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Abstract. As a generalization of Intuitionistic Fuzzy Sets (IFSs), Complex IFSs (CIFSs)
are powerful and worthy tools for realizing the imprecise information using the complex-
valued membership degrees with an extra term called phase term. Divergence measure is a
valuable tool for determining the degree of discrimination between the two sets. Driven by
these fundamental characteristics, it is fascinating to manifest some divergence measures
under the CIFS theory. The present study proposed a method for solving the Multi-Criteria
Decision-Making (MCDM) problem under CIFS environment. In this regard, �rstly, the
divergence measures were introduced between two CIFSs and their properties and relations
were evaluated. Secondly, a novel algorithm was suggested based on the proposed measures
to solve the problems in which the weights of the criteria were resolved by maximizing
deviation method. Thirdly, a reasonable example was provided to verify the developed
approach and exhibit its practicality and utility with a comparative analysis indicating its
manageable and adaptable nature.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, Decision-Making (DM) is one of the most
signi�cant ventures in our daily lives and its mission is
to select the best alternative out of the �nite options
under several known or unknown criteria. Multi-
Criteria Decision-Making (MCDM) is the division of
the DM regarded as a cognitive-based human action.
Human beings inescapably face numerous Decision-
Making Problems (DMPs) which involve multiple �elds
such as supplier selection, supply chain management,
emerging problems, medical problems, and so on. In
practice, with the growing technological advancement
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and modern treatment based on new techniques and
tools, several uncertain cases related to DMP would
arise so that decision-makers are no longer satis�ed
with the numerical values expressed in terms of crisp
numbers. Therefore, to quantify di�erent information
into the analysis and analyze the information in a
more accurate manner, many researchers have devel-
oped several types of algorithms using the theories of
Fuzzy Set (FS) [1], Intuitionistic Fuzzy Set (IFS) [2],
Linguistic Interval-Valued IFS (LIVIFS) [3], Complex
FS (CFS) [4], Complex IFS (CIFS) [5], and complex
interval-valued IFS [6]. In FS and IFS environments,
information associated with each object is de�ned
by Membership Degrees (MDs) and Non-Membership
Degrees (NMDs) whose sum is not more than one.
However, in LIVIFS, the required information was
collected in the qualitative rather than quantitative
form using linguistic variables. Further, in CFS and
CIFS, information is practiced under the complex
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environment where the domain of IFS extended the
domains of MDs and NMDs from the real set to the
complex-valued set with a unit disc.

In such di�erent environments, some researchers
have put considerable e�ort into o�ering di�erent
methods and algorithms for solving MCDM problem
in di�erent �elds through either Aggregation Operators
(AOs) [7{14] or Information Measure (IM) [15{22]. For
example, under the IFS environment, the weighted
average and geometric AOs were explained in [7,8].
Further, Garg [9,23] added to their explanation by
incorporating the degree of hesitancy between the pairs
of degrees. Some Hamacher AOs for IFSs were detailed
by Huang [11] and Garg [24]. Apart from the AOs, the
IMs play a signi�cant role in treating imperfect and
uncertain information. Of note, similarity, entropy,
inclusion, etc. are the measures used by the researchers
to examine the DMPs. To be more speci�c, similarity
measures deal with two objects to compute the degree
of similarity, entropy quanti�es the degree of fuzziness
in the set, and inclusion measures give the extent
to which a set is contained in another set. On a
separate plane, Divergence Measures (DvMs) are one of
the most well-known tools for holding the uncertainty
associated with the set. They depict the degree of
discrimination between two objects. In the literature,
all these measures have been greatly investigated as
vital topics. For example, Kullback and Leibler [25]
�rst introduced the concept of the DvM between two
probability distributions. Later on, Bhandari and
Pal [26] continued this measure to the FSs. Vlachos
and Sergiadis [27] extended the idea of the DvM
from FSs to IFSs. Zeng and Li [17] presented the
correlation coe�cients for IFSs. Garg [28] exhibited an
improved cosine similarity measure for IFSs. Garg and
Kumar [29] presented some similarity measures for IFSs
based on the connection numbers of set pair analysis
theory. Ohlan [30] presented the Intuitionistic Fuzzy
(IF) exponential DvM along with its distinct properties
and proposed a method for dealing with DMPs. Garg
et al. [31] introduced parametric directed DvM under
IFS theory to solve the DMPs. Mishra et al. [32] pro-
posed Jensen-exponential DvM and the corresponding
DMP under IFS environment. Furthermore, a number
of researchers [33{37] have examined di�erent IMs and
applied them to DMPs.

From the earlier comprehensive studies and
DMPs, it was perceived that their proposed approaches
were restricted to some extent by handling only the un-
certainty; however, they now fail to deal with the varia-
tions at a given phase of time in the data. The informa-
tion gathered from the medical research, database for
biometric and facial recognition, etc., regularly changes
with the passage of time. Therefore, there is a demand
to add the supplementary parameter into the study by
representing this variation and, hence, handle the data

accurately. In this respect, Ramot et al. [4] explained
the concept of CFS by extending the domain of MDs
from the real set to a complex-valued set with a unit
disc. Further, to improve this theory, several properties
such as complement, intersection, union, etc. were
investigated by Ramot et al. [4,38]. Dick et al. [40]
examined the association between the CFS and the
Pythagorean FS [39]. A brief survey of the CFSs and
logic was presented by Yazdanbakhsh and Dick [41].
Given their remarks, the degree of disagreement was
not included in CFSs. Therefore, to properly evaluate
the data, Alkouri and Salleh (2012) [5] stretched out
the idea of CFS to CIFS by including the NMDs of
the unit disc along the MDs into the analysis. Later
on, some relations, projections, and measures for CIFSs
were studied by Alkouri and Salleh [42]. Kumar and
Bajaj [43] de�ned both entropy and distance measures
for CIF soft sets. To further expand the CIFSs, Rani
and Garg [44] presented the degree of dissimilarities
among the CIFSs. Moreover, to measure the bond
between CIFSs, Garg and Rani [45] de�ned correlation
coe�cients for them. Garg and Rani [46,47] presented
some averaging and geometric AOs for CIFSs. Quran
and Hassan [48] suggested the required operations for
complex neutrosophic soft sets. Rani and Garg [49]
proposed power AOs for group DMPs under CIFS
environment. Garg and Rani [50] presented some
generalized Bonferroni mean AOs for CIFSs using
Archimedean t-norm operations. Recently, Garg and
Rani [51] presented exponential, logarithmic, and com-
pensative AOs to aggregate di�erent CIFSs. Also,
Garg and Rani [52] studied di�erent IMs of CIFSs.

The CIFS is a generalization of the IFS, taking
into account both MDs and NMDs on the complex
argument plane. Here, the amplitude term gives the
extent of belongingness, and the phase term represents
the periodicity of an object. Clearly, these phase terms
distinguish the CIFS from the traditional IFS theory.
In IFS theory, the factor of periodicity is completely
ignored and hence, there is a certain loss of information.
To avoid such a loss, the factor of periodicity was
included in the analysis. To further illustrate the con-
cept of phase terms, consider a certain company who
wants to purchase cars from the carmakers regarding
the features such as: (i) models and (ii) production
dates of cars. Since the carmakers produce the same
models of cars with slight improvements and di�erences
every year, people, aware of the changes made, go
along with the new model regardless of their judgments.
In this regard, the production date of cars plays
a signi�cant role during the purchasing or decision.
Therefore, such a two-dimensional problem cannot be
simultaneously modeled in both existing FSs or IFSs
environments. Furthermore, in order to execute such
types of problems under IFS environment, �rst, two or
more IFSs should be taken into account by the decision-
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Table 1. Comparison of Complex IFS (CIFS) model with existing models in literature

Features Uncertainty Falsity Hesitation Periodicity Ability to represent two-
dimensional information

FS X � � � �
IVFS X � � � �
IFS X X X � �
IVIFS X X X � �
CFS X � � X X
IVCFS X � � X X
CIFS X X X X X

makers, thus leading to an increase in the execution
time and number of computations while solving the
problem. However, CIFS is a better representation of
such problems in which both dimensions are considered
as a single set. In addition, it is a better representation
of the data than the existing ones. The salient features
of CIFSs over several existing sets are given in Table 1.

Due to the complex DM process, it is inevitable
to measure the degree of discrimination between the
pairs of the sets. For this purpose, the IMs are the
most e�cient tools. Amongst the multiple measures
such as entropy, similarity, inclusion, etc., the DvMs
have the quality to evaluate the discrimination degree
between the sets. Thus, encouraged from the hallmarks
of the CIFS model and quality of DvM, the main
objective of this study is to develop some exponential-
based DvMs to quantify the information. To this end,
the information was designated under the CIFS model
to quantify the data using the proposed measure for
solving the DMPs. Some axioms and their properties
are discussed in detail. Later, based on the intended
study, an algorithm was elaborated to solve the DMPs
and illustrate them through several numerical exam-
ples. To the best of the authors' knowledge, no study
has been conducted so far on DvM and their impact
on DMPs under the CIFS study. In this regard, a
necessity was felt to scrutinize it under the environment
and control its impact on the DM process. Accordingly,
based on the advantages of the CIFSs model, the chief
contributions of this research work are classi�ed into
three parts:

1. To propose the exponential DvM to measure the
discrimination between the pairs of CIFSs;

2. To establish DM approach using the proposed
measures;

3. To demonstrate the developed method with several
examples and showcase its feasibility.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts of IFSs and CIFSs.
Section 3 introduces the concept of DvMs for CIFSs

and examines their properties. Section 4 evaluates the
function of maximizing deviation method to determine
the weights, followed by the DM approach to MCDM
problem. Section 5 clari�es the approach with some
useful models. Finally, Section 6 presents the conclud-
ing remarks.

2. Preliminaries

Let X be the universal set. Here, we have reviewed the
basic de�nitions related to IFSs and CIFSs here.

De�nition 2.1 [1]. A FS F on X is de�ned as follows:

F = fhx; uF (x)i j x 2 Xg; (1)

where uF (x) 2 [0; 1] represents the MD of element x.

De�nition 2.2 [25]. The degree of discrimination,
known as DvM, between two discrete distributions
P = (p1; p2; � � � ; pn) and Q = (q1; q2; � � � ; qn) is given
as follows:

D(P;Q) =
nX
j=1

pj log
�
pj
qj

�
: (2)

De�nition 2.3 [26]. For two FSs F = f(x; uF (x)) j
x 2 Xg and G = f(x; uG(x)) j x 2 Xg, the fuzzy DvM
is de�ned as:

D(F ;G) =
1
n

nX
j=1

�
uF (xj) log

�
uF (xj)
uG(xj)

�
+ (1� uF (xj)) log

�
1� uF (xj)
1� uG(xj)

��
: (3)

De�nition 2.4 [2]. An IFS I on X is de�ned as:

I = fhx; uI(x); vI(x)i j x 2 Xg; (4)

where uI ; vI : X ! [0; 1] represent the MD and NMD
functions of x to I, respectively, such that uI(x) +
vI(x) � 1 for each x.

De�nition 2.5 [27]. For two IFSs I = f(x; uI
(x); vI(x)) j x 2 Xg and J = f(x; uJ (x); vJ (x)) j
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x 2 Xg de�ned on X , the DvM of I relative to J is
de�ned as:

D(I;J ) =
1
n

nX
j=1

�
uI(xj) log

�
2uI(xj)

uI(xj) + uJ (xj)

�
+vI(xj) log

�
2vI(xj)

vI(xj) + vJ (xj)

��
: (5)

Later, Garg et al. [31] de�ned some generalized para-
metric divergence of order � and degree � under IFS
environment obtained by Eq. (6) as shown in Box I.

De�nition 2.6 [4]. A CFS K de�ned on X is given
as:
K = f(x; �K(x)) : x 2 Xg; (7)

where �K : X ! fa : a 2 C; jaj � 1g is a complex-
valued MD function and de�ned by:

�K(x) = rK(x)ei2�wrK (x);

where i =
p�1, 0 � rK(x), wrK(x) � 1.

De�nition 2.7 [5]. A CIFS K on X is given as:

K = f(x; �K(x); 
K(x)) : x 2 Xg; (8)

where �K and 
K are the complex-valued MD and
NMD functions de�ned as �K(x) = rK(x)e2�iwrK (x)

and 
K(x) = kK(x)e2�iwkK (x), where 0 � rK(x),

kK(x) � 1; 0 � rK(x) + kK(x) � 1 and 0 �
wrK(x); wkK(x); wrK(x) + wkK(x) � 1. In this study,
such a pair is regarded as K = ((rK; wrK); (kK; wkK)),
which is called Complex Intuitionistic Fuzzy Number
(CIFN).

De�nition 2.8 [5]. Let K = f((rK(x); wrK(x));
(kK(x); wkK(x))) : x 2 Xg and M = f((rM(x);
wrM(x)); (kM(x); wkM(x))) : x 2 Xg be two CIFSs.
Then, we de�ne:

(i) K � M if rK(x) � rM(x), kK(x) � kM(x) and
wrK(x) � wrM(x), wkK(x) � wkM(x);

(ii) K =M,K �M and M� K;

(iii) Kc = f((kK(x); wkK(x)); (rK(x); wrK(x))) : x 2
Xg;

(iv) K [ M = f((rK[M(x); wrK[M(x)); (kK[M(x);
wkK[M(x))) : x 2 Xg where rK[M(x) =
maxfrK(x); rM(x)g, kK[M(x) = minfkK(x);
kM(x)g, wrK[M(x) = maxfwrK(x); wrM(x)g and
wkK[M(x) = minfwkK(x); wkM(x)g;

(v) K \ M = f((rK\M(x); wrK\M(x)); (kK\M(x);
wkK\M(x))) : x 2 Xg where rK\M(x) =
minfrK(x); rM(x)g, kK\M(x) = maxfkK(x);
kM(x)g, wrK\M(x) = minfwrK(x); wrM(x)g and
wkK\M(x) = maxfwkK(x); wkM(x)g.

D(I;J ) =
�

n(2� �)

nX
j=1

266666666666666664

u
�

2��I (xj) log

0@ u
�

2��I (xj)

�u
�

2��I (xj) + (1� �)u
�

2��J (xj)

1A
+ v

�
2��I (xj) log

0@ v
�

2��I (xj)

�v
�

2��I (xj) + (1� �)v
�

2��J (xj)

1A
+ h

�
2��I (xj) log

0@ h
�

2��I (xj)

�h
�

2��I (xj) + (1� �)h
�

2��J (xj)

1A

377777777777777775

+
�

n(2� �)

nX
j=1

266666666666666664

u
�

2��J (xj) log

0@ u
�

2��J (xj)

�u
�

2��J (xj) + (1� �)u
�

2��I (xj)

1A
+ v

�
2��J (xj) log

0@ v
�

2��J (xj)

�v
�

2��J (xj) + (1� �)v
�

2��I (xj)

1A
+ h

�
2��J (xj) log

0@ h
�

2��J (xj)

�h
�

2��J (xj) + (1� �)h
�

2��I (xj)

1A

377777777777777775
: (6)

Box I
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3. Proposed exponential divergence measure

Let �(X ) be the class of CIFSs. Then, here, we
de�ne the exponential DvM for �(X ) and study their
properties:

De�nition 3.1. For K;M 2 �(X ), a real function
Dv : �(X )� �(X )! R+ is called a DvM, if:

(P1) Dv(K;M) � 0;
(P2) Dv(K;M) = Dv(M;K);
(P3) Dv(K;M) = 0 if K =M;
(P4) Dv(K;M) = Dv(Kc;Mc).

De�nition 3.2. For two CIFSs K=f((rK(x); wrK(x)),
(kK(x); wkK(x))) : x 2 Xg and M = f((rM(x); wrM
(x)); (kM(x); wkM(x))) : x2Xg, the degree of discrim-
ination between them is de�ned by Eq. (9) as shown in
Box II, where `exp' refers to the exponential function.

Here, E(K;M) 6= E(Kc;Mc). Obviously, the
degree of discriminations of K fromM and Kc fromMc

should be the same. In order to imbue the measure with
symmetry, we de�ne the symmetric DvM as follows.

De�nition 3.3. A symmetric exponential diver-
gence measure for two CIFSs K and M, denoted by
Dv(K;M) is de�ned as follows:

Dv(K;M)=E(K;M) + E(Kc;Mc)

=
1

4n(1� e�1)

nX
j=12666666664

4�(1�tj(K;M)) exp(tj(K;M))

�(1+tj(K;M)) exp(�tj(K;M))

�(1�sj(K;M)) exp(sj(K;M))

�(1+sj(K;M)) exp(�sj(K;M))

3777777775 ;(10)

where:

tj(K;M)

=
(rK(xj)� rM(xj))� (kK(xj)� kM(xj))

2
;

and:

sj(K;M)

=
(wrK(xj)�wrM(xj))�(wkK(xj)�wkM(xj))

2
:

Remark 3.1. tj(K;M) = �tj(M;K) and sj(K;M)
= �sj(M;K).

Before proving that Eq. (10) is valid DvM, the
two following lemmas can be stated as follows.

Lemma 3.1. Let f(y) = 2 � (1 � y) exp(y) � (1 +
y) exp(�y) be a function, where y 2 [�1; 1]. Then:

0 � f(y) � 2� 2 exp(�1):

Proof. Since f(y) = 2�(1�y) exp(y)�(1+y) exp(�y).
f 0(y) = y(exp(y) + exp(�y)) which follows that f(y) is
decreasing in [�1; 0] and increasing in [0; 1]. Therefore,
when y 2 [�1; 0], f(0) � f(y) � f(�1) i.e., 0 � f(y) �
2�2 exp(�1) and similarly for y 2 [0; 1], f(0) � f(y) �
f(1) i.e., 0 � f(y) � 2 � 2 exp(�1). Hence, for y 2
[�1; 1], we have 0 � f(y) � 2� 2 exp(�1). �

Lemma 3.2. For y 2 [�1; 0], the functions f1(y) =
(1 � y) exp(y) and f2(y) = (1 + y) exp(�y) are the
increasing functions.

Proof. Since f1(y) = (1 � y) exp(y). For y 2 [�1; 0],
f 01(y) = �y exp(y) � 0 implying that f1(y) is an
increasing function. Similarly, we can prove that f2(y)
is an increasing function for y 2 [�1; 0]. �

Theorem 3.1. The measure presented in De�ni-
tion 3.3 is a valid divergence measure.

E(K;M)=
1

4n(1� e�1)

nX
j=1

266666666666666664

2�
�
kK(xj) + 1� rK(xj)

2

�
exp

�
(rK(xj)� rM(xj))� (kK(xj)� kM(xj))

2

�
�
�
rK(xj) + 1� kK(xj)

2

�
exp

�
(rM(xj)� rK(xj))� (kM(xj)� kK(xj))

2

�
�
�wkK(xj)+1�wrK(xj)

2

�
exp

� (wrK(xj)�wrM(xj))�(wkK(xj)�wkM(xj))
2

�
�
�wrK(xj)+1�wkK(xj)

2

�
exp

� (wrM(xj)�wrK(xj))�(wkM(xj)�wkK(xj))
2

�

377777777777777775
:

(9)

Box II
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Proof. Let K = f((rK(x); wrK(x)); (kK(x); wkK(x))) :
x 2 Xg;M = f((rM(x); wrM(x)); (kM(x); wkM(x))) :
x 2 Xg and N = f((rN (x); wrN (x)); (kN (x); wkN
(x))) : x 2 Xg be three CIFSs. Then, to prove the
results, we need to show that Eq. (10) satis�es the
following axioms:

(P1) 0 � Dv(K;M) � 1;

(P2) Dv(K;M) = 0 if K =M;

(P3) Dv(K;M) = Dv(M;K);

(P4) If K � M � N then, Dv(K;N ) � Dv(K;M)
and Dv(K;N ) � Dv(M;N ).

By de�ning CIFSs, we have:

(P1) Since 0 � rK(xj); rM(xj); kK(xj); kM(xj) � 1.
It implies that �1 � rK(xj) � rM(xj) � 1;
�1 � kK(xj) � kM(xj) � 1 which gives that
�2 � (rK(xj)�rM(xj))�(kK(xj)�kM(xj)) � 2
and hence, �1 � tj(K;M) � 1. Similarly, we
can prove that, �1 � sj(K;M) � 1. Then,
using the above Lemma 3.1, we obtain that
0 � 2 � (1 � tj(K;M)) exp(tj(K;M)) �(1 +
tj(K;M)) exp(�tj(K;M)) � 2� 2 exp(�1) and
0 � 2 � (1 � sj(K;M)) exp(sj(K;M))� (1 +
sj(K;M)) exp(�sj(K;M)) � 2 � 2 exp(�1)
which gives that 0 � 4 � (1 � tj(K;M)) exp
(tj(K;M)) � (1 + tj(K;M)) exp(�tj(K;M))
�(1�sj(K;M)) exp(sj(K;M))�(1+sj(K;M))
exp(�sj(K;M)) � 4 � 4 exp(�1). Hence, 0 �
Dv(K;M) � 1;

(P2) ForK =M, we have rK(xj) = rM(xj), kK(xj) =
kM(xj), wrK(xj) = wrM(xj) and wkK(xj) =
wkM(xj) for all j's which gives that tj(K;M) =
sj(K;M) = 0. Thus, Dv(K;M) = 0;

(P3) As, tj (K;M) = �tj (M;K) and sj (K;M) =
�sj (M;K). Therefore, it follows that
Dv (K;M) = Dv (M;K);

(P4) Since K�M � N , it implies that rK (xj) �
rM(xj) � rN (xj) and kK(xj) � kM (xj) �
kN (xj) which gives that rK(xj)� rN (xj) �
rK(xj) � rM(xj) � 0 and 0 � kK(xj) � kM
(xj) � kK(xj) � kN (xj). It follows that tj(K;N ) � tj(K;M) � 0. Also, tj(K;N ),tj(K;M)�
�1. Then, by using Lemma 3.2, we have
(1 � tj(K;N )) exp(tj(K;N )) � (1� tj(K;M))
exp(tj(K;M)) and (1 + tj (K;N )) exp(�tj
(K; N )) � (1 + tj(K;M)) exp(�tj(K;M)).
Similarly, we can prove that (1 � sj(K;N ))
exp(sj(K;N )) � (1 � sj(K;M)) exp(sj(K;M))
and (1 + sj(K;N )) exp(�sj(K; N )) �
(1 + sj(K;M)) exp(�sj(K;M)). Hence, Dv

(K;N ) � Dv(K;M). Similarly, we can prove
that Dv (K;N ) � Dv(M;N ). �

The functionality of the proposed measure is
clari�ed through the example below:

Example 3.1. For X = fx1; x2; x3g, let K=f(x1, (0.4,
0.1), (0.3, 0.5)), (x2, (0.5, 0.3), (0.1, 0.2)), (x3, (0.7,
0.3), (0.2, 0.3))g, and M=f(x1, (0.6, 0.3), (0.3, 0.2)),
(x2, (0.4, 0.3), (0.2, 0.1)), (x3, (0.7, 0.4), (0.1, 0.2))g
be two CIFSs. Then:

t1(K;M) =
(rK(x1)�rM(x1))�(kK(x1)�kM(x1))

2

=
(0:4� 0:6)� (0:3� 0:3)

2
= �0:1:

Similarly, t2(K;M) = 0:1, t3(K;M) = �0:05, s1(K;
M) = �0:25, s2(K;M) = �0:05, and s3(K;M) =
�0:1 can be obtained. Therefore, based on Eq. (10),
we have:

Dv(K;M) =
1

12(1� e�1)266666666666666664

4�(1+0:1)e�0:1�(1�0:1)e0:1

�(1+0:25)e�0:25�(1�0:25)e0:25

+4�(1�0:1)e0:1�(1+0:1)e�0:1

�(1+0:05)e�0:05�(1�0:05)e0:05

+4�(1+0:05)e�0:05�(1�0:05)e0:05

�(1+0:1)e�0:1�(1�0:1)e0:1

377777777777777775
= 0:0130:

In the following, we prove some propositions for the
proposed divergence measure. For this, the universal
set X was divided into two disjointed subsets X1 =
fxj j K(xj) � M(xj)g and X2 = fxj j M(xj) �K(xj)g. Then, the following propositions were satis�ed
based on these considerations.

Proposition 3.1. If K and M are two CIFSs de�ned
on X such that they satisfy any xj 2 X either K �M
or K �M, then:

(i) Dv(K [M;K \M) = Dv(K;M);
(ii) Dv(K \M;K [M) = Dv(K;M).

Proof. Here, we prove Part (i) only, and Part (ii) can
be similarly deduced. From De�nition 3.3, we obtain
the equation shown in Box III.

Proposition 3.2. For CIFSs K,M, and N de�ned on
X , we have:
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Dv(K [M;K\M) =
1

4n(1� e�1)

nX
j=1

2666666664
4� (1� tj(K [M;K \M))etj(K[M;K\M)

� (1 + tj(K [M;K \M))e�tj(K[M;K\M)

� (1� sj(K [M;K \M))esj(K[M;K\M)

� (1 + sj(K [M;K \M))e�sj(K[M;K\M)

3777777775

=
1

4n(1� e�1)

X
xj2X1

2666666664
4� (1� tj(K [M;K \M))etj(K[M;K\M)

� (1 + tj(K [M;K \M))e�tj(K[M;K\M)

� (1� sj(K [M;K \M))esj(K[M;K\M)

� (1 + sj(K [M;K \M))e�sj(K[M;K\M)

3777777775

+
1

4n(1� e�1)

X
xj2X2

2666666664
4� (1� tj(K [M;K \M))etj(K[M;K\M)

� (1 + tj(K [M;K \M))e�tj(K[M;K\M)

� (1� sj(K [M;K \M))esj(K[M;K\M)

� (1 + sj(K [M;K \M))e�sj(K[M;K\M)

3777777775
=

1
4n(1� e�1)

X
xj2X1

24 4� (1� tj(M;K))etj(M;K) � (1 + tj(M;K))e�tj(M;K)

� (1� sj(M;K))esj(M;K) � (1 + sj(M;K))e�sj(M;K)

35
+

1
4n(1� e�1)

X
xj2X2

24 4� (1� tj(K;M))etj(K;M) � (1 + tj(K;M))e�tj(K;M)

� (1� sj(K;M))esj(K;M) � (1 + sj(K;M))e�sj(K;M)

35
=

1
4n(1� e�1)

X
xj2X1

24 4� (1 + tj(K;M))e�tj(K;M) � (1� tj(K;M))etj(K;M)

� (1 + sj(K;M))e�sj(K;M) � (1� sj(K;M))esj(K;M)

35
+

1
4n(1� e�1)

X
xj2X2

24 4� (1� tj(K;M))etj(K;M) � (1 + tj(K;M))e�tj(K;M)

� (1� sj(K;M))esj(K;M) � (1 + sj(K;M))e�sj(K;M)

35
=

1
4n(1� e�1)

nX
j=1

24 4� (1� tj(K;M))etj(K;M) � (1 + tj(K;M))e�tj(K;M)

� (1� sj(K;M))esj(K;M) � (1 + sj(K;M))e�sj(K;M)

35 = Dv(K;M): �

Box III

Dv(K[M;N )+Dv(K\M;N )=Dv(K;N )+Dv(M;N ):

Proof. Through De�nition 3.3, we obtain the equation
shown in Box IV.

Proposition 3.3. For CIFSs K and M de�ned on X ,
we have:

(i) Dv(K;K [M) +Dv(K;K \M) = Dv(K;M);
(ii) Dv(M;K [M) +Dv(M;K \M) = Dv(K;M).

Proof. Considering N = K in Proposition 3.2, we
have Dv(K [ M;K) + Dv(K \ M;K) = Dv(K;K) +
Dv(M;K) = Dv(K;M). Hence, Part (i) holds and so
does Part (ii). �
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Dv(K [M;N ) +Dv(K \M;N )

=
1

4n(1� e�1)

nX
j=1

24 4� (1� tj(K [M;N ))etj(K[M;N ) � (1 + tj(K [M;N ))e�tj(K[M;N )

� (1� sj(K [M;N ))esj(K[M;N ) � (1 + sj(K [M;N ))e�sj(K[M;N )

35
+

1
4n(1� e�1)

nX
j=1

24 4� (1� tj(K \M;N ))etj(K\M;N ) � (1 + tj(K \M;N ))e�tj(K\M;N )

� (1� sj(K \M;N ))esj(K\M;N ) � (1 + sj(K \M;N ))e�sj(K\M;N )

35
=

1
4n(1� e�1)

X
xj2X1

24 4� (1� tj(K [M;N ))etj(K[M;N ) � (1 + tj(K [M;N ))e�tj(K[M;N )

� (1� sj(K [M;N ))esj(K[M;N ) � (1 + sj(K [M;N ))e�sj(K[M;N )

35
+

1
4n(1� e�1)

X
xj2X2

24 4� (1� tj(K [M;N ))etj(K[M;N ) � (1 + tj(K [M;N ))e�tj(K[M;N )

� (1� sj(K [M;N ))esj(K[M;N ) � (1 + sj(K [M;N ))e�sj(K[M;N )

35
+

1
4n(1� e�1)

X
xj2X1

24 4� (1� tj(K \M;N ))etj(K\M;N ) � (1 + tj(K \M;N ))e�tj(K\M;N )

� (1� sj(K \M;N ))esj(K\M;N ) � (1 + sj(K \M;N ))e�sj(K\M;N )

35
+

1
4n(1� e�1)

X
xj2X2

24 4� (1� tj(K \M;N ))etj(K\M;N ) � (1 + tj(K \M;N ))e�tj(K\M;N )

� (1� sj(K \M;N ))esj(K\M;N ) � (1 + sj(K \M;N ))e�sj(K\M;N )

35
=

1
4n(1� e�1)

X
xj2X1

24 4� (1� tj(M;N ))etj(M;N ) � (1 + tj(M;N ))e�tj(M;N )

� (1� sj(M;N ))esj(M;N ) � (1 + sj(M;N ))e�sj(M;N )

35
+

1
4n(1� e�1)

X
xj2X2

24 4� (1� tj(K;N ))etj(K;N ) � (1 + tj(K;N ))e�tj(K;N )

� (1� sj(K;N ))esj(K;N ) � (1 + sj(K;N ))e�sj(K;N )

35
+

1
4n(1� e�1)

X
xj2X1

24 4� (1� tj(K;N ))etj(K;N ) � (1 + tj(K;N ))e�tj(K;N )

� (1� sj(K;N ))esj(K;N ) � (1 + sj(K;N ))e�sj(K;N )

35
+

1
4n(1� e�1)

X
xj2X2

24 4� (1� tj(M;N ))etj(M;N ) � (1 + tj(M;N ))e�tj(M;N )

� (1� sj(M;N ))esj(M;N ) � (1 + sj(M;N ))e�sj(M;N )

35
=Dv(K;N ) +Dv(M;N ): �

Box IV

Proposition 3.4. For CIFSs K,M, and N de�ned on
X , we have:

(i) Dv(K;N ) +Dv(M;N )�Dv(K [M;N ) � 0;
(ii) Dv(K;N ) +Dv(M;N )�Dv(K \M;N ) � 0.

Proof. Based on Proposition 3.2, we have Dv (K;N )+

Dv(M;N ) � Dv(K [ M;N ) = Dv(K \ M;N ) and
based on Theorem 3.1, we have Dv(K \M;N ) � 0.
Therefore, Dv(K;N ) +Dv(M;N )�Dv(K[M;N ) �
0. �

Proposition 3.5. For CIFSs K and M de�ned on X ,
we have:
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(i) Dv(K;M) = Dv(Kc;Mc);
(ii) Dv(Kc;M) = Dv(K;Mc);

(iii) Dv(K;M) + Dv(Kc;M) = Dv(Kc;Mc) + Dv(K;
Mc).

Proof. They can be directly proved through De�ni-
tion 3.3. �

Next, we de�ne the weighted exponential diver-
gence measure between CIFSs. In this respect, let �j >
0 be the weight vector of xj 2 X with

Pn
j=1 �j = 1.

De�nition 3.4. A weighted exponential divergence
measure between two CIFSs K and M is de�ned as:

Dv�(K;M) =
1

4(1� e�1)

nX
j=1

�j

0BBBBBBBB@
4� (1� tj(K;M)) exp(tj(K;M))

� (1 + tj(K;M)) exp(�tj(K;M))

� (1� sj(K;M)) exp(sj(K;M))

� (1 + sj(K;M)) exp(�sj(K;M))

1CCCCCCCCA ; (11)

where:

tj(K;M)=
(rK(xj)� rM(xj))� (kK(xj)� kM(xj))

2
;

and:

sj(K;M)

=
(wrK(xj)�wrM(xj))�(wkK(xj)�wkM(xj))

2
:

If � = (1=n; 1=n; � � � ; 1=n)T , Eq. (11) becomes
Eq. (10). Further, the measure de�ned in Eq. (11) also
satis�es the axioms of DvMs, thus 0 � Dv�(K;M) � 1.

Proposition 3.6. Let K, M, and N be three CIFSs
de�ned on X = fx1; x2; � � � ; xng such that for every
xj 2 X either K(xj) � M(xj) or M(xj) � K(xj).
Then:

(i) Dv�(K [M;K \M) = Dv�(K;M);
(ii) Dv�(K \M;K [M) = Dv�(K;M);

(iii) Dv�(K [ M;N ) + Dv�(K \ M;N ) = Dv�(K;
N ) +Dv�(M;N );

(iv) Dv�(K;K[M)+Dv�(K;K\M) = Dv�(K;M);
(v) Dv�(M;K [M) + Dv�(M;K \M) = Dv�(K;

M);
(vi) Dv�(K;N )+Dv�(M;N )�Dv�(K[M;N ) � 0;

(vii) Dv�(K;N )+Dv�(M;N )�Dv�(K\M;N ) � 0;
(viii) Dv�(K;M) = Dv�(Kc;Mc);

(ix) Dv�(Kc;M) = Dv�(K;Mc);
(x) Dv�(K;M) + Dv�(Kc;M) = Dv�(Kc;Mc) +

Dv�(K;Mc).

Proof. These are similar to the proofs of Propositions
3.1{3.5.�

4. The proposed approach based on DM

Assume that there is a set of alternatives
A1;A2; � � � ;Am under \n" criteria C1; C2; � � � ; Cn. Let
�q > 0 be the weight vector corresponding to the
criterion Cq with

Pn
q=1 �q = 1. An expert evaluated

these di�erent alternatives under the set of criteria
and gave their preferences in terms of CIFNs �pq. The
collective information of such rating is represented as
a matrix D = (�pq)m�n.

Yingming [53] recommended an approach to de-
termining the criteria weights more subjectively and
called it a method for maximizing deviations. In this
method, the weight vector � should be chosen such that
deviations of all criteria corresponding to alternatives
become maximum. For an arbitrary criterion Cq (q =
1; 2; � � � ; n), the deviation of alternative Ap to other
alternatives is given as:

Dpq(�q) =
mX
u=1

Dv(�pq; �uq)�q:

Then, total deviation of the criterion Cq from all the
alternatives is given as:

Dq =
mX
p=1

mX
u=1

Dv(�pq; �uq)�q:

Further, the deviations of all criteria from all alterna-
tives are obtained as:

D =
nX
q=1

mX
p=1

mX
u=1

Dv(�pq; �uq)�q:

Let 4 be the set of weight information known in any
of the following forms:

Form 1. A weak ranking: �i � �j ;
Form 2. A strict ranking: �i � �j � �i, (�i > 0);
Form 3. A ranking with multiples: �i � �i�j , (0 �

�i � 1);
Form 4. An interval form: �i � �i � �i + �i, (0 �

�i � �i + �i � 1);
Form 5. A ranking of di�erences: �i � �j � �k � �l,

(j 6= k 6= l).

Now, based on D , the nonlinear optimization model
can be constructed to �nd the optimal weights of the
criteria by assuming that the information related to
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attribute weights is partially known, as shown in the
following:

max D =
nX
q=1

mX
p=1

mX
u=1

Dv(�pq; �uq)�q;

subject to: �q 2 4;
nX
q=1

�q = 1; �q > 0;
(12)

where Dv(�pq; �uq) is determined using Eq. (10).
In case the information about the attribute

weights is completely unknown, another nonlinear
optimization model can be established as follows:

max D =
nX
q=1

mX
p=1

mX
u=1

Dv(�pq; �uq)�q;

subject to:
nX
q=1

�2
q = 1; �q > 0: (13)

In order to obtain the solution of the problem men-
tioned in Eq. (13), consider a function:

g(�q; �)=
nX
q=1

mX
p=1

mX
u=1

Dv(�pq; �uq)�q+�

 
nX
q=1

�2
q�1

!
;

(14)

where � is Lagrange's multiplier. Now:

@g
@�q

=
mX
p=1

mX
u=1

Dv(�pq; �uq) + �; (15)

@g
@�

=
nX
q=1

�2
q � 1: (16)

Now, upon setting Eqs. (15) and (16) equal to zero and
then, solving them, we obtain:

�q =

mP
p=1

mP
u=1
Dv(�pq; �uq)vuut nP

q=1

 
mP
p=1

mP
u=1
Dv(�pq; �uq)

!2
: (17)

Further, the normalized value of �q can be obtained as
follows:

��q =
�q
nP
q=1

�q
=

mP
p=1

mP
u=1
Dv(�pq; �uq)

nP
q=1

mP
p=1

mP
u=1
Dv(�pq; �uq)

: (18)

These models should be solved to obtain the optimal
weights � = (�1; �2; � � � ; �n)T .

Based on the collective information and the
weight vector �, the following steps are proposed to
compute the �nest alternatives from the given ones:

Step 1: The information about the alternatives is
represented as a decision matrix D, as shown in the
following:

D =

C1 C2 � � � CnA1A2
...
Am

0BBB@
�11
�21

...
�m1

�12
�22

...
�m2

: : :
: : :
. . .
: : :

�1n
�2n

...
�mn

1CCCA: (19)

Step 2: Normalize the information, if required; then,
the obtained matrix R = (�pq) where �pq is obtained
through Eq. (20):

�pq =

8>>>>>><>>>>>>:
For bene�t type criteria :
((rpq; wrpq ); (kpq; wkpq ));

For cost type criteria :
((kpq; wkpq ); (rpq; wrpq ));

(20)

Step 3: Formulate the optimization model using
either Eq. (12) or Eq. (18) according to the known
information of the weight vector and solve it.
Step 4: Construct the ideal alternative denoted by
A� as:

A�=f(Cq; (rq; wrq ); (kq; wkq )) j q=1; 2; � � � ; ng;
where rq = maxpfrpqg; kq = minpfkpqg; wrq =
maxpfwrpqg and wkq = minpfwkpqg 8 q = 1; 2; � � � ; n.
Step 5: Compute the DvM for the alternative
Ap(p = 1; 2; � � � ;m) from A� as:

Dv�(Ap;A�) =
1

4(1� e�1)

nX
q=1

�q

0BBBBBBBB@
4�(1�tq(Ap;A�)) exp(tq(Ap;A�))
�(1+tq(Ap;A�)) exp(�tq(Ap;A�))
�(1�sq(Ap;A�)) exp(sq(Ap;A�))
�(1+sq(Ap;A�)) exp(�sq(Ap;A�))

1CCCCCCCCA:(21)

Step 6: Based on the argument of Dv� given as
arg min1�p�mfDv�(Ap;A�)g, order the alternatives
and select the desired one.

5. Illustrative example

To illustrate the approach, a case study was taken into
account concerning the entrepreneur to purchase a new
machine out of four di�erent models denoted by A1,
A2, A3, and A4 with di�erent dates of production of
each model. The accessibility of such machines was
measured under four di�erent criteria:

C1: \Reliability",
C2: \Safety",
C3: \Cost",
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C4: \Productivity for selecting machine".

These factors change with the change of the production
dates. To evaluate each machine under such factors,
preferences are taken from the expert in CIFNs. The
steps of the proposed method are illustrated in the
following:

Step 1: The given information is collected in terms
of CIFNs, which is summarized in Table 2. In this
matrix, the entry corresponding to the machine A1
indicates that an expert during the evaluation agrees
that it is reliable up to 70% under C1 and unreliable
at most 10%. Similarly, concerning the production
date, he feels that 50% is compatible and 30% is
incompatible with C1. In a similar manner, all data
of matrix D can be interpreted;
Step 2: As C3 is the cost type, through Eq. (20), the
normalized data are presented in Table 3;
Step 3: If we initially assume that the partial
information about the weight vector corresponding
to the criteria is partially known given as 4 =
f0:2 � �1 � 0:4; 0:15 � �2 � 0:25; 0:25 � �3 �
0:3; 0:1 � �4 � 0:25g such that �1 +�2 +�3 +�4 = 1.
Then, through Eq. (12), an optimization model can
be formulated as:

max D(�) =0:1610�1 + 0:0890�2

+ 0:1272�3 + 0:0711�4;

subject to: 0:20 � �1 � 0:40;

0:15 � �2 � 0:25;

0:25 � �3 � 0:30;

0:10 � �4 � 0:25;

4X
q=1

�q = 1; �q > 0:

After solving, we get � = (0:4; 0:2; 0:3; 0:1)T . On
the contrary, if we assume that the information
related to the criteria weights is completely un-
known, the weight vector can be obtained as � =
(0:3592; 0:1985; 0:2838; 0:1585)T using Eq. (18).
Step 4: Based on the matrix R, the ideal alternative
is taken as:

A� =

8>>>>>>>><>>>>>>>>:

(C1; (0:7; 0:8); (0:1; 0:1));

(C2; (0:7; 0:9); (0:2; 0:1));

(C3; (0:7; 0:7); (0:1; 0:1));

(C4; (0:7; 0:7); (0:1; 0:1))

9>>>>>>>>=>>>>>>>>;
:

Step 5: With � = (0:4; 0:2; 0:3; 0:1)T , the expo-
nential divergence measure values are obtained by
Eq. (21) and we have:

Dv�(A1;A�)=0:0276; Dv�(A2;A�)=0:0139;

Dv�(A3;A�)=0:1012; Dv�(A4;A�)=0:0425:
(22)

In case of using � = (0:3592; 0:1985; 0:2838; 0:1585)T ,
the measurement values are obtained as:

Dv�(A1;A�)=0:0281; Dv�(A2;A�)=0:0145;

Dv�(A3;A�)=0:0936; Dv�(A4;A�)=0:0425:
(23)

Step 6: Through these values, the ordering of the
alternative will be A2 � A1 � A4 � A3 where \�"
refers \preferred to". Hence, A2 is the �nest one.

Table 2. Input data for the problem in Complex Intuitionistic Fuzzy Number (CIFN) format.

C1 C2 C3 C4

A1 ((0.7, 0.5), (0.1, 0.3)) ((0.4, 0.5), (0.3, 0.4)) ((0.2, 0.1), (0.6, 0.6)) ((0.5, 0.4), (0.1, 0.3))

A2 ((0.7, 0.6), (0.3, 0.3)) ((0.4, 0.9), (0.2, 0.1)) ((0.2, 0.3), (0.7, 0.7)) ((0.4, 0.6), (0.3, 0.1))

A3 ((0.3, 0.4), (0.6, 0.4)) ((0.6, 0.6), (0.3, 0.4)) ((0.5, 0.6), (0.3, 0.4)) ((0.7, 0.7), (0.1, 0.1))

A4 ((0.4, 0.8), (0.5,0.1)) ((0.7, 0.3), (0.3, 0.3)) ((0.1, 0.3), (0.6, 0.5)) ((0.5, 0.5), (0.3, 0.4))

Table 3. Normalized information data.

C1 C2 C3 C4

A1 ((0.7, 0.5), (0.1, 0.3)) ((0.4, 0.5), (0.3, 0.4)) ((0.6, 0.6), (0.2, 0.1)) ((0.5, 0.4), (0.1, 0.3))

A2 ((0.7, 0.6), (0.3, 0.3)) ((0.4, 0.9), (0.2, 0.1)) ((0.7, 0.7), (0.2, 0.3)) ((0.4, 0.6), (0.3, 0.1))

A3 ((0.3, 0.4), (0.6, 0.4)) ((0.6, 0.6), (0.3, 0.4)) ((0.3, 0.4), (0.5, 0.6)) ((0.7, 0.7), (0.1, 0.1))

A4 ((0.4, 0.8), (0.5, 0.1)) ((0.7, 0.3), (0.3, 0.3)) ((0.6, 0.5), (0.1, 0.3)) ((0.5, 0.5), (0.3, 0.4))
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Table 4. Comparative study results under Intuitionistic Fuzzy Set (IFS) environment.

Ref. Method based on Measurement values of RankingA1 A2 A3 A4

Maheshwari and Srivastava [33] Divergence measure 0.0161 0.0491 0.0515 0.0371 A1 � A4 � A2 � A3

Ohlan [30] Divergence measure 0.0605 0.0986 0.3893 0.1717 A1 � A2 � A4 � A3

Srivastava and Maheshwari [34] Divergence measure 0.1125 0.1722 0.1926 0.1520 A1 � A4 � A2 � A3

Garg et al. [31] Divergence measure 0.0563 0.2105 0.1697 0.1606 A1 � A4 � A3 � A2

Shen et al. [35] Distance measure 0.0857 0.1439 0.3644 0.2102 A1 � A2 � A4 � A3

Ye [36] Similarity measure 0.9816 0.9500 0.8231 0.9126 A1 � A2 � A4 � A3

Song et al. [37] Similarity measure 0.9888 0.9637 0.9155 0.9573 A1 � A2 � A4 � A3

5.1. Comparative analysis with CIFS studies
To check the consistency of the method with some
existing studies [42,44,45,52] under the CIFS environ-
ment, an analysis is conducted by their method and
the corresponding results are discussed below:

(i) By applying the method proposed by Alkouri and
Salleh [42] based on the distance measure `d1' to
the given information, we get d1(A1;A�) = 0:1500,
d1(A2;A�) = 0:1325, d1(A3;A�) = 0:3310, and
d1(A4;A�) = 0:1885. Thus, ordering is A2 � A1 �A4 � A3 and A2 is the best alternative;

(ii) By applying the method of Rani and Garg [44]
based on Hamming distance measure `d2', we get
the values as d2(A1;A�) = 0:1450, d2(A2;A�) =
0:1125, d2(A3;A�) = 0:3200, and d2(A4;A�) =
0:1725. Hence, it is seen that A2 is again the best
alternative;

(iii) By applying the method of Garg and Rani [45]
based on correlation coe�cient `C', we obtain
the indices' values as C(A1;A�) = 0:9407,
C(A2;A�) = 0:9571, C(A3;A�) = 0:7547, and
C(A4;A�) = 0:8926. Clearly, it is seen that the
best alternative is A2;

(iv) By performing the similarity measure S1, as pro-
posed by Garg and Rani [52], on the consid-
ered information under the CIFS environment,
we get the measurement value of each alternative
as S1(A1;A�) = 0:6733, S1(A2;A�) = 0:7663,
S1(A3;A�) = 0:5930, and S1(A4;A�) = 0:6378.
Thus, from it, we conclude that the best alternative
is A2.

From it, we conclude that their position of the given
alternatives coincides with the given ones, which vali-
dates the feasibility of the method.

5.2. Comparative analysis with IFS studies
Given that IFS is one of the special cases of CIFS
with zero phase terms in each CIFNs, in order to
check their performance under the IFS environment,
we conduct a comparative study with several existing

approaches [30,31,33{37]. The results are obtained and
listed in Table 4 and it is determined that A1 is the best
alternative. However, from the proposed approach, it
can be concluded that A2 is the best alternative. This
change in the optimal ranking order is quite signi�cant.
This is due to the consideration of the computational
procedure in the considered environment. For example,
in [30,31,33{37] approaches, only one grade of MDs
and NMDs is taken into account. In relation to the
considered problem, it can be claimed that a great
focus is devoted to the model of the machine in a
condition where the production date of each model
is neglected. Thus, based on the analysis, A1 is
the best machine when there are no limits on the
production date. However, in the proposed work, we
have investigated the theory based on both the model
as well as production dates simultaneously and, hence,
it is concluded that machine A2 is the best with the
production date.

5.3. Veri�cation and comparative analysis
To generalize the capability of CIFS with respect to
the features of IFS, some examples are given in the
following:

Example 5.1. Consider a DMP which consists of �ve
alternatives in the form of regions, namely:

A1 : Lalitpur,

A2 : Kathmandu,

A3 : Gorkha,

A4 : Bhaktapur,

A5 : Makwanpur,

which are a�ected by the earthquakes, racked Nepal
on 25 April 2015. The given task is to identify
the most damaged region so that necessary facilities
including C1 (food), C2 (shelter), C3 (clothes), and C4
(medical requirements) are provided to victims. Let
� = (0:30; 0:25; 0:15; 0:30)T be the priority weight of
them. Before allocating, an expert evaluates the given
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Table 5. Input preference for Example 5.1.

C1 C2 C3 C4

A1 ((0.6, 0.7), (0.1, 0.2)) ((0.9, 0.8), (0.1, 0.1)) ((0.5, 0.4), (0.3, 0.4)) ((0.6, 0.4), (0.2, 0.1))
A2 ((0.4, 0.2), (0.3, 0.1)) ((0.5, 0.3), (0.1, 0.1)) ((0.6, 0.4), (0.2, 0.3)) ((0.8, 0.6), (0.1, 0.2))
A3 ((0.7, 0.7), (0.1, 0.2)) ((0.4, 0.6), (0.3, 0.1)) ((0.7, 0.7), (0.1, 0.1)) ((0.6, 0.5), (0.3, 0.4))
A4 ((0.7, 0.6), (0.3, 0.3)) ((0.4, 0.9), (0.2, 0.1)) ((0.7, 0.7), (0.2, 0.3)) ((0.5, 0.3), (0.3, 0.6))
A5 ((0.2, 0.8), (0.5, 0.1)) ((0.7, 0.3), (0.3, 0.3)) ((0.6, 0.5), (0.1, 0.3)) ((0.6, 0.5), (0.3, 0.4))

Table 6. Comparative analysis of Example 5.1 with existing studies.

Study under CIFS environment

Approach Measurement value of B from
Ranking order

Ref. Method based on A1 A2 A3 A4 A5

Alkouri and Salleh [42] Distance measure 0.1817 0.1917 0.1400 0.2167 0.2600 A3�A1�A2�A4�A5

Rani and Garg [44] Euclidean distance measure 0.1871 0.1803 0.1374 0.2086 0.2225 A3�A2�A1�A4�A5

Garg and Rani [45] Correlation measure 0.8965 0.9087 0.9439 0.8747 0.8351 A3�A2�A1�A4�A5

Garg and Rani [52] Similarity measure 0.6912 0.6231 0.7400 0.6501 0.5762 A3�A2�A1�A4�A5

Proposed method Divergence measure 0.0325 0.0185 0.0171 0.0391 0.0552 A3�A2�A1�A4�A5

Study under IFS environment

Approach Measurement value of B from
Ranking order

Ref. Method based on A1 A2 A3 A4 A5

Zeng and Li [17] Correlation coe�cient 0.8740 0.8874 0.9442 0.8822 0.8262 A3�A2�A4�A1�A5

Ye [18] Correlation coe�cient 0.8808 0.9106 0.9551 0.9246 0.8250 A3�A4�A2�A1�A5

Liu et al. [19] Correlation coe�cient {0.4603 0.0000 0.5198 0.1143 {0.6336 A3�A4�A2�A1�A5

Luo and Ren [21] Similarity measure 0.8221 0.8527 0.8827 0.8492 0.7562 A3�A2�A4�A1�A5

Maheshwari and
Srivastava [33]

Divergence measure 0.0534 0.0454 0.0249 0.0655 0.0621 A3�A2�A1�A5�A4

Ohlan [30] Divergence measure 0.2254 0.1395 0.0731 0.0957 0.3216 A3�A4�A2�A1�A5

Srivastava and
Maheshwari [34]

Divergence measure 0.1520 0.1722 0.1125 0.1926 0.2345 A3�A1�A2�A4�A5

Garg et al. [31] Divergence measure 0.2428 0.1922 0.1196 0.2981 0.2685 A3�A2�A1�A5�A4

Shen et al. [35] Distance measure 0.1486 0.2104 0.1078 0.1759 0.2969 A3�A1�A4�A2�A5

Ye [36] Similarity measure 0.9084 0.9525 0.9767 0.9360 0.9099 A3�A2�A4�A5�A1

Song et al. [37] Similarity measure 0.9492 0.9590 0.9812 0.9522 0.9346 A3�A2�A4�A1�A5

regions based on facilities and a \reference set" B is
designed in terms of CIFS as follows:

B =

8>>>>>>>><>>>>>>>>:

(C1; (0:7; 0:5); (0:1; 0:3)) ;

(C2; (0:4; 0:6); (0:5; 0:2)) ;

(C3; (0:5; 0:5); (0:3; 0:1)) ;

(C4; (0:8; 0:7); (0:2; 0:1))

9>>>>>>>>=>>>>>>>>;
During a visit to each region, a team of experts has
investigated them and summarized their information

in Table 5. The ranking results corresponding to
this problem are listed in Table 6 along with several
existing MCDM methods [42,44,45,52]. From this
table, it is seen that the best alternative remains
A3, but the alternative A1 is preferable over A4.
In the approaches [17{19,21,30,31,33-37] under IFS
environment, it is observed that A4 is preferable over
A1. This change in ordering results from the change
in the considered environment. Further, the scope of
studies under the IFS is more limited than that of CIFS
studies.

Example 5.2 [45]. Consider a medical diagnosis prob-
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Table 7. Input data for Example 5.2.

s1 s2 s3 s4

Q1 ((0.8, 0.7), (0.1, 0.2)) ((0.9, 0.6), (0.1, 0.2)) ((0.7, 0.8), (0.2, 0.1)) ((0.8, 0.7), (0.2, 0.1))
Q2 ((0.6, 0.4), (0.1, 0.5)) ((0.4, 0.9), (0.5, 0.1)) ((0.5, 0.5), (0.3, 0.3)) ((0.4, 0.9), (0.5, 0.1))
Q3 ((0.3, 0.8), (0.3, 0.1)) ((0.8, 0.3), (0.1, 0.6)) ((0.7, 0.6), (0.2, 0.2)) ((0.2, 0.7), (0.8, 0.2))
Q4 ((0.5, 0.3), (0.4, 0.6)) ((0.3, 0.1), (0.6, 0.3)) ((0.8, 0.3), (0.1, 0.5)) ((0.1, 0.3), (0.6, 0.5))

Table 8. Comparative analysis of Example 5.2 with existing studies.

Study under CIFS environment
Approach Measurement value of P from

Ranking order
Ref. Method based on Q1 Q2 Q3 Q4

Alkouri and Salleh [42] Distance measure 0.0967 0.2717 0.2867 0.3550 Q1 � Q2 � Q3 � Q4

Rani and Garg [44] Euclidean distance measure 0.1194 0.2291 0.2669 0.3004 Q1 � Q2 � Q3 � Q4

Garg and Rani [45] Correlation measure 0.9696 0.8486 0.8008 0.6980 Q1 � Q2 � Q3 � Q4

Garg and Rani [52] Similarity measure 0.8896 0.5723 0.6037 0.4287 Q1 � Q3 � Q2 � Q4

Proposed method Divergence measure 0.0121 0.0608 0.0804 0.1077 Q1 � Q2 � Q3 � Q4

Study under IFS environment
Approach Measurement value of P from

Ranking order
Ref. Method based on Q1 Q2 Q3 Q4

Zeng and Li [17] Correlation coe�cient 0.9856 0.8461 0.7959 0.7258 Q1 � Q2 � Q3 � Q4

Ye [18] Correlation coe�cient 0.9912 0.8585 0.7265 0.6645 Q1 � Q2 � Q3 � Q4

Liu et al. [19] Correlation coe�cient 0.8485 0.1907 0.6608 -0.0690 Q1 � Q3 � Q2 � Q4

Luo and Ren [21] Similarity measure 0.9642 0.7394 0.7725 0.6538 Q1 � Q3 � Q2 � Q4

Maheshwari and
Srivastava [33]

Divergence measure 0.0195 0.0523 0.0820 0.0887 Q1 � Q2 � Q3 � Q4

Ohlan [30] Divergence measure 0.0100 0.3090 0.3946 0.6407 Q1 � Q2 � Q3 � Q4

Srivastava and
Maheshwari [34]

Divergence measure 0.0365 0.2345 0.2345 0.2996 Q1 � Q2 = Q3 � Q4

Garg et al. [31] Divergence measure 0.1024 0.2058 0.3318 0.3170 Q1 � Q2 � Q4 � Q3

Shen et al. [35] Distance measure 0.0308 0.2428 0.3339 0.4386 Q1 � Q2 � Q3 � Q4

Ye [36] Similarity measure 0.9804 0.9023 0.8000 0.8311 Q1 � Q2 � Q4 � Q3

Song et al. [37] Similarity measure 0.9825 0.9468 0.8931 0.8861 Q1 � Q2 � Q3 � Q4

lem with four diseases Q1 (viral fever), Q2 (malaria),
Q3 (typhoid), Q4 (stomach problem) and four symp-
toms s1 (temperature), s2 (headache), s3 (stomach
pain), s4 (cough). The rating values of each disease
under symptoms are given in Table 7. The weight of
each symptom is taken as � = (0:30; 0:20; 0:10; 0:40)T .
Consider a patient P approach to the expert regarding
their medical diagnosis. An expert treated this patient
as a reference set and rated the values of each symptom
in terms of CIFSs, as summarized below:

P =

8>>>>>>>><>>>>>>>>:

(s1; (0:8; 0:6); (0:1; 0:2)) ;

(s2; (0:9; 0:7); (0:1; 0:2)) ;

(s3; (0:7; 0:8); (0:2; 0:1)) ;

(s4; (0:6; 0:5); (0:2; 0:4))

9>>>>>>>>=>>>>>>>>;
:

The aim here is to diagnose the patient P and pinpoint
the disease. To do so, a number of methods as well as
the existing approaches employed [17{19,21,30,31,33{
37,42,44,45,52] and their results are given in Table 8.
Accordingly, we found that Q1 was infested with dis-
eases as was found by all the methods, demonstrating
the feasibility of the approach.

5.4. Characteristic comparison
To study the characteristics of the developed
method over the existing approaches [9,11,13,17,30{
37,44,45,49], we analyzed their characteristics in Table
9. In this table, `X' implies that the corresponding
DMP satis�es the criteria such as an ideal alternative
required to evaluate the process, measure the degree
of discrimination and ability to handle the wider
information, etc., whereas `�' means that the
corresponding method fails. Further, from this table,
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Table 9. The characteristic comparison of di�erent approaches.

Method

Needs an
ideal

alternative
to compute
the process

Measure the
degree of

discrimination
between
the sets

No unknown
parameter to
choose during

evaluation

Ability to
capture

information
using

complex
numbers

Ability to
handle

two-dimensional
information

Garg [9] � � � � �
Huang [11] � � � � �
Chen and Chang [13] � � � � �
Mishra et al. [32] X X � � �
Garg et al. [31] X X � � �
Maheshwari and Srivastava [33] X X � � �
Ohlan [30] X X � � �
Srivastava and Maheshwari [34] X X � � �
Shen et al. [35] X � � � �
Ye [36] X � � � �
Song et al. [37] X � � � �
Zeng and Li [17] X � � � �
Rani and Garg [44] X � X X X
Garg and Rani [45] X � X X X
Rani and Garg [49] � � X X X
Proposed method X X X X X

it is clearly seen that the methods presented in [30{34]
under the IFS environment fail to deal with time
periodicity problems. Also, the methods presented
in [17,35{37,44,45,49] do not measure the degree of
discrimination between the two sets. Further, the DM
approaches proposed in [30{34] fail to model complex
problems, whereas the range of MDs and NMDs is
a unit disc on the complex plane in the presented
method. The extension of the above ranges enables the
proposed approach also to deal with one-dimensional
problems described in [30{34]. Therefore, the
developed MCDM approach is more generalized.

6. Conclusion

This paper attempted to give an exponential divergence
measure for Complex IFSs (CIFSs) to measure the
degree of discrimination between two or more CIFSs.
Intuitionistic Fuzzy Set (IFS) is generally used by re-
searchers to handle the data. However, CIFS is a more
extensive and manageable way to express information
and it can represent a wide range of fuzzy informa-
tion. In the presented work, the range of Membership
Degrees (MDs) and Non-Membership Degree (NMDs)
was extended from real numbers to complex ones with
a unit disc. Accordingly, divergence measures were
developed and their relevant properties were studied. It

was found that when additional components, i.e., phase
terms, were set to zero, then the CIFS theory reduces
to IFS theory and hence, the existing approaches
under IFS environment are special cases of CIFS study.
Further, based on the measure, a Decision-Making
(DM) approach was presented to solve the Multi-
Criteria Decision-Making (MCDM) problems and some
practical examples were considered to verify their
feasibility in comparison to several existing approaches.
The alignment of the proposed approach to the existing
studies was demonstrated and its advantages were out-
lined eliciting the supreme nature of the proposed the-
ory over the existing ones. Based on its advantages, it is
concluded that the presented theory can model the un-
certainties with more enhancements than those in prim-
itive environments. In the future, we shall extend the
application of the proposed measure to diverse fuzzy
environments such as Pythagorean set [54{56] and lin-
guistic environment [57{59] as well as di�erent �elds of
application such as supply chain management, emerg-
ing decision problems, risk evaluation, etc. [60{63].

Abbreviation

FS Fuzzy Set
IVFS Interval-Valued Fuzzy Set
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IFS Intuitionistic Fuzzy Set
IVIFS Interval-Valued Intuitionistic Fuzzy

Set
CFS Complex Fuzzy Set
IVCFS Interval-Valued Complex Fuzzy Sets
CIFS Complex Intuitionistic Fuzzy Set
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