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A CA Model for Visual Perception Based On Anatomical 

Connections  

 

Abstract 

A phenomenological model of visual perceptual dynamics is proposed based upon the 

cellular automata (CA) which considers the anatomical connections between visual areas 

of the macaque brain. Some other important characteristics of neural networks of the 

brain are also included in the model, such as the excitatory-inhibitory ratio of neural 

populations, synaptic delays, etc. A new form of “geometric mean interaction rules” 

among neural populations are also introduced which could be considered more realistic 

than the previous “arithmetic mean-based rules”. This computational model is capable of 

showing interesting dynamical behaviors, seen in the visual perceptual states of the brain.  
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1. Introduction 

The exploration to understand and somehow control biological systems, using 

fundamentals from physics and mathematics has a long history [1]. Among biological 

systems, the mammalian brain, because of its vastly complex structure and its perfect and 

stable function, has attracted a special attention. Researchers try to mainly understand and 
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mimic some behavioral and dynamical aspects of the brain, by some appropriate 

computational model [1].  

A cellular automaton (CA) is a mathematical tool to model the systems with many simple 

elements working together and creating a global evolutionary pattern of behavior [2]. The 

CA, firstly introduced by Stanislaw Ulam and John von Neumann in 1940s, became more 

systematically studied by Stephen Wolfram in 1980s. A classic CA is created from   

cells, each of them is in one of the predefined discrete possible states (e.g. 0 and 1) in 

each evolutionary time step. Cells take effect from a pre-defined neighborhood around 

them and could change their initial state into the next state based upon an “interaction 

rule” with respect to their neighborhood. Today more generalized versions of the CA are 

being popular , such as probabilistic CA, continuous CA, CA with dynamic rules, etc [3]. 

Employing CA in the field of neuroscience has shown successful results in the 

interpretation of some cognitive aspects of the brain [4] [5], [6], [7] [8]. Compared to 

other computational models such as Artificial Neural Networks (ANN), Spiking Neural 

Networks (SNN), Coupled Neural Networks (CNNs) and Globally Coupled Maps 

(GCM), a cellular automaton could be considered as a more general form since it is 

capable to have properties of all above-mentioned approaches.  

We have proposed before that an appropriate form of CA could be used in modeling the 

visual perceptual dynamics [9].  In this letter we show that by considering the real 

anatomical connections among the brain networks and using it carefully in the structure 

of the CA, it could be a well representative model for visual perception, both structurally 

and dynamically. 

http://en.wikipedia.org/wiki/Stanislaw_Ulam
http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/Probabilistic_cellular_automata
http://en.wikipedia.org/wiki/Probabilistic_cellular_automata
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It has already been demonstrated that brain dynamics (which are reflected in EEG, MEG 

and ECoG signals) are inherently chaotic [10]. As we perceive different sensory 

information (i.e. scenes, sounds, odors, etc.) and recognize different patterns, these 

dynamical processes tend to turn into a more regular pattern. This stage has been referred 

by other researchers as: “the transients between gas-like randomness and liquid-like order 

[11]”. According to such paradigm, each stimulus would tend to lead the system to its 

own “liquid-like attractor” which is different from the other one. Therefore, after the 

sensorial stimuli, the brain dynamics would start a search in its general chaotic basin of 

attraction and finally release into its appropriate attractor and recognize that special 

stimulus. The proposed computational model tries to maintain these attractors and show 

the possibility of dynamical transitions between them, by changing the parameter values 

of the model, or the initial condition. 

The most important property of CA in modeling complex multi-agent systems is its 

ability to imitate the “interaction” between those agents to some extent. It means that in 

the CA we are able to define and adjust different (mostly simple) interaction rules among 

the agents. This way, we can make any of the agents to “bifurcate” and change patterns of 

behavior. Interactions among the neural networks of the brain may result into many 

perceptual, cognitive and motor behaviors.  

Connectivity plays an important role in large networked dynamical systems [1]. That is 

why in biological systems (such as brain networks) the structural (anatomical) and the 

functional connectivity patterns are being studied with great interest [12] [13] [14] [15]. 

In modeling approaches, we should firstly determine the connection pattern and 

relationships between the elements and then define how these –anatomically / 
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functionally- connected networks could make the dynamical behavior of each element 

and the whole network to evolve in time. In this work we adopt the real anatomical 

connection matrix in the macaque visual system for our modeling (The work published 

by Felleman and Essen [16]).  

The remainder of this paper is organized as follows: in section 2 we will introduce our 

proposed model completely. The main structure of the network and its elements are 

illustrated in section 2.1, and then in sections 2.2 through 2.4, more details are discussed 

which include: In-layer and between-layer connections, interaction rules of the CA, and 

finally the way of considering delays in the network.  

Section 3 contains the numerical results and simulations of the model. The numerical 

studies are based on presenting the time series, phase portraits and bifurcation diagrams, 

frequency content and synchronization patterns of the network, in different conditions 

mimicking the visual perceptual dynamics. Finally in section 4 we will have the 

conclusion and more discussions about the whole letter. 

 

2. Proposed Model 

In this section we introduce our model of visual perception using anatomical connectivity 

matrix, on a cellular automaton platform. This model tries to mimic the dynamical 

behaviors that happen during visual perceptual states. As mentioned before, we are going 

to use an anatomical connectivity matrix of the macaque visual cortex in our modeling, 

which has been extracted from the very interesting study of Essen and Felleman [16]. The 

results of their study on macaque visual cortex was a 35*35 connection matrix (see 

Appendix A) corresponding to different cortical areas in the occipital, temporal, parietal 
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and frontal cortex of the macaque. This 35*35 connection matrix was then modified into 

a simpler 30*30 one by Sporns
2
 [17] (in which the uncertain and not-connected pathways 

has been omitted). In the new modified and simplified connection matrix, each element 

could be equal to 0 or 1. Zero values denote a “no-connection” situation, and non–zero 

ones corresponds to a valid connection between two nodes. This connection matrix is 

shown to have the “small world” properties which is necessary for the brain to show 

many of its functional properties such as synchronization [18]. 

The building blocks of our model are chosen to be a well-known dynamical model: the 

logistic map (equation (1)), in order to represent “netlets” (populations of 100-1000 

excitatory and inhibitory neurons). Netlets were introduced by Hrath in 1970 to describe 

the activation of an excitatory-inhibitory population of neurons in the cortex [19] [20]. 

Later, this concept was used in a computational model for visual cortex by Pashaie et.al. 

[21]. In their approach, each netlet is supposed to work as a complex processing element 

(CPE) which is modeled by the logistic map: 

 (   )      ( )  (   ( )))  (1) 

The reason for using logistic map as the model of a netlet’s dynamics is discussed here. It 

is shown that the expectation value of netlet activity could be modeled by equation (2) 

[19] [20]: 

        (    )      (     
 ) ∑

(    
 ) 

  
   

 

   

 

                [   (   )  ] ∑
[  (   )  ] 

  

    

   

  

(2) 

                                                 
2  This connection matrix could be downloaded from: https://sites.google.com/site/bctnet/datasets  

https://sites.google.com/site/bctnet/datasets
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In this formulation,    is the activation of an isolated netlet at time step  , and        

is its expected value at time step    . Parameter   stands for the fraction of inhibitory 

neurons in the netlet,   (      ) is the average number of neurons in the netlet with 

afferent connections from a given excitatory (inhibitory) neuron in the netlet. Parameter   

is the minimum number of excitatory and inhibitory inputs necessary to trigger a neuron 

which has received   inhibitory inputs, and finally   is the total number of inhibitory 

connections [21].  

Graphs of        versus    for a netlet with the same amount of excitatory and 

inhibitory connections           and       is shown in Figure 1-a. it can be seen 

that the shapes of these curves could be considered very similar to the plots of a modified 

version of the well-known logistic map (Figure 1-b). 

 

(a)         (b) 

Figure 1: (a) Fraction of active nodes of a netlet, with the same amount of excitatory and inhibitory connections, 

at the moment     as a function of active nodes at the previous moment. Different curves correspond to 

different numbers of presynaptic spikes that are necessary to elicit a postsynaptic spike. (b) Group of quadratic 

functions employed in the generation of the logistic map (in the form of          (    )). The curves in 

this figure are quadratic functions that are plotted for different values assigned to the bifurcation parameter   

[21]. 
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2.1.The main structure of the network and its elements 

Based on the anatomical connections described before, our model is considered to have 

30 layers, each corresponds to one of the areas in the occipital, temporal, parietal and 

frontal cortex (in summary, in the visual system) of the macaque brain (see Appendix A). 

There are N dynamical agents corresponding to N netlets in each layer. The generalized 

form of coupled logistic maps would be: 

     (   )            ( )  (      ( ))                      (3) 

In which     ( ) corresponds to the activation of element   in layer  , at time step  .  

The parameter p (the environmental parameter) is the main source of changing the 

dynamics (and creating bifurcations) in the conventional logistic map (equation (1)) 

which can make period-1, period-2 … and chaotic attractors (see the bifurcation diagram 

of Figure 2). Therefore, it is clear that if we want to model the “interactive” effects of 

“the environment” on each agent of the network, we have to change the value of      in 

an appropriate manner (due to the activities of the other affecting agents on it). 

 

Figure 2: The bifurcation diagram of the conventional logistic map,  (   )      ( )  (   ( )), 

due the bifurcation parameter, p. 
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2.2.Inter-layer and intra-layer connections 

The relationships between layers are determined by the connection matrix CIJ (Appendix 

A). In this way, if two layers are connected to each other, the value of CIJ is considered 

to be 1 and if they are not anatomically connected the corresponding CIJ element will be 

considered to be 0. But the connected areas may affect each other in different ways. So 

we have to attribute a weight or a strength parameter to those connections, in the form of 

a weight matrix WIJ. These weights are considered to be random values between 0 and 1. 

Since we have not inserted any learning algorithm in this model yet, these weights are 

considered to be fixed during the CA evolution.  

We also tried to make the model closer to the reality by considering both excitatory and 

inhibitory connections between the agents. It is well-known that the balance between 

excitatory and inhibitory neurons in the cortex is almost 70- 30% [22], or 80-20% [23] 

[24]. Therefore, among all connections 80% were considered to be excitatory and 20% 

inhibitory. 

It also should be emphasized that although the number of inhibitory connections is less 

than the excitatory ones, the inhibitory synapses play a very important role in the 

behavior of the brain. That’s why we considered the amplitudes of the inhibitory weights 

to be larger than the excitatory ones (in the order of 7-8 times larger) to take their 

importance into account. This has been also reported in other related works [1]. 

 

2.3.Interaction rules 

As it was discussed earlier, the most important part of CA based modeling, is the 

determination of the interaction rules among the agents. We mentioned at the end of 
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section 2.1 that if we want to simulate the effect of the environment on each agent, we 

would better change the value of      of element   in layer  .  

Based on the bifurcation diagram of Figure 2, in the conventional logistic map if        

(for example    ), chaos is observed (which can be interpreted as a model of chaotic 

bursts seen in the active state of the neural populations), and if    , a stable period-1 

behavior is achieved which can be related to the resting state (quiescent) of the netlet.  

This was used by Lopez et. al. to construct their interesting interaction rule among the 

logistic-type agents in the modeling of bi-stability in the brain [4]. Lopez used two linear 

relationships in order to simulate the excitatory and inhibitory forms of interaction as 

below: 

Lopez Interaction Rules [4]: 

For agent i of the N elements in a network, we have     
     ̅  

 (    
 ), in which the 

value   ̅ is the effect of other    neighboring elements on   
 . This net-effect could be 

excitatory or inhibitory. This function is selected to be a linear function depending on the 

actual “local mean value”,   
  of the neighboring signal activity and expanding the interval 

(0, 4) in the form below: 

{
  ̅      (   

   )                                     

  ̅      (    
   )                                  

 
(4) 

In which:   
        (

 

  
∑   

   
   ). 

This way, the values of   ̅ will always be either 1 or 4, based on the mean activities of the 

neighbors and their interaction type (i.e. excitation or inhibition). Therefore the interaction of 

neighbors could make the target agent to become silent (when   ̅   ) or to become active in 

a bursting pattern (when   ̅  4). 
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Most of the researchers like Lopez have used those rules in a “fully excitatory or fully 

inhibitory” network, with random or regular connections. But here we have considered 

our model to have 80% excitatory and 20% inhibitory netlets (based on physiological 

data) and by using the anatomical connections (which was proved to have small world 

properties [18] [25], which is more realistic connectivity pattern compared to an ordered 

or a random network). We also used a weighted matrix as inter-layer and intra-layer 

strength among netlets and considered some synaptic delays as an important property of 

brain in the realization of our model (see section 2.4). But the most important and novel 

difference of our proposed model compared to other similar models of neural dynamics, 

is the way we define “interaction rules” among the agents. Now we are now ready to 

explain the interaction rules we used for the evolution of our CA:  

 

Proposed Interaction Rules: 

We use a modified version of the idea of coupled logistic maps, in a completely different 

framework which we think is a more realistic one: a multiplicative relationship and a 

“geometric mean”, instead of the popular “arithmetic mean”, as the total effect of the 

neighbors. 

For an element   
  in a network of coupled logistic-type agents, we have: 

   
     ̅      

   (     
  ) 

The net effect of excitatory-inhibitory connections from the neighbors is reflected in the 

value of   ̅ in the form of:  

  ̅     ( √∏       
     

    ∏       
     

    
(         )

) , 
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This is a “geometric mean” among the neighbors, not the conventional arithmetic mean! 

We will discuss later that the geometric mean could be a more realistic form of 

interaction in our model. We borrow a modified version of the definition of excitation 

and inhibition from the work of Lopez like this: 

{
      

   ( (  
 
     )   )                                     

      
  (  (  

 
     )   )                                  

 

Therefore, instead of using, 

     (  
 
)  (  

 
    ), 

We used two different “adaptive” threshold values of      and    . This could be 

generally more realistic, because there is no reason that all synapses have the same 

selection value (or       ) to start activation.  

The output values of        
  (and       

 ) could be 4 or 1 (1 or 4) based on the values of 

  
 
     and     , and also the predefined type of the connection (excitatory or inhibitory). 

 

 

We believe that the geometric mean is a more realistic interaction rule, than the 

arithmetic mean in our application. Here we are going to discuss this issue. Consider we 

want to affect a logistic-type agent (change its dynamical behavior) by changing its gain 

parameter  . Consider that this element has    inhibitory and    excitatory neighbors. If 

we use an arithmetic model of interaction, we simply have to use the sum of all 

excitatory-inhibitory effects as below:  
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∑    

 

  

   

 
 

  
∑    

 

  

   

  

(5) 

And use it in a suitable coded form in the logistic equation, like equation (4). But this 

form of mean value, fades or degrades the independent effect of each individual neighbor 

on the target   . However, when a multiplicative interaction in the form of a geometric 

mean is used, each neighbor affects the target directly and its effect could be studied 

independently of others without being faded or degraded by them: 

  
    √∏      

 

    

   

 ∏       
 

    

   

 

(         )

 

Another potential advantage of this form of coupling is its capability in creating complex 

behaviors of the neural populations (compared to the simpler linear weighted sum of 

equation (5)) because of its nonlinearity. 

 

2.4.Time delays 

Timings of the activation and inactivation of neurons play a very important role in the 

overall dynamics of the whole system [26]. This is mainly because of the synaptic delays. 

On one hand, most of the computational neuroscientists discard delays as some 

unimportant thing that only complicates modeling. From a mathematical point of view, a 

system with delays is not finite -but infinite- dimensional, which poses some 

mathematical and simulation difficulties [26]. On the other hand, others argue that an 

infinite dimensionality of spiking networks with axonal delays is not a disadvantage but 

an immense advantage that results in an unprecedented information capacity. Izhikevich 

even claims that there are some stable firing patterns that are not possible without the 
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delays [26]. We are not also going to neglect the intrinsic role of delays of the neural 

system in our modeling.  

In the original form of netlets’ activation function (equation (2)), which we used logistic 

equation as its model, the time has been quantized in units of the synaptic delay  , and it 

is assumed that the neurons can fire only at times which are integral multiples of   [20]. 

Therefore, each discrete time step in the logistic map refers to the continuous time 

interval of  . Hence, the discrete value of   corresponds to       in the continuous time 

scale. But what is the value of   itself ? 

Some researchers argue that the synaptic delays and the refractory periods generally are 

found to be close to 0.5 ms and 1ms, respectively [20]. Another report about this quantity 

is of the order of 1-3 ms [1]. But the report of Izhikevich from the synaptic delays seems 

more realistic, since it covers a broader interval and talks mainly about the neocortex: “A 

careful measurement of axonal conduction delays in the mammalian neocortex showed 

that they could be as small as 0.1 ms and as large as 44 ms, depending on the type and 

location of the neurons [26]”.  

In our work, we considered the specific value of        for the mean time interval 

between two activations. This value is important and mainly adopted because we are 

going to use the time delays present “between” processing layers of visual system in our 

model. The latencies between the processing layers of the ventral pathway in the visual 

system have been reported in [27] [28] and could be seen schematically in Figure 3. We 

used this platform in order to estimate the other latencies between the layers of our 

model.  
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Figure 3: adopted from [28]: the latencies between the layered structure of the ventral pathway 

(from retina to STPa), in miliseconds. 

It should be emphasized here that although our model is a behavioral and functional 

model, we are trying to use as much structural and physiological data as possible, because 

in any complex system, the structure could not be separated from the function. Based 

upon the above discussion and by using the data in Figure 3 and the connection matrix of 

macaque visual cortex, we estimated the other between-layer latencies in the form of 

discrete time steps of our logistic-type model (see Table 1).  

By using the above updating rules for each element of our cellular automata, we are now 

ready to simulate the proposed model and validate some of our statements about the 

applicability of such a model in mimicking the visual perceptual dynamics. 
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Table 1: Travel time from retina to different visual processing layers of our model (first row: in mili-

seconds, second row: in the discrete time interval, normalized to the time unit        ). The 

shaded columns contain the exact values from Figure 3, other columns were estimated based on the 

shaded ones. for (a) Occipital cortex, (b) Temporal cortex, (c) Parietal and frontal cortex. 

(a) 

Occipital 

From retina to: V1 V2 V3 V4 VIA V4 VOT V4L MT 

ms 30 

 

40 

 

42 

 

43 

40-50 

43 

 

45 

 

46 

 

46 

 

48 

 

k-steps 3 4 4 4 4 5 5 5 5 

(b) 

Temporal 

From retina to: FST PITd PITv CITd CITv AITd AITv STPp STPa TF TH 

ms 50 

 

50 

50-60 

55 

50-60 

60 

50-70 

65 

50-70 

70 

60-90 

80 

60-90 

75 

 

90 

70-100 

100 

 

100 

 

k-steps 5 5 6 6 7 7 8 8 9 10 10 

(c) 

 Parietal frontal 

From retina to: MSTd MSTI PO PIP LIP VIP DP 7a FEF 46 

Ms 100 100 100 100 100 100 100 100 100 100 

k-steps 10 10 10 10 10 10 10 10 10 10 

 

3. Simulation results 

The summary of our selected values of parameters and the global framework of modeling 

are shown in Table 2. Under these situations, the whole model is capable of showing 

different kinds of dynamical behaviors and attractors depending on different perceptual 

situations.  
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Table 2: simulation framework and selected values of parameters. 

Parameter value  parameter value 

Number of layers 30  Connection weights 

Random values in 

the [0,1] interval 

Connection matrix 

between layers 

30*30 CIJ, from 

macaque visual 

cortex 

 

Inhibitory to excitatory 

weights ratio 

7-8 

Number of netlets in 

each layer 

N = 5  

Mean synaptic delays (in-layer 

delays) 

10 ms 

ratio of excitatory to 

inhibitory synapses 

4  Between layers latencies Based on table 2 

p 

Identical for all 

agents, changing 

from 0 to 1 

 

Interaction rule geometrtic mean  

    0.05 

    0.8 

 

In our first experiments, we suppose that all agents in all layers have the same value of 

parameter   (see equation (3)), i.e.              [    ]   [   ]. Then we studied 

different behaviors of the CA using the bifurcation diagram due to parameter  . After that 

different values of      were studied in the model. The output value selected for this 

model is considered to be “the mean activation of the whole network in each iteration”, as 

an estimation of cortical electrical activities recorded by the EEG or ECoG electrodes 

[11]. We also study the synchronization and desynchronization properties of the netlets 

using correlation values in different environmental situations [29] [11]. The detailed 

results are presented in the following sub-sections. 
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3.1.Different dynamics, bifurcation diagram 

The bifurcation diagram of the CA under the conditions described in the previous sub-

section is presented in Figure 4. Here all of the agents are considered to have the same 

value of  . The network starts from the same initial condition each time, and evolves to 

its attractor after 500 iterations. Updating of the CA is performed synchronously. It can 

be seen from the bifurcation diagram that the system is capable of showing different 

dynamical states which could be interpreted as one of the widespread perceptual states of 

the visual system.  

In Figure 5-a, the CA shows a period-1 behavior around     7. This period-1, or fixed 

point behavior could be representative of a state that the visual system settles into a fixed 

attractor, i.e. recognizes a stimulus. Figure 5-b on the other hand, shows a period-2 

situation for     83 which can be a model of bi-stable perception. The bi-stability and 

the multi-stability in general, is an interesting phenomenon studied in the literature with 

great interest in recent years [30] [31] [4]. 

 

Figure 4: bifurcation diagram of the CA, as a function of control parameter   for threshold values of 

                 .  
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For example, a bi-stable perception could be happened in visual system while observing 

the simple shape of Figure 6. In this shape the perceptual dynamics switches between the 

image of “two faces” and the image of “a vase” in the middle part. Any of these 

perceptions can be modeled as one of the stable states in the period-2 region of the CA. 

the perceptual system of the brain switches between these two stable points in a periodic 

way which represents the period-2 solution. The more complex situation of period-8 

which is indicative of an 8-stable situation, occur for      6 (Figure 5-c).  

But the most interesting behaviors could be seen in Figure 5-d to Figure 5-f as the non-

periodic cases. It could be seen in Figure 5-d that for       , a two-part non-periodic 

attractor appears which could be interpreted as a “blur” bi-stable perception of a stimulus, 

or a 2-tori quasi periodic response. When our visual system has not reached to a single 

decision about a stimulus and is searching around two possible answers! 

Figure 5-e and Figure 5-f show a chaotic attractor. We can interpret this attractor as the 

baseline behavior of the brain, when it has not been encountered to a new stimulus. This 

baseline is the main dynamical state of the brain, from which it could be attenuated due to 

an external stimuli (scene, odor, …). Hence in the presence of an external stimulus, this 

attractor changes into one (or some) ordered attractor(s), called liquid-like quasi-

attractors, corresponding to that specific stimulus [11] [10]. Then it again comes back to 

this baseline chaotic attractor, in order to be ready to interact with the next and next 

changes in the environment. The real chaotic dynamic of the brain, could be interpreted 

as the searching state of the brain in its basin of attraction, coming into and going beyond 

the chaotic and non-chaotic attractors. 
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(a)        (b) 

 

(c)        (d) 

 

(e)        (f) 

Figure 5: different dynamical behaviors of the CA, top plot: the time series, bottom plot: the phase portrait, (a) 

period-1, for     7, (b) period-2, for     83, (c) period-8, for       , (d) two-part non-periodic attractor, 

for       , (e)-(f) chaotic attractors, for      3 and        respectively. 
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It could be seen from Figure 7 that the frequency content of this chaotic signal is 

comparable with the 
 

  
       spectrum that is seen in the normal EEG signal [8].  

 

 

Figure 6: a bi-stable perceptual situation could occur by the visual system in the observation of this 

simple shape: a vase or two faces? This bi-stability could be modeled by the period-2 behavior of the 

CA model. 

 

 

a         b 

Figure 7:  (a) EEG spectra for different EEG electrodes. (b) The spectra of the chaotic output signal 

of the CA, for for       . It could be considered to have a 
 

  
 form, comparable with the normal 

EEG. 
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3.2.A more realistic situation 

In the previous part, like many other related works [21] [4], we assumed that all of the 

agents have the same bifurcation parameter   (i.e.      in equation (3)). Indeed, this could 

not be the real situation; there is no reason for all neural populations to have the same 

value of   in general. Rather, the dynamical state and properties of each neural 

population may be different from the others. Hence, a more realistic approach of 

modeling is to consider each agent to have its own value of       which is not necessarily 

equal to the other agents.  

In order to do that, we considered some random values for parameter      of each agent. 

The result showed a more similar behavior to real EEG signals in the form of its spectra 

and the synchronization- desynchronization patterns of 150 agents which can resemble 

the functional relationships and synchrony among different neural populations of the 

visual system (Figure 8).  

The synchronization pattern is calculated between each agent and the mean activation of 

the network (the ensemble), in a window size of 50 samples, for a total size of 500 

iterations (by the “xcorr” matlab function) [29]. 
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(a)       (b) 

 

(c) 

Figure 8:  (a) The time evolution and phase portrait of the chaotic output signal of the CA with 

different values of parameter      each agent (values selected randomly between 0-1). (b) The spectra 

of part (a), (c) The synchronization-desynchronization pattern of all agents during the evolution of 

the CA in 500 steps, in terms of correlation coefficient measure.  
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4. Discussion  

A model of visual perceptual dynamics based on cellular automata and the anatomical 

connection matrix was introduced. The model is a behavioral and phenomenological 

model which tries to take into account as much physiological and anatomical 

considerations as possible; such as anatomical connection matrix of macaque visual 

cortex, netlet dynamics, excitatory-inhibitory synapses with appropriate ratio and weight, 

in-layer delays and between layer latencies. This model is one of the most complete 

models proposed for neural dynamics, which considers anatomical connections in 

combination with a CA approach using chaotic maps. 

One of the most important advantages of using CA for our modeling was that Cellular 

automaton is a modeling tool capable of modeling large scale complex systems, which 

gives the ability to study the system from microscopic to mesoscopic and macroscopic 

levels. It also makes it possible to define and tune the appropriate interaction rules in 

order to reach to the desired behavior from the whole system.  

We introduced a new interaction rule based upon the “geometric mean” value (a 

nonlinear synaptic function) and multiplicative relationship among the agents. We claim 

that it is more realistic than the previous arithmetic mean and linear interaction rules, 

because it gives the possibility of changing and studying each neighbor individually, 

without being degraded by the others. We also used adaptive thresholds in our synaptic 

decision makings. 

It was shown that the proposed model is capable of showing different dynamical 

behaviors seen in visual perceptual framework, from a fixed stable attractor to bi-stable, 

multi-stable and chaotic behaviors. The chaotic signal was shown to have a 
 

   form of 
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frequency spectrum comparable with the spectrum of a normal EEG. We also showed 

that the synchronization-desynchronization pattern of the agents in their evolution is 

close to reality in the chaotic mode. 

The future works on this model should consider the effects of learning and seeing 

different scenes on the model parameters, based on a suitable learning approach such as 

STDP. It may also be developed by considering two-dimensional CAs instead of current 

one-dimensional form, for each layer. Besides, some visual perceptual deficits such as 

face recognition problems seen in the Autism disorder may be behaviorally modeled by 

this model in the future.  
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Appendix A: The 35*35 connectivity matrix of Felleman and Essen [16] 

Table 2: this table is a connectivity matrix for interconnections between areas in the macaque visual cortex. Each row shows 

whether the area listed on the left sends outputs to the areas listed along the top. Conversely, each column shows whether the 

area listed on the top receives input from the areas listed along the left. Large plus symbols (+) indicate a pathway that has 

been reported in 1 or more full-length manuscripts. Small plus symbols indicate pathways only in abstracts or unpublished 

studies. Dote (.) indicate pathways explicitly tested and found to be absent. Blanks indicate pathways not carefully tested for. 

Question marks (?) denote pathways whose existence is uncertain owing to conflicting reports in the literature. “NR” and 

“NR?” indicate nonreciprocal pathways, i.e. connections absent in the indicated direction even though the reciprocal 

connection has been reported. Shaded boxes along the diagonal represent intrinsic circuitry that exists whitin each area: these 

are nor indicated among pathways tabulated in the following table. Adopted from [16]. 

 

 


