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Abstract. One advantage of process incapability index over the classical process
capability index is that it provides uncontaminated separation between process accuracy
and process precision. However, the value of the index is di�cult to determine accurately
when process parameters cannot be determined precisely. In such a case, fuzzy set theory
can be applied to obtain more exible and sensitive information. In this paper, a fuzzy
process incapability index is proposed when the speci�cation limits are assumed to be type-
2 fuzzy. When the process mean and variance are unknown and when the observations
are measured imprecisely, three fuzzy estimators are considered. A simulation study is
conducted based on the Thin-Film-Transistor Liquid-Crystal Display (TFT-LCD) fuzzy
process. By applying the total integral value method to the membership function of a
fuzzy index, it becomes easier to make a comparison of the quality of di�erent processes.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

A product is always categorized as \satis�ed" or \un-
satis�ed" when assessing its quality. For example, in
the educational �eld, pass or fail is given when the
performance of a senior student is evaluated. However,
does one point less than the passing grade really mean
the student failed and should spend one more year on
campus? The fallacy of the \binary quality" criterion
in this example is clear. Further to this, we regularly
face uncertainty or ambiguity in our daily life and
run into some information that is di�cult to describe
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or interpret accurately. It is known that inferential
statistics are used to analyze data when uncertainty
is random. Nevertheless, non-random types of uncer-
tainties, e.g., those caused by incomplete information,
by partial information, or by vague description, do
exist, but are not discussed in traditional statistical
theory. Zadeh [1] introduced the fuzzy logic method
o�cially that provided more information in such a
situation after quantum philosopher Black [2] and led
data analysis to a new era. For example, Rabieha et
al. [3] applied the robust-fuzzy model to the automobile
industry. In general, signature recognition, facial
recognition, medical device like blood pressure monitor,
plat number recognition via speed photography, or even
debate in the court house are applications in reality
where fuzzy theory can be applied.

Among all the known techniques for capability
analysis, process (in) capability index provides numer-
ical measures on whether a process conforms to the



1050 S.M. Chen and T.M. Hung/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1049{1064

expected manufacturing capability. There have been
many indices invented in the past few decades, and one
can point to a number of such instances as capability
index Cp, Cpk [4], Cpm [5], and Cpmk [6], which are the
particular cases of Cp(u; v) [7]. Greenwich and Jahr-
Scha�rath [8] proposed the incapability index Cpp,
which provided distinct information about the process
accuracy and precision. In 1998, backed by a �nding
that the index Cpp may reect process potential and
performance inaccurately, Chen [9] further improved
the index by modifying Cpp to obtain the incapability
index C 00pp.

For the fuzzy indices in the existing literatures, all
the papers published before 2017 were about the classi-
cal type-1 fuzzy process (in) capability index in which
membership functions were certain. However, type-
1 fuzzy logic may be unable to model and minimize
the e�ect of uncertainties. Meanwhile, it is possible
that the exact membership function of a fuzzy set may
not be easy, or even possible, to decide. Zadeh [10]
introduced the idea of type-2 fuzzy, which assumes
that type-1 fuzzy sets include the membership grades of
type-1 fuzzy. In 2017, Parchami et al. [11] applied the
concept of type-2 fuzzy to process capability indices Cp,
Cpk, and Cpm based on crisp data. In this research, due
to the merit of process incapability index, an interval
type-2 fuzzy process incapability index ggC 00pp is proposed.

The rest of this paper is organized in the following:
in Section 2, a brief literature review is given. In
Section 3, a fuzzy incapability index is de�ned. In
Section 4, three fuzzy estimators of the fuzzy index are
considered. In Section 5, a simulation study is studied.
Section 6 presents discussion and conclusions.

2. Literature review

The application of fuzzy theory to capability analysis
has been discussed extensively in the past decades.
Given that the speci�cation limits were triangular
fuzzy, Parchami et al. [12] proposed fuzzy process
capability indices fCp, gCpk, gCpm, ]Cpmk, and ^Cp (u; v)
and discussed the relationship among them. Under the
same assumption on the speci�cation limits, Parchami
et al. [13] determined con�dence interval value for fuzzy
process capability index fCp. Moeti et al. [14] revised
the work of Parchami et al. [12] in the general case
by assuming that the speci�cations were L-R fuzzy
intervals. In 2008, Parchami et al. [15] discussed the
consistency of the con�dence interval proposed in [12].
In 2009, Parchami and Mashinchi [16] conducted a
test for the fuzzy process capability index fCp. If the
process mean and variance were fuzzy and, yet, the
speci�cation limits were crisp, Wu [17] investigated
the decision-making on the testing process performance
with fuzzy data for the index Cpk. Hsu et al. [18]

used capability index Cpm and fuzzy quality data for
supplier selection. Chen et al. [19] discussed the fuzzy
index gCpm with fuzzy data in 2010. In the same year,
Wu and Liao [20] delved into the process yield by fuzzy
lower con�dence bounds of the index Spk. Abdolshah
et al. [21] discussed the index Cpmk by assuming
that the process mean and variance were both type-1
fuzzy based on fuzzy data and compared them with
other indices. A review of fuzzy process capability
indices was given by Abdolshah [22] in 2012. Yen [23]
discussed the one-sided fuzzy test for the indices Cpl
and Cpu in 2012. Parchami et al. [24] proposed a new
generation of process capability indices based on fuzzy
measurements, where linear and exponentially fuzzy
speci�cation limits were discussed. Basu et al. [25]
discussed an experimental design in the soap manufac-
turing to optimize the fuzzi�ed process capability index
where the data were collected in the languished form.
Fayyaz et al. [26] investigated both univariate and
multivariate fuzzy indices. Abdolshah [27] investigated
loss-based process capability indices Le and L00e by
employing fuzzy logic. Geng et al. [28] estimated Cp
and Cpk based on kernel function and fuzzy analysis
hierarchy process. Kaya [29] conducted an overview of
the fuzzy sets on the process capability analysis.

There are relatively fewer papers that have ad-
dressed the fuzzy aspect of the incapability index
Cpp, proposed by Greenwich and Jahr-Scha�rath [8]
in 1995. In 2010, Wu and Liao [20] evaluated the
process performance based on Cpp for measurements
with uncertainty. They assumed that the process
mean and the process variance were fuzzy, but the
speci�cation limits and target were crisp. In 2012,
Kaya and Bara�cli [30] discussed the case in which
process mean, variance, speci�cation limits, and target
were all assumed to be fuzzy. In 2014, Kaya [31]
discussed the process incapability index under fuzziness
with an application to decision-making.

There are even fewer papers about the fuzziness
of the incapability index C 00pp than about Cpp. In
2012, Kaya and Bara�cli [30] discussed a situation
when the process mean, process variance, speci�cation
limits, and target were all assumed fuzzy. Abbasi and
Sadeghpour Gildeh [32] applied fuzzy critical value to
the hypothesis testing problem by assuming that both
process mean and variance were fuzzy; however, the
speci�cation limits and the target were �xed.

3. Type-2 fuzzy process incapability index ggC00pp
Consider a process with mean � and variance �2.
Let T be the target value and LSL and USL be the
Lower and Upper Speci�cation Limits, respectively. In
1995, Greenwich and Jahr-Scha�rath [8] proposed the
incapability index:
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Cpp =
(�� T)2 + �2

(min fT� LSL;USL� Tg =3)2 ;

which can distinguish the inaccuracy and imprecision
of a process separately. Given that Cpp may incon-
sistently measure process capability, in 1998, Chen [9]
proposed another incapability index C 00pp as follows:

C 00pp=

h
max

n
(��T) (USL�LSL)

2(USL�T) ; (T��) (USL�LSL)
2(T�LSL)

oi2� 1
3 min fT�LSL;USL�Tg�2

+
�2� 1

3 min fT� LSL;USL� Tg�2 �= C 00ia + Cip;

where C 00ia and Cip measure the inaccuracy and impreci-
sion of the process. When the target is at the midpoint
of the speci�cation limits, then C 00pp = Cpp .

Since uncertainty may exist in the membership
function of a fuzzy set, it is not realistic to use a model
with precise or certain parameters. An interval type-
2 fuzzy process incapability index ggC 00pp will be de�ned
in Section 3 by assuming that the Speci�cation Limits
of the quality characteristic are type-2 fuzzy, but the
target is crisp.

Of note, the type-2 trapezoidal membership func-
tions of the lower and upper speci�cation limits are
denoted by ggLSL = TRFN (u1; l1; u2; l2) and ggUSL =
TRFN (l3; u3; l4; u4) ; respectively. Then, the �-cuts
of the speci�cation limits areggLSL [�] = [l1 + � (l2 � l1) ; u1 + � (u2 � u1)] andggUSL [�] = [l4 � � (l4 � l3) ; u4 � � (u4 � u3)] :

To facilitate the computation, these �-cuts are inte-
grated and the fuzzy number of the speci�cation limits
is obtained as follows:ggUSL =

�Z 1

0
f(l4 � � (l4 � l3))g d�;Z 1

0
f(u4 � � (u4 � u3))g d�

�
=
�
l4 + l3

2
;
u4 + u3

2

�
�= [U1; U2] ;

ggLSL =
�Z 1

0
fu1 + � (u2 � u1)g d�;Z 1

0
fl1 + � (l2 � l1)g d�

�
=
�
u1 + u2

2
;
l1 + l2

2

�
�= [L1; L2] :

A fuzzy incapability index ggC 00pp is de�ned as:

ggC 00pp =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

"
max

(
(��T )

ggUSL�ggLSL

2( ggUSL�T)
;(T��)

ggUSL�ggLSL

2(T�ggLSL)

)#2

+�2�
1
3 min

�ggUSL�T;T�ggLSL
��2

when � and � are crisp"
max

(
(~~��T) ggUSL�ggLSL

2( ggUSL�T)
;(T�~~�)

ggUSL�ggLSL

2(T�ggLSL)

)#2

+ff�2�
1
3 min

�ggUSL�T;T�ggLSL
��2

when � and � are fuzzy

where T = [T; T ], ~~�, and ff�2 are type-2 fuzzy numbers
of � and �2, respectively.

Remark 1. The expression above is presented only for
convenience. It is clear that an interval should not be
put on the denominator from the mathematical point
of view. To conduct the computation, for those terms
with an interval expression in the denominator, the left
end point of each case must be divided by the right
end point of the denominator and the right end point
is derived by dividing the numerator by the left end
point of the denominator.

Notice that since minfa; bg = a+b
2 � ja�bj2 , the

common denominator can be written as follows:

1
3
min

�
T�ggLSL; ggUSL� T

�

=
1
3

8>><>>:
ggUSL�ggLSL

2
�

����ggUSL + ggLSL� 2T
����

2

9>>=>>; :

Therefore, the index ggC 00pp is a function of the di�erence
and the sum of the speci�cation limits. Based on
the intersection of interval type-2 fuzzy upper and
lower speci�cation limits ([11], see Figure 1), the
di�erence between and the sum of interval type-2 fuzzy
speci�cation limits are de�ned in the following:ggUSL�ggLSL = ggUSL�ggLSL �= [Dif;1; Dif;2]

=
�
l4 + l3 � l2 � l1

2
;
u4 + u3 � u2 � u1

2

�
;

ggLSL + ggUSL = ggLSL� ggUSL �= [Sum;1; Sum;2]

=
�
min

�
l4+l3+l2+l1

2
;
u4+u3+u2+u1

2

�
;

max
�

l4+l3+l2+l1
2

;
u4+u3+u2+u1

2

��
:
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Figure 1. Membership function of (a) type-2 fuzzy lower speci�cation limit, (b) type-2 fuzzy upper speci�cation limit,
and (c) intersection of Interval type-2 fuzzy speci�cation limits.

From the geometrical point of view, the end points of
the di�erence ggUSL�ggLSL correspond to the area bound
by the inner trapezoidal and the outer trapezoidal. On
the other hand, consider two lines L1 and L2 where L1
passes through the points (l1; 0) ; (l2; 1) and L2 passes
through the points (l4; 0) ; (l3; 1). If the slopes of these
two lines have the same absolute value, then the end
points of the sum ggLSL�ggUSL of the speci�cation limits
correspond to the area of the trapezoidal with four
vertices at (0; 0), (0; 1), (l1+l4; 0), and (l2+l3; 1) and to
the area of the trapezoidal with four vertices at (0; 0),
(0; 1), (u1 + u4; 0), and (u2 + u3; 1), respectively.

Hence, the common denominator can be rewritten
as follows:

1
3

min
�

T�ggLSL; ggUSL� T
�

=
1
3

8>><>>:
ggUSL�ggLSL

2
�

����ggUSL + ggLSL� 2T
����

2

9>>=>>;
=
�
Dif;1 � jSum;2 � 2Tj

6
;
Dif;2 � jSum;1 � 2Tj

6

�
�= [DL; DR] :

4. Fuzzy estimators of
^̂
C00pp

The fuzzy incapability index ggC 00pp is a function of pro-
cess mean � and process variance �2; when parameters
� and �2 are unknown, they must be estimated before
conducting any further study. On the other hand, in
reality, since continuous characteristics may not be easy
to observe precisely, the collected data are basically
fuzzy. One can point to Viertl [33] for further reference
on fuzzy data. Examples for fuzzy data can be found in
the studies of Filzmoser and Viertl [34], Wu [17], Chen
et al. [19], and other corresponding references. Denote:fX1 =

�
XL

1 ;X
R
1
�
; fX2 =

�
XL

2 ;X
R
2
�
; :::; fXn =

�
XL

n ;X
R
n
�
;

XL
i < XR

i ;

as a fuzzy sample of size n from a normal distribution
N
�
�; �2�. For the concept of normality for fuzzy

random variables, the reader is referred to Puri and
Ralescu [35] as well as Kaya and Kahraman [36]. De�ne
the fuzzy sample e�X =

hPn
i=1 XL

i
n ;

Pn
i=1 XR

i
n

i
�=
��XL; �XR�

mean e�X =
hPn

i=1 XL
i

n ;
Pn

i=1 XR
i

n

i
�=
��XL; �XR� and the

fuzzy sample variance:

fS2 =
�
min

(Pn
i=1
�
XL

i � �XL�2
n� 1

;
Pn

i=1
�
XR

i � �XR�2
n� 1

)
;

max

(Pn
i=1
�
XL

i � �XL�2
n� 1

;
Pn

i=1
�
XR

i � �XR�2
n� 1

)�
�=
�
S2

1; S
2
2
�
:

Inspired by the unbiased estimator of �2 based on
100(1 � �)% con�dence interval that was proposed
by Buckley [37], an unbiased fuzzy type-2 estimatorff�2
B of the variance �2 is de�ned which has �-cutsff�2
B [�] =

�
S2

BL;S
2
BR
�
, where:

S2
BL

�=
�
S2

BL1; S
2
BL2

�
=
�

(n� 1) � S2
1

(1� �)�2
�=2;n�1 + � (n� 1)

;

(n� 1) � S2
2

(1� �)�2
�=2;n�1 + � (n� 1)

�
;

S2
BR

�=
�
S2

BR1;S
2
BR2

�
=
�

(n� 1) � S2
1

(1� �)�2
1��=2;n�1 + � (n� 1)

;

(n� 1) � S2
2

(1� �)�2
1��=2;n�1 + � (n� 1)

�
:

For 0 < � < 1, �2
�=2;n�1

�
�2

1��=2;n�1

�
is the upper

(lower) �=2 critical point of a chi-square distribution
with n� 1 degrees of freedom.
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The type-2 fuzzy estimator ff�B of the process

mean � that corresponds to
ff�2
B , has �-cuts ff�B [�] =

[g�BL;g�BR] where:

g�BL
�= [�BL1; �BL2] =

�
�XL

�t�=2;n�1
SBR2p

n
; �XL � t�=2;n�1

SBR1p
n

�
;

g�BR
�= [�BR1; �BR2] =

�
�XR

+t�=2;n�1
sBL1p

n
; �XR + t�=2;n�1

sBL2p
n

�
:

In addition, t�=2;n�1 is the upper �=2 critical point of
a t-distribution with n� 1 degrees of freedom.

It is well known that for a sample taken from
a distribution with a �nite fourth moment including
n ! 1, the sample variance is S2!

L
N
�
�2; �4��4

n

�
,

where �4 = E (X� EX)4 [38]. Hummel et al. [39]
re-expressed the results as S2!

L
N
�
�2; ( � 1) �

4

n

�
,

where  = �4
�4 was kurtosis. Hence, the second type-2

fuzzy estimator of the variance, denoted by
gg�2
NA, has

�-cuts
gg�2
NA [�] =

�
S2

NAL;S2
NAR

�
, where:

S2
NAL �=

�
S2

NL1;S
2
NL2
�

=
�

S2
1

(1� �) �
�

1 + z �
2

q
̂�1
n

�
+ �

;

S2
2

(1� �) �
�

1 + z �
2

q
̂�1
n

�
+ �

�
;

S2
NAR �=

�
S2

NR1; S
2
NR2

�
=
�

S2
1

(1� �) �
�

1� z �
2

q
̂�1
n

�
+ �

;

S2
2

(1� �) �
�

1� z �
2

q
̂�1
n

�
+ �

�
:

̂ is an estimator of the kurtosis , and z�=2 is the upper
�=2 critical point of a standard normal distribution.
Therefore, the type-2 fuzzy estimator gg�NA of the mean

� corresponds to
gg�2
NA which can be characterized by

�-cuts gg�NA [�] =
�]�NAL; �̂NAR

�
where:

]�NAL
�= [�NL1; �NL2]

=
�

�XL � z�=2
SNR2p

n
; �XL � z�=2

SNR1p
n

�
;

�̂NAR
�= [�NR1; �NR2]

=
�

�XR + z�=2
SNL1p

n
; �XR + z�=2

SNL2p
n

�
:

Notice that
gg�2
NA is well de�ned only when ̂ � 1 and

(1� �) �
�

1� z�=2
q

̂�1
n

�
+ � > 0. This also means

�1
1�� < z�=2

q
̂�1
n < 1

1�� for 0 � � � 1. However, since
the con�dence level 1 � � is usually large, it implies
that Z�=2 is a large positive value. Hence, 1 � ̂ <

n
(1��)2�z2

�=2
+ 1:

In a study done by Hummel et al. [39], methods
used for estimating population variance were discussed
for several distributions. They concluded that with
absolutely no distributional assumptions, the adjusted
chi-square method was recommended based on its
reasonable performance and its theoretically logical ex-
tension from the traditional Chi-square method (which
was the best if the underlying distribution was normal).
Based on their result, one more type-2 fuzzy estimatorgg�2
Adf of �2 can be de�ned with �-cuts

gg�2
Adf [�] =

[S2
AdfL;S2

AdfR] where:

S2
AdfL

�=
�
S2

AdfL1; S
2
AdfL2

�
=
� b� � S2

1

(1� �)�2
�=2;�̂

+ � � �̂ ;

b� � S2
2

(1� �)�2
�=2;�̂

+ � � �̂
�
;

S2
AdfR

�=
�
S2

AdfR1;S
2
AdfR2

�
=
�

�̂ � S2
1

(1� �)�2
1��=2;�̂

+ � � �̂ ;

�̂ � S2
2

(1� �)�2
1��=2;�̂

+ � � �̂
�
;

and �̂ = 2n
(̂�3)+ 2n

n�1
is the estimated degrees of freedom.

The �-cuts of the type-2 fuzzy estimator ]]�Adf of the
mean � are ]]�Adf [�] =

�
�̂AdfL; �̂AdfR

�
, where:

�̂AdfL
�= [�AdfL1; �AdfL2]

=
�

�XL � z�=2
SAdfR2p

n
; �XL � z�=2

SAdfR1p
n

�
;
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�̂AdfR
�= [�AdfR1; �AdfR2]

=
�

�XR + z�=2
SAdfL1p

n
; �XR + t�=2;n�1

SAdfL2p
n

�
:

Obviously, S2
BL1 � S2

BL2;S2
BR1 � S2

BR2; S2
NL1 �

S2
NL2; S2

NR1 � S2
NR2, and S2

AdfL1 � S2
AdfL2; S2

AdfR1 �
S2

AdfR2. In addition, as � = 1,
ff�2
B =

gg�2
NA =

gg�2
Adf =�

S2
1 ; S2

2
�
, which reduces the type-2 fuzzy estimators to

type-1 fuzzy estimators (see Figure 2: The left leg
represents the membership function of S2

1 and the right
leg represents the membership function of S2

2).
By substituting �- cuts of the parameters de�ned

above into ggC 00pp and simplifying them using interval
arithmetic, based on fuzzy data, the �-cuts of the three

estimators
^̂
C 00pp;B ,

^̂
C 00pp;NA, and

^̂
C 00pp;Adf are de�ned in

the equations shown in Box I. Putting these �-cuts
together, we obtain a fuzzy trapezoidal-shaped fuzzy

Figure 2. Membership function of fuzzy sample variance.

number
^̂
C 00pp;B . The second fuzzy index has �-cuts as

shown in Box II. Putting these �-cuts together, a fuzzy

trapezoidal-shaped fuzzy number
^̂
C 00pp;NA is obtained.

The third fuzzy index has �-cuts as shown in Box III.
Putting these �-cuts together, we have the third fuzzy

trapezoidal-shaped fuzzy number
^̂
C 00pp;Adf .

5. Simulation study

To discuss the above results, an example related to
a Thin-Film-Transistor Liquid-Crystal Display (TFT-
LCD) is provided in this section. A TFT-LCD is a vari-
ant of Liquid-Crystal Display (LCD) that uses Thin-
Film-Transistor (TFT) technology to improve image
quality such as addressability and contrast. TFT-LCDs
are used in broad applications, for instance, mobile
phones, video game systems and navigation systems,
etc.

At the beginning of the TFT-LCD manufacturing
process, the distance D1 between lines L1 and L2 on
the �rst layer (see Figure 3) is a concern given that if
D1 is too wide or too narrow, it will cause defects on the
second or third layer of the TFT and the products may
need to be scraped or reworked, which will lead to the
conclusion that the process fails. In reality, to improve
the yield for such a type of processes without a�ecting
further progress, engineers may consider modifying
the tolerance speci�cation limits so that the process
can be classi�ed as capable. Since the optimal range
of modi�cation becomes important, fuzzy theory is,
therefore, considered to study the suitable level of
modi�cation.

In 2013, Park et al. [40] proposed a new edge

ggC 00pp;B [�] =

24max

8<:�ff�B [�]� T� ggUSL�ggLSL

2
�ggUSL�T

� ;�T� ff�B [�]
� ggUSL�ggLSL

2
�
T�ggLSL

�
9=;
352

+ ff�B [�]2�
1
3 min

�ggUSL� T;T�ggLSL
��2

�= [cB ; dB ] ;

where:

cB =

min
i; j; k; l; r; s = 1; 2

�h
Dif;k�[(�BLi�T )(2T�Sum;l)+j�BLi�T jDif;k]

4(Ur�T )(T�Ls)

i2
+ s2

BLj

�
D2
R

dB =

max
i; j; k; l; r; s = 1; 2

�h
Dif;k�[(�BRi�T )(2T�Sum;l)+j�BRi�T jDif;k]

4(Ur�T )(T�Ls)

i2
+ s2

BRj

�
D2
L

:

Box I
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^̂
C 00pp;NA [�] =

24max

8<:�gg�NA [�]� T� ggUSL�ggLSL

2
�ggUSL�T

� ;�T�gg�NA [�]
� ggUSL�ggLSL

2
�
T�ggLSL

�
9=;
352

+
gg�2
NA [�]�

1
3 min

�ggUSL� T;T�ggLSL
��2

�= [cNA; dNA] ;

where:

cNA =

min
i; j; k; l; r; s = 1; 2

�h
Dif;k�[(�NLi�T )(2T�Sum;l)+j�NLi�T jDif;k]

4(Ur�T )(T�Ls)

i2
+ s2

NLj

�
D2
R

;

dNA =

max
i; j; k; l; r; s = 1; 2

�h
Dif;k�[(�NRi�T )(2T�Sum;l)+j�NRi�T jDif;k]

4(Ur�T )(T�Ls)

i2
+ s2

NRj

�
D2
L

:

Box II

^̂
C 00pp;Adf [�] =

24max

8<:�gg�Adf [�]� T� ggUSL�ggLSL

2
�ggUSL�T

� ;�T� gg�Adf [�]
� ggUSL�ggLSL

2
�
T�ggLSL

�
9=;
352

+
gg�2
Adf [�]�

1
3 min

�ggUSL� T;T�ggLSL
��2

�= [cAdf ; dAdf ] ;

where:

cAdf =

min
i; j; k; l; r; s = 1; 2

�h
Dif;k�[(�AdfLi�T )(2T�Sum;l)+j�AdfLi�T jDif;k]

4(Ur�T )(T�Ls)

i2
+ s2

AdfLj

�
D2
R

;

dAdf =

max
i; j; k; l; r; s = 1; 2

�h
Dif;k�[(�AdfRi�T )(2T�Sum;l)+j�AdfRi�T jDif;k]

4(Ur�T )(T�Ls)

i2
+ s2

AdfRj

�
D2
L

:

Box III

detection algorithm which used facet model to provide
more stable and accurate TFT-LCD pattern and detect
the edge most reliably and precisely, compared to other
algorithms. With such an algorithm, the standard
deviation of measurement can be quite small. However,
a company may rather adopt an algorithm with lower
precision in the measurement due to certain restrictions
or constraints in reality. By using the sample data
given in their paper, the quality of processes with the
same mean and, yet, di�erent standard deviations will
be discussed in the following via three fuzzy estimators

of the fuzzy process incapability index ggC 00pp to determine
the e�ect of variance on the diagnosis of quality.

Assume that the mean distance D1 between L1
and L2 of the �rst layer in a particular TFT-LCD
process is 36.5865. If the target value is set at 36.0125
and the speci�cation limits of LSL and USL are set
at 35.65 and 37.05, respectively, then the values of the
classical incapability index C 00pp will be 1.2541, 1.2543,
1.2549, 1.2574, 1.3375, 1.5885, 2.0065 for � = 0:002,
0.006, 0.01, 0.02, 0.1, 0.2, 0.3, respectively. It is
obvious that even though the quality is enhanced as
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Figure 3. Distance D1 between L1 and L2 on the �rst
layer in the Thin-Film-Transistor Liquid-Crystal Display
(TFT-LCD) process.

the variability is reduced, none of the seven processes
is adequate for producing products that conform to the
prerequisite when the speci�cation limits are crisp (see
Table 1 [41]).

Based on some valuable information, under the
condition that all the possible adjustments meet the
company's requirement, the quality engineer con�rms
that the lower speci�cation limit is roughly lower than
35.65 and the upper speci�cation limit is roughly larger
than 37.05. Given that type-2 fuzzy can handle the
uncertainty associated with the membership function
of type-1 fuzzy, type-2 linear trapezoidal fuzzy speci�-
cation limits are considered and set at:ggUSL = TRFN (37:05; 38:85; 40:85; 40:90) ;

ggLSL = TRFN (31:80; 32:05; 34:05; 35:65) :

In this case, the type-2 fuzzy index (Eq. (1) shown
in Box IV) indicates that when the speci�cation
limits are relaxed, the processes are re-diagnosed as
capable unless the variance is large. When the process
mean and process variance are unknown or non-crisp,

Table 1. Classi�cation of quality conditions.

Quality condition Cpp

Inadequate Cpp > 100

Capable 0:56 < Cpp < 1:00

Satisfactory 0:44 < Cpp < 0:56

Excellent 0:25 < Cpp < 0:44

Super Cpp � 0:25

the value of ggC 00pp cannot be determined precisely. In
the following, based on the relatively imprecise data
for D1, a capability analysis will be carried out by
assuming that the speci�cation limits are type-2 fuzzy.

The performance of the three fuzzy estimators
^̂
C 00pp;B ,

^̂
C 00pp;NA, and

^̂
C 00pp;Adf will be discussed. The simulation

will be done via the computer language R, and the de-
fuzzi�cation will be conducted using the Total Integral
Value (TIV) method [42].

De�nition. Total Integral Value (TIV) method [42]:
Let A = [a; b; c; d] be a trapezoidal fuzzy number where
�1 < a � b � c � d <1.

The TIV for interval type-2 fuzzy sets with
optimism � 2 [0; 1] is de�ned as I�T (A) =
1
2 [� (c+ d) + (1� �) (a+ b)] :

Theorem. The order of fuzzy incapability index is
preserved by TIV method.

Proof. Let A = [a; b; c; d] and A0 = [a0; b0; c0; d0] be two
trapezoidal fuzzy numbers where �1 < a � b � c �
d <1 and �1 < a0 � b0 � c0 � d0 <1.

When A0 > A, it can be implied that a0 > d; a0 >
a; b0 > b; c0 > c, and d0 > d. Hence:

I�T (A0)� I�T (A) =
1
2

[� (c0 + d0) + (1� �) (a0 + b0)]

ggC 00pp =

24max

8<:(�� T )
ggUSL�ggLSL

2
�ggUSL�T

� ; (T � �)
ggUSL�ggLSL

2
�
T�ggLSL

�
9=;
352

+ �2

�
1
3 min

�ggUSL� T;T�ggLSL
��2 =

8>>>>>>>>>><>>>>>>>>>>:

[0:1356; 0:8874] if � = 0:002
[0:1356; 0:8874] if � = 0:006
[0:1357; 0:8876] if � = 0:01
[0:1360; 0:8881] if � = 0:02
[0:1450; 0:9066] if � = 0:1
[0:1733; 0:9644] if � = 0:2
[0:2201; 1:0606] if � = 0:3

(1)

Box IV
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�1
2

[� (c+ d) + (1� �) (a+ b)]

=
1
2

�
�[(c0 + d0)� (c+ d)]+ (1� �)[(a0 + b0)

� (a+ b)]
�

=
1
2

�
�[(c0 � c) + (d0 � d)]

+ (1� �) [(a0 � a) + (b0 � b)]
�
> 0:

In other words, If A0 > A, then I�T (A0) > I�T (A) ;
and therefore, the order of fuzzy incapability index is
preserved by TIV.

Our concern about the TFT-LCD process quality
is the distance D1 on the �rst layer. For convenience
purposes, let us use x to represent it instead. Usually,
the continuous quantity \distance" is relatively impre-
cise due to such limitations as measurement equipment.

When sampled over time:fx1 =
�
xL1 ; x

R
1
�
;fx2 =

�
xL2 ; x

R
2
�
; :::;fxn =

�
xLn ; x

R
n
�
;

xLi � xRi ;
can be n fuzzy observations from a normal distribution
N
�
36:5865; �2�. When n increases from 10, 20, 50, 100,

200, 300 to 400, the performances of
^̂
C 00pp;B ,

^̂
C 00pp;NA,

and
^̂
C 00pp;Adf via TIV at � = 0:01 and � = 0:002, 0.006,

0.01, 0.02, 0.1, 0.2, 0.3 are those shown in Box V.

Remark 2. Due to the fuzziness of the data,
^̂
C 00pp;NA

may not be calculated if the sample size is below 21.
This restriction was formerly stated in Section 4 when
^̂
C 00pp;NA was introduced TIV

^̂
C 00pp;Adf is calculated by

the equation shown in Box VI. When n � 50, for all
� considered, the TIV falls within the range shown
in Eq. (1) which represents the case when all the

n 10; 20; 50; 100; 200 300 400

TIV ggC00pp;B =

8>>>>>>>>>><>>>>>>>>>>:

0:58! 0:54! 0:53! 0:52! 0:52! 0:51! 0:51 for � = 0:002
0:58! 0:54! 0:53! 0:52! 0:52! 0:51! 0:51 for � = 0:006
0:58! 0:54! 0:53! 0:52! 0:52! 0:51! 0:51 for � = 0:01
0:60! 0:55! 0:53! 0:52! 0:52! 0:52! 0:51 for � = 0:02
0:83! 0:66! 0:59! 0:57! 0:55! 0:55! 0:55 for � = 0:1
1:29! 0:87! 0:70! 0:65! 0:63! 0:61! 0:61 for � = 0:2
1:93! 1:15! 0:87! 0:78! 0:73! 0:71! 0:71 for � = 0:3

TIV ^̂
C00pp;NA

=

8>>>>>>>>>><>>>>>>>>>>:

NaN ! NaN ! 0:53! 0:52! 0:51! 0:51! 0:51 for � = 0:002
NaN ! NaN ! 0:53! 0:52! 0:52! 0:51! 0:51 for � = 0:006
NaN ! NaN ! 0:53! 0:52! 0:52! 0:51! 0:51 for � = 0:01
NaN ! NaN ! 0:53! 0:52! 0:52! 0:52! 0:51 for � = 0:02
NaN ! 0:70! 0:59! 0:57! 0:55! 0:55! 0:55 for � = 0:1
NaN ! 1:01! 0:71! 0:66! 0:62! 0:62! 0:61 for � = 0:2
NaN ! 1:43! 0:89! 0:78! 0:74! 0:71! 0:71 for � = 0:3:

Box V

TIV ^̂
C00pp;Adf

=

8>>>>>>>>>><>>>>>>>>>>:

0:56! 0:54! 0:52! 0:52! 0:52! 0:51! 0:51 for � = 0:002
0:56! 0:54! 0:52! 0:52! 0:52! 0:51! 0:51 for � = 0:006
0:57! 0:54! 0:53! 0:52! 0:52! 0:51! 0:51 for � = 0:01
0:58! 0:55! 0:53! 0:52! 0:52! 0:52! 0:52 for � = 0:02
0:76! 0:64! 0:59! 0:56! 0:55! 0:55! 0:55 for � = 0:1
1:10! 0:84! 0:70! 0:66! 0:62! 0:61! 0:61 for � = 0:2
1:61! 1:11! 0:85! 0:77! 0:73! 0:71! 0:71 for � = 0:3:

Box VI
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Figure 4. Total Integral Value (TIV) as a function of n for di�erent standard deviations.

Table 2. The limit of Total Integral Value (TIV) as n = 300 for all the three methods (numbers given in the parentheses
are the values of index for crisp case).

� 0.002 0.006 0.01 0.02 0.1 0.2 0.3
TIV 0.51 (1.2541) 0.51 (1.2543) 0.51 (1.2549) 0.51 (1.2574) 0.55 (1.3375) 0.61 (1.5885) 0.71 (2.0065)

parameters are known. When the process variance is
small, i.e., � = 0:002, 0.006, 0.01, 0.02, 0.1, all the three
estimating methods provide TIVs that fall within the
range, even for the sample size of 10.

As shown in Figure 4, the graph of TIV drops
rapidly at the beginning, but slowly later as n increases.
The decreasing rate for the TIV becomes insigni�cant

when the sample size is greater than 100. Overall, the
TIVs for all three methods converge when the sample
size reaches 300 (see Table 2). Compared to a case
when the speci�cation limits are crisp, the TIV yields
a completely opposite conclusion about the process
quality.

Parts (a)-(c) of Figures 5-7 show the membership
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Figure 5. Membership functions of fuzzy estimators when � = 0:01.

Figure 6. Membership functions of fuzzy estimators when � = 0:05.

functions of the estimators when � = 0:2 and � = 0:01,
0.05, 0.1. It is interesting that when the con�dence
level 1 � � decreases, the value of the estimated
incapability index also decreases, meaning that the
quality is enhanced. In addition, when the standard
deviation remains �xed, the sample size has the least

e�ect on
^̂
C 00pp;Adf . Furthermore, when the sample size is

�xed, the standard deviation has similar e�ect on the
three estimators (see Parts (d)-(f) of Figures 5-7).

Figure 8 points to a case characterized by � =
0:006 and � = 0:01. The pattern is similar to
that with larger variance, except that the TIV is
relatively small. Once again, the standard deviation
does not have much impact on the membership func-
tions.
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Figure 7. Membership functions of fuzzy estimators when � = 0:1.

Figure 8. Membership functions with � = 0:01 and � = 0:002, 0.006, 0.01, 0.02.

6. Discussion and conclusions

Usually, the process is diagnosed as incapable if the
related measurements fall outside the speci�cation
limits. In order to increase the process yield, engineers
may modify the speci�cation limits. In this article,
as a function of process mean, variance, and type-2
fuzzy speci�cation limits, the fuzzy type-2 incapability

index ggC 00pp is proposed. In reality, process mean and
process variance are hardly known precisely which
cause di�culty in computing ggC 00pp. Based on fuzzy data,

three fuzzy estimators
^̂
C 00pp;B ,

^̂
C 00pp;NA, and

^̂
C 00pp;Adf ofggC 00pp are considered.

A simulation study shows that minimal sample
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Figure 9. Membership function for three estimators when � = 0:01, � = 0:2, and n = 26, 50, 100, 200.

size 25 is required to make the normal approxima-
tion approach applicable to computing the estimator
^̂

C00pp;NA. The Total Integral Value (TIV) of
^̂
C 00pp;B ,

^̂
C 00pp;NA, and

^̂
C 00pp;Adf converges when the sample size is

above 300. The adjusted degrees of freedom approach
to variance estimation suitable for a wide range of

distributions implies that the performance of
^̂
C 00pp;Adf

may be more conservative than the other two esti-
mators. On the other hand, the degrees of freedom
of the adjusted method are equal to those of the
classical chi-square under normality and the behavior

of
^̂
C 00pp;Adf should be very close to that of

^̂
C 00pp;B under

normality at least for a large sample. Figure 9 shows
the membership function of the three estimators when
� = 0:2.

According to the simulation results, the e�ect of
sample size is signi�cant on the estimation, but the
e�ect of the process variance is relatively insigni�cant,
especially when the sample size is large. It is interesting
to ask if a manufacturer should adopt an algorithm
that yields much higher precision, which comes at the
expense of paying much higher prices.

The estimators proposed for the fuzzy incapabil-
ity index ggC 00pp are based on fuzzy normal data, and
one needs to verify the normality of fuzzy numbers
used in our discussions. Since we are dealing with
interval fuzzy numbers, only the end points are used
in the estimating procedure. Therefore, checking
the normality of end points will be su�cient. Let�
XL

1 ; XR
1
�
;
�
XL

2 ; XR
2
�
; : : : ;

�
XL
n ; XR

n
�
; XL

i � XR
i ; i =

1; 2; : : : ; n denote an interval fuzzy random sample; the
normality of XL

1 ; :::; XL
n , or XR

1 ; :::; XR
n , can be tested

by the traditional Shapiro-Wilk test. We will treat

XL
1 ; :::; XL

n , or XR
1 ; :::; XR

n , as normally distributed if
the normality test cannot be rejected. However, if
the normality test is rejected, then the distribution
of �X��

s=
p
n will not be t-distribution. In this case, our

analysis of
^̂
C 00pp;B needs some modi�cations. According

to the Central Limit theorem and Slutsky's theorem,
�X��
s=
p
n will be normally distributed approximately when

sample size is large enough. Consequently, our analysis
is still valid when normal quantile z replaces t quantile.
Take the Thin-Film-Transistor Liquid-Crystal Display
(TFT-LCD) given in Section 5 as the example. Sup-
pose the distance D1 between L1 and L2 on the �rst
layer is measured unit by unit over a period of time;
then, the plot of D1 will make it appear as a bell-
shaped fuzzy number. Table 3 lists the partial data
of D1. The p-value obtained by Shapiro-Wilk test
is larger than 0.1 on both end points and is higher
than the ordinary level of signi�cance. Hence, there
is no signi�cant evidence to reject the hypothesis that
both XL

i and XR
i follow normal distributions at Level

0.1. The Q-Q plot is shown in Figure 10(a){(c) and
the histogram with a �tting normal curve is shown in
Figure 10(b){(d).

Another question that is very practical in real life
is \how exible should the speci�cation limits be to
optimize the company pro�t?". For instance, suppose
that the speci�cation limits are extended outward
symmetrically k:� from the crisp speci�cation limits
(l2; l3), say u1 = l2�3k ��, l1 = l2�2k ��, u2 = l2�k ��,
u3 = l3 + k � �, l4 = l3 + 2k � �, and u4 = l3 + 3k � �
(see Figure 1); then, when n = 100, � = 0:2, � = 0:01,
the conclusion about the quality of a production line
will reverse when k increases, as shown in Table 4. For
those k's where k:� away from the crisp speci�cation
limits is acceptable, in order to maintain the reputation
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Table 3. Fuzzy data from the simulation.

n 1 2 3 4 5 6 7 8 9 10
xLi 36.5826 36.5825 36.5832 36.5873 36.5853 36.5713 36.5816 36.5737 36.5837 36.5772
xRi 36.5874 36.5876 36.5872 36.5893 36.5903 36.5981 36.5908 36.5996 36.5863 36.5979
n 11 12 13 14 15 16 17 18 19 20
xLi 36.5850 36.5892 36.5775 36.5838 36.5873 36.5745 36.5813 36.5803 36.5764 36.5798
xRi 36.5865 36.5904 36.5948 36.5907 36.5891 36.5919 36.5890 36.5972 36.5950 36.5974
n 21 22 23 24 25 26 27 28 29 30
xLi 36.5863 36.5825 36.5705 36.5812 36.5850 36.5783 36.5788 36.5754 36.5815 36.5752
xRi 36.5902 36.5902 36.5992 36.5951 36.5885 36.5870 36.5939 36.6011 36.5936 36.5999

Table 4. Total Integral Value (TIV) for three estimators when n = 100, � = 0:2, � = 0:01 after extending the speci�cation
limits symmetrically outward from the crisp limits.

k 1 2 3 4 5 6 7 8 9 10ggC00pp;B 6.2879 4.1941 3.0939 2.4041 1.9355 1.5820 1.3243 1.1284 0.9649 0.8339

^̂
C00pp;NA 6.4095 4.2202 3.0977 2.3960 1.9318 1.5953 1.3228 1.1334 0.9803 0.8480

^̂
C00pp;Adf 6.3357 4.1947 3.1004 2.4148 1.9173 1.5824 1.3315 1.1182 0.9691 0.8348

of a company, the degree of modi�cation k must be
determined wisely and cautiously.

In conclusion, based on the type-2 fuzzy incapabil-
ity index, a process may be categorized as capable with-

out ruining the whole system if the quality speci�cation
limits are chosen properly. However, it is better to keep
the process variance in mind to avoid other possible
problems. Currently, there are neither theoretical rules

Figure 10. Q-Q plot and histogram for end points.
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nor superior strategies to follow how to determine the
fuzzy speci�cation limits; therefore, trial and error is a
widely used approach by engineers. At last, the current
research is focused on the characteristics of quality that
follow a normal distribution and for future research,
investigating the non-normal case will be our priority.
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