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Abstract. The nonparametric regression method of K-Nearest Neighbour (K-NN) has
been used in a variety of eco-hydrological issues. In this study, some techniques were
presented to improve the accuracy of the K-NN method in forecasting accumulated 9-
month in
ow, from 1971 to 2001, of Zayandeh-rud dam in Iran, from winter to the end of the
following summer. The considered improving techniques consisted of: 1) selecting the best
data preprocessing functions, 2) selecting the best number of neighbours, 3) selecting the
best distance functions, 4) specifying the best weights of predictors at distance functions,
and 5) adding the ability of extrapolation to K-NN using a proposed method. Final results
showed that the use of the mentioned techniques had promoted the accuracy of K-NN's
forecast, meaningfully. The results of goodness-of-�t criteria for the optimized K-NN in
comparison with a regular K-NN presented an increase by 31% in correlation coe�cient
(from 65% to 96%), a decrease from 31% to 8% in volume error, and �nally a drop from
54% to 25% in the root mean square error.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Data-driven methods are powerful means to be used
in di�erent issues such as pattern recognition, cate-
gorizing, estimating, and forecasting. These methods
can be divided into two main groups of parametric and
nonparametric models, in which K-Nearest Neighbour
(K-NN) method is one of the most acknowledged
nonparametric ones [1]. In the past decades, K-
NN has been applied in a variety of areas such as
density estimation [1], rainfall-runo� forecasting [2],
resampling hydrologic time series [3], generating re-
gional climate scenarios [4], short-term tra�c 
ow
prediction [5], wind power forecasting [6], short-term
rainfall predictions [7], probabilistic stream
ow fore-
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casts [8], modelling hydrological time series [9], short-
term foreign exchange forecast [10], and long-term
rainfall probabilistic predictions [11].

Regarding long-lead hydrological forecast by K-
NN, Araghinejad and Burn [12] showed that the use
of a combination of K-NN and geostatistical methods
in hydrological forecasting can lead to more reliable
results in long-term management of water resources.
Further, Asadiani Yekta [13] presented that a com-
bination of K-NN algorithm and ANFIS model could
be successfully applied in estimating in
ow suspended
load to dams. Later, Azmi et al. [14] proposed a K-NN
based data fusion method for short-term and long-term
hydrological forecasting.

Generally, some advantages of K-NN method in
forecasting and estimating issues are simplicity, no
calibration stage, modelling the nonlinear processes,
and ability to cope with numerous predictors [9,15].
However, there are limitations such as requiring enough
historical time series to recognize similar events and
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inability at extrapolating output, which need to be
addressed appropriately [8,9].

2. General algorithm of K-NN in hydrological
forecasting

The concept of K-NN method is based on observing
values of the predictor variables in the current time and
then searching for similar conditions amongst historical
events. These similar conditions can be considered as
possible solutions depending on the degree of similarity.
In this method, Kernel function is used as a nonpara-
metric distribution function. The general algorithm of
K-NN is as follows:

1. Preprocessing values of all predictor variables;
2. Setting a matrix with m columns (the number of

predictors) and n + 1 rows (the length of time
series);

3. Assuming the last row of the above matrix as a
vector of predictors at the current time (xj;t, j =
1 : m);

4. Assuming the remaining rows as a matrix of pre-
dictors at historical time series (xj;t�i, j = 1 : m,
i = 1 : n);

5. De�ning the vector Q with n rows of independent
variable values from t� n to t� 1;

6. Using distance function, distances between xj;t and
xj;(t�i) are calculated as:

Dist(t� i) = f
�
wj ; xj;(t�i); xjt

�
; (1)

where, wj is the weight of predictor variable j;
7. Sorting distances vector (Dist) from minimum to

maximum (SDist) and correspondingly sorting vec-
tor Q based on SDist;

8. Selecting the best number of neighbours (k) based
on some methods which will be explained in Section
3.3;

9. Applying a discrete Kernel function [1] to give
weights to k neighbours as follows:

S(e) =
1=SDist(t� e)Pk
e=1 1=SDist(t� e) e = 1:::k (2)

10. Forecasting the values as follows:

Forecast = S �QT ; (3)

where, T is the transpose operation.

3. The best selection of e�ective components
at K-NN

The main components of K-NN include data prepro-
cessing functions, distance functions, weights of predic-
tors at distance functions, the number of neighbours,
and extrapolation stage.

3.1. Data preprocessing functions
It is necessary to make the range of all variables
consistent. The following functions are commonly used
in data preprocessing [16]:

1. Auto scaling:

Xij =
xij�mj
�j

; (4)

where, xij is the value of predictor j at time i; mj
and �j are the average and standard deviation of
predictor j at historical time series, respectively;

2. Range scaling:

Xij =
xij � Lj
Uj � Lj ; (5)

where, Lj and Uj are the minimum and maximum
values of variable j at historical time series, respec-
tively;

3. Maximum scaling:

Xij =
xij
Uj

: (6)

4. Pro�les:

Xij =
xijqPn

i=1 x2
ij
Pm
j=1 x2

ij

: (7)

5. Principal Component Analysis (PCA). This
method has been used in a variety of applications
to reduce the volume of information and number
of variables contributing to a model [17]. In fact,
after performing PCA on predictor variables,
the aggregated variables are considered as new
predictor variables.

3.2. Distance functions
The following distance functions are commonly used
in K-NN method. In the following distance functions,
xij is the value of predictor j at time i, and wj is the
weight of predictor j:

1. Euclidean distance function:

Dist(t� i) =

vuut mX
j=1

wj
�
xj;(t�i) � xj;t�2: (8)

2. Manhattan distance function [18]:

Dist(t� i) =
mX
j=1

wj
��xj;t � xj;(t�i)�� : (9)

3. Mahalanobis distance function [19,20]:

Dist(t� i) =
q

(xt � xt�i)T C�1 (xt � xt�i);
(10)

where, C�1 is the inverse of covariance matrix.
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4. Camberra distance function [18]:

Dist(t� i) =
mX
j=1

wj
�
xj;t � xj;(t�i)
xj;t + xj;(t�i)

�2

: (11)

5. Lance-Villiams distance function [18]:

Dist(t� i) =
Pm
j=1 wj

��xj;t � xj;(t�i)��Pm
j=1 wj

��xj;t + xj;(t�i)
�� : (12)

6. Cosine Coe�cient function [21]:

Dist(t� i) =
1
m

0@ mX
j=1

wj
xj;t � xj;(t�i)
xj;(t�i)2

1A ; (13)

where, m is the total number of predictor variables.

3.3. Selecting the number of neighbours and
specifying weights at distance functions

Three common methods to determine the number of
neighbours are:

1. Personal experiences (Empirical methods): Di�er-
ent researchers have tried to �nd explicit equations
to estimate the best number of neighbours and
weights of predictor variables at distance functions.
Here, the equation K =

p
n is used as an approx-

imation of the best number of neighbours [22]. In
this equation, n is the length of historical time series
and K is the approximated number of neighbours
in K-NN method. The performance of this equation
improves with increase in the length of time series.
Further, weights of predictor variables at distance
functions can be speci�ed by user subject to profes-
sional experiences;

2. Trial and error methods: This method tries to
determine the best number of neighbours and
weights of predictor variables at distance functions
by following a trial and error process. Generalized
Cross-Validation (GCV) de�ned by Tarboton et
al. [22] is presented as follows:

GCV =
Pn
i=1 err2

i =n�
1� 1=

Pk
l=1 1=l

�2 ; (14)

where, n is the total number of samples (here,
time spans), erri is the forecasts errors at time i,
and k is the best number of neighbours. Here,
number of neighbours and weights of predictor
variables, which lead to minimum value of GCV,
are considered as the optimum solution. The main
problem of this method is to determine the space of
solutions as well as being highly time consuming,
which can be persuasive to consider evolutionary
optimization methods;

3. Evolutionary optimization algorithms: Evolution-
ary optimization methods are indeed the advanced
form of the previous technique (trial and error pro-
cess). In the current research, Honey-Bee Mating
Optimization (HBMO) algorithm was applied to
derive the optimum values of number of neighbours
and weights of predictors at distance functions via
minimizing the values of GCV (Eq. (14)). Over
the past decade, HBMO has been used in di�erent
environmental subjects [23,24]. More information
about the procedure and state-of-art of HBMO
algorithm can be found at Sabbaghpour et al. [25].

3.4. Extrapolation in K-NN method
In order to overcome the limitation of K-NN method
in extrapolating the forecasts, the following method is
proposed:

1. Deriving errors of forecasts of the training stage:

E = [Zi]� bẐic; (15)

where, Zi and Ẑi are the vectors of observed
and forecasted values of the dependent variable at
training stage, respectively;

2. Running test stage;

3. Combining errors of the training stage with pre-
dicted values of the test stage:

Zp = K-NNZi(xi) + K-NNE(xi); (16)

where, K-NNZi(xi) is the predicted value of the
dependent variable at the test stage, K-NNEi(xi) is
the error of the dependent variable at the training
stage, and ZP is the predicted value of the depen-
dent variable at the test stage. The sizes of training
and test datasets were considered 75% and 25%,
respectively [14,26,27]; further, It has been tried
to have both extreme and normal events in both
training and test datasets to re
ect the abilities of
this proposed method, more realistically.

4. Case study

Zayandeh-rud River is the main water resource for
terrestrial ecosystem, and agricultural and municipal
consumptions of Esfahan City located in the centre
of Iran; and Zayandeh-rud dam, with a volume of
1470 MCM, controls the stream
ow of Zayandeh-rud
River (Figure 1). Monthly data of in
ow to Zayandeh-
rud dam during a 30-year period from 1971 to 2001
is used at this study. Previous research in this area
of study has identi�ed that the accumulated 3-month
stream
ow of autumn and the average of Southern Os-
cillation climate Index (SOI) from summer to the end
of autumn can be considered as the most appropriate
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Figure 1. The location of Zayandeh-rud dam basin.

predictor variables for forecasting the accumulated 9-
month in
ow from winter to the end of the following
summer [14,26].

Here, three goodness-of-�t criteria are employed
in comparing the results. In the following equations,
obsi and fori are the observed and forecasted values of

the dependent variable, respectively, and n is the total
number of samples (time spans):

1. Root of Mean Square Error (RMSE):

RMSE =
pPn

i (obsi � fori)2

n
: (17)

2. Volume Error (VE):

%V E =

Pn
i

��� obsi�foriobsi

���
n

: (18)

3. Correlation coe�cient:

Corr% =
Cov(obs; for)
�obs � �for ; (19)

where, Cov(obs; for) is the covariance between the
observed and predicted values and �obs and �for are
standard deviations of the observed and predicted
values, respectively.

5. Results and discussion

In the current research, �ve data preprocessing func-
tions, six distance functions, and three approaches
(with 90 combinations) were applied for specifying the
best number of neighbours and weights of predictors.
Table 1 presents the best derived results amongst
all the mentioned combinations with/without taking
bene�t from the proposed extrapolation method.

As for the Empirical method, due to the length of
time series (30 time spans), the best number of neigh-
bours was calculated 5 (k = 5). Further, considering
the correlation between the predictors and dependent

Table 1. Final results of the best e�ective components of K-NN method for long-lead forecasting of in
ow to
Zayandeh-rud dam.

Methods
Preprocessing Distance

Weights of
The best

Extrapolation
Whole data

functions functions

predictors
no. of

method3-month
stream
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of autumn

6-month
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th
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trial-error
processes

Maximum
scaling

Euclidean 0.8 0.2 5 No 80 17 42

Yes 84 14 35
Evolutionary
optimization

algorithm

Range
scaling

Mahanalobis 0.63 0.37 6 No 92 10 34

Yes 96 8 25
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th
e
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or
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m
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in
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io

n
s

of
p
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p
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ce
ss
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s

Empirical &
trial-error
processes

Pro�le Cosine 0.8 0.2 5 No 65 31 54

Evolutionary
optimization

algorithm
Pro�le Lance-William 0.63 0.37 6 No 75 28 50
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variable, weights of predictors were considered as 0.8
for accumulated autumn stream
ow (wstream
ow = 0:8)
and 0.2 for average of SOI from summer to the end
of autumn (wSOI = 0:2). In the trial-error method,
weights were considered similar to those of the empir-
ical method and then GCV was calculated for a range
of k from 1 to 10.

According to Table 1, the best data preprocessing
and distance functions for the empirical and trial-
error processes were Maximum Scaling and Euclidean,
respectively. RMSE, VE, and Corr for the above-
mentioned combination were derived 42, 17, and 80,
respectively. With the same k and weights, the worst
results of RMSE, VE, and Corr were evoked as 54, 31,
and 65 for the combination of pro�le function as the
data preprocessing function and cosine function as the
distance function.

When evolutionary optimization algorithm of
HBMO was used, the best e�ective component was
presented as k = 6, wstream
ow = 0:63, wSOI = 0:37,
range scaling as the data preprocessing function, and

Mahanalobis as the distance function. RMSE, VE,
and Corr for this combination were calculated 34, 10,
and 92, respectively. With the same k and weights,
the worst results had RMSE, VE, and Corr equal to
50, 28, and 75 for the combination of pro�le function
as the data preprocessing function and Lance-William
function as the distance function.

The positive in
uence of employing the proposed
extrapolation method at K-NN is shown in Table 1.
The results present the capability of this method to
present more accurate forecasts, especially in case of
the existing extreme events. The mentioned extrapo-
lation method has improved the values of RMSE, VE,
and CORR to 35, 14, and 84 for the Empirical and the
Trial-Error process methods, as well as to 25, 8, and 96
for the HBMO method.

The results of goodness-of-�t criteria for the
optimized K-NN in comparison with a regular K-NN
presents an increase by 31% in CORR (from 65% to
96%), a decrease from 31% to 8% in VE, and �nally
a drop from 54% to 25% in RMSE. Figures 2 to 5

Figure 2. Final results based on the empirical and trial-error methods without applying the extrapolation method.

Figure 3. Final results based on the empirical and trial-error methods with applying the extrapolation method.
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Figure 4. Final results based on HBMO method without applying the extrapolation method.

Figure 5. Final results based on HBMO method with applying the extrapolation method.

indicate the forecasts based on di�erent approaches
with/without considering the proposed extrapolation
method. Final results present the increase in the
accuracy of forecasts by using the proposed extrap-
olation method in comparison with common K-NN,
especially for extreme events such as 1982, 1986-7,
1991, and 1997 to 2001. It is worth noting that even by
using extrapolation method, the forecasts of maximum
extreme events (e.g., 1992) are still underestimated,
while the forecasts of minimum extreme events (e.g.,
1997 to 2001) are overestimated, which shows the
necessity of further research in this issue.

6. Summary, conclusion, and future research
direction

This research aimed at showing the potentials, abili-
ties, and disadvantages of K-NN method in long-lead
stream
ow forecasting of Zayandeh-rud River in
ow
to Zayandeh-rud storage reservoir from 1971 to 2001.

A variety of combinations between preprocessing and
distance functions along with di�erent methods to
estimate the best number of neighbours and weights
of predictors at distance functions were considered to
increase the accuracy of forecasts. Moreover, a pro-
posed method was introduced and applied to decrease
the errors of forecasts, especially for extreme events.

Overall, the results presented remarkable im-
provements: an increase by 31% in CORR (from 65%
to 96%), a decrease from 31% to 8% in VE, and
�nally a drop from 54% to 25% in RMSE; however,
it seems that the proposed extrapolation method has
not been completely successful (underestimations of
maximum extreme events and overestimations of min-
imum extreme events). However, �nally, using more
complicated methods such as HBMO in optimizing the
best number of neighbours and weights of predictors
at distance functions leads to growing the accuracy in
terms of complexities and time consuming. It seems
that Empirical methods can be considered as a serious
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competitive alternative. The latter point, besides
introducing more e�ective extrapolation methods, is a
topic which needs to be considered as a direction for
future research.
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