arthanareeswaran, G., and Ismail, A. F. Recent progress in ionic liquid membrane for gas separation", J. Mol. Liq., 266, pp. 330{341 (2018). 9. Ilyas, A., Muhammad, N. Gilani, M.A., Vankelecom, I.F.J., and Khan, A.L. E_ect of zeolite surface modi_cation with ionic liquid [APTMS][AC] on gas separation performance of mixed matrix membranes", Sep. Purif. Technol., 205, pp. 176{183 (2018). 10. Ahmadizadeghan, H., Tahriri, M., Tahriri, M., Padam, M., and Ranjbar, M. Polyimide-TiO2 nano composites and their corresponding membranes: Synthesis, characterization, and gas separation applications", Solid State Sci., 89, pp. 25{36 (2019). 11. Wong, K.C., Goh, P.S., Taniguchi, T., Ismail, A.F., and Zahri, K. The role of geometrically di_erent carbon-based _llers on the formation and gas separation performance of nanocomposite membrane", Carbon, 149, pp. 33{44 (2019). 12. Nigiz, F.U. and Hilmioglu, N.D. Enhanced hydrogen puri_cation by graphene-poly (dimethyl Siloxane) membrane", Int. J. Hydrogen Energy, 45, pp. 3549{ 3557 (2020). 13. Torstensen, J.Q., Helberg, R.M.L., Deng, L., Gregersen, Q.W., and Syveud, K. PVA/nanocellulose nanocomposite membranes for CO2 separation from ue gas", Int. J. Greehouse Gas Control, 81, pp. 93{ 102 (2019). 14. Takht Ravanchi, M., Kaghazchi, T., and Kargari, A. Application of membrane separation processes in petrochemical industry: a review", Desalination J., 235(1), pp. 199{244 (2009). 15. Xiang, L., Pan, Y., Zeng, G., Jiang, J., Chen, J., and Wang, C. Preparation of poly(ether-block-amid) /attapolgite mixed membranes for CO2/N2 separation", J. Membrane Sci., 500, pp. 66{75 (2016). 16. Pandey, P. and Chauhan, R.S. Membranes for gas separation", Prog. Polym. Sci., 26, pp. 853{893 (2001). 17. Bastani, D., Esmeaili, N., and Asadollahi, M. Polymeric mixed matrix membranes containing zeolites as a _ller for gas separation applications: A review", J. Ind. Eng. Chem., 19, pp. 375{393 (2013). 18. Koros., W.J. Gas separation membranes: needs for combined material science and processing approaches", Macromol. Symp., 188, pp. 13{22 (2002). 19. Cong, H., Radosz, M., Towler, B.F., and Shen, Y. Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, pp. 281{291 (2007). 20. Safak Boroglu, M. and Burcu Yumru, A. Gas separation performance of 6FDA-DAM-2IF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation", Sep. Purif. Tech-nol., 173, pp. 269{279 (2017). 21. Ozturk, B. and Demirciyeva, F. Comparison of biogas upgrading performance of di_erent mixed matrix membranes", Chem. Eng. J., 222, pp. 201{217 (2013). 22. Tseng, H.H., Chuang, H.W., Zhuang, G.L., Lai, W.H., and Wey, M.Y. Structure-controlled mesoporouse SBA-15-derived mixed matrix membranes for H2 puri _cation and CO2 capture", Int. J. Hydrogen Energ, 42(16), pp. 11379{11391 (2017). 23. Ra_q, S., Man, Z., Maulud, A., Muhammad, N., and Maitra, S. Separation of CO2 from CH4 using polysulfone. polyimide silica nanocomposite membranes", Sep. Purif. Technol., 90(27), pp. 162{172 (2012). 24. Dorosti, F., Omidkhah, M.R., Pedram, M.Z., and Moghadam, F. Fabrication and characterization of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation", Chem. Eng. J., 171, pp. 1469{ 1476 (2011). S. Homayoon and N. Esfandiari/Scientia Iranica, Transactions C: Chemistry and ... 27 (2020) 1264{1274 1273 25. Ahn, J., Chung, W.J., Pinnau, I., and Guiver, M.D. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membrane Sci., 314, pp. 123{133 (2008). 26. Sadeghi, M., Khanbabaei, G., Dehaghani, A.H.S., Sadeghi, M., Aravand, M., Akbarzade, A.M., and Khatti, S. Gas permeation properties of ethylene vinyl acetate-silica nanocomposite membranes", J. Membrane Sci., 322, pp. 423{428 (2008). 27. Chieh-Fang, L., Jung-Fen, W., Hsieh-Yu, L., Wie- Sung, H., Chao-Ming, S., Chien-Chieh, H., Ying- Ling, L., and Shinjiang, L. Novel poly vinyl alcohol nano composites containing carbon nano-tubes with Fe3O4 pendants for alkaline fuel cell applications", J. Membrane Sci., 444, pp. 41{49 (2013). 28. Madaeni, S.S. and Akbarzade Arbatan, T. Preparation and characterization of micro_ltration membrane embedded with silver nano-particles", Iran. J. Chem. Eng., 29, pp. 105{111 (2010). 29. Kim, J. and Bruggen, B.V. The use of nano particles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut., 158, pp. 2335{2349 (2010). 30. Moghadam, F., Omidkhah, M.R., Vasheghani Farahani, E., Pedram, M.Z., and Dorosti, F. The e_ect of TiO2 nanoparticles on gas transport properties of matrimid 5218-based mixed matrix membranes", Sep. Purif. Technol., 77, pp. 128{136 (2011). 31. Semsarzadeh, M.A. and Ghalei, B. Preparation, characterization and gas permeation properties of polyurethane- silica/polyvinyl alcohol mixed matrix membranes", J. Membrane Sci., 432, pp. 115{125 (2013). 32. Ahmad, J. and Britt Hagg, M. Polyvinyl acetate/ titanium dioxide nanocoposite membranes for gas separation", J. Membrane Sci., 445, pp. 200{210 (2013). 33. Momeni, S. and Pakizeh, M. Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane", Braz. J. Chem. Eng., 30, pp. 589{597 (2013). 34. Zulhariun, A.K. and Ismail, A.F. The role of layered silicate loadings and their dispersion states on the gas separation performance of mixed matrix membrane", J. Membrane Sci., 468, pp. 20{30 (2014). 35. Sun, H., Wang, T., Xu, Y., Gao, W., Li, P., and Niu, Q.J. Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membrane by in-situ polymerization for CO2 separation", Sep. Purif. Technol., 77, pp. 327{336 (2017). 36. Sadeghi, M., Taheri Afarani, H., and Tarashi, Z. Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes", Korean J. Chem. Eng., 32 (1), pp. 97{103 (2015). 37. Ismail, A.F. and Lai, P.Y. Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology", Sep. Sci. Technol., 40, pp. 191{207 (2004). 38. Semsarzadeh, M.A. and Ghalei, B. Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxidepolypropylene oxide Block Copolymer", J. Membrane Sci., 401-402, pp. 97{108 (2012). 39. Maxwell, C., Treatise on Electricity and Magnetism, Oxford University, London (1873). 40. Sheikh, M., Asghari, M., and Afshari, M. E_ect of nano zinc oxide on gas permeation through mixed matrix poly (amide-6-b-ethylene oxide) based membranes", Int. J. Nano Dimens., 8(1), pp. 31{39 (2017). 41. Xue, L., Borodin, O., and Smith, D. Modeling of enhanced penetrant di_usion in nanoparticle-polymer composite membranes", J. Membrane Sci., 286, pp. 293{300 (2006). 42. Safaei, P. Marjani, A., and Salimi, M. Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation", J. Nanostruct., 6(1), pp. 74{79 (2016). 43. Suhaimi, H.S.M., Khir, M.N.I.M., Leo, C.P., and Ahmad, A.L. Preparation and characterization of polysulfone mixed matrix membrane incorporated with palladium nanoparticles dispersed in polyvinylpyrrolidone for hydrogen separation", J. Plym. Res., 21(428), pp. 1{8 (2014). 44. Mohaghehian, M., Sadeghi, M., Pourafshari Chenar, M., and Naghsh, M. Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane", Korean J. Chem. Eng., 31(11), pp. 2041{2050 (2014). 45. Sadeghi, M., Talakesh, M.M., Ghalei, B., and Sha_ei, M. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethanesilica nano-composite membrane", J. Membrane Sci., 427, pp. 21{29 (2013). 46. Isfahani, A.P., Sadeghi, M., Saeedi Dehaghani, A.H., and Aravand, M.A. Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles", J. Ind. Eng. Chem., 44, pp. 67{72 (2016). 47. Azizi, N., Mohammadi, T., and Mosayebi Behbahani, M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4", J. Nat. Gas Sci. Eng., 37, pp. 39{51 (2017). 1274 S. Homayoon and N. Esfandiari/Scientia Iranica, Transactions C: Chemistry and ... 27 (2020) 1264{1274 48. Robeson, L.M. Correlation of separation factor versus permeability for polymericmembranes", J. Membrane Sci., 62, pp. 165{185 (1991).