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Abstract. The present study describes Magnetohydrodynamic micropolar uid over a
curved stretching surface, based on Cattaneo-Christov theory of heat di�usion. In this
paper, the new heat model with the relaxation time is employed in this paper, instead of
classical theory of heat ux presented by Fourier. The curvilinear coordinates are used
to model the governing equations. The nonlinear Partial Di�erential Equations (PDEs)
are changed into Ordinary Di�erential Equations (ODEs) through a proper transformation
process. The nonlinear ODEs are solved with the help of OHAM by using BVPh2. The
variation of several parameters is indicated and examined graphically. We have observed
that the pressure and velocity rises by increasing the radius of curvature. The thermal
relaxation time and Prandtl number reduces the temperature pro�le.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Heat transfer is the movement of thermal energy from
one object to another object with di�erent tempera-
ture. It is an important area of research because of
its di�erent applications in various �elds, including
heat pumps, energy production and cooling systems
of electronic devices, etc. The famous law of heat
conduction was �rstly suggested by Fourier [1]. The
drawback of Fourier model is that it describes the
parabolic energy equation, which gives the initial dis-
turbance of the medium. To overcome this problem, a
thermal relaxation time was introduced in Fourier law
by Cattaneo [2]. It involves hyperbolic equation and
gives �nite speed of thermal signals. Di�erent materials
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have di�erent relaxation time, that is why Christov [3]
introduced the time derivative model called Oldroyd
upper convected derivative. This heat ux model is
called Cattaneo-Christov model. The uniqueness and
structural stability of the Cattaneo-Christov has been
examined by Ciarletta and Straughan [4]. Ostoja-
Starzewski [5] described Maxwell Cattaneo equation by
using material time derivative. The numerical study
of Maxwell MHD ow of Cattaneo-Christov model
has been examined by Shahid et al. [6]. Alamri et
al. [7] discussed the possibility of employing Cattaneo-
Christov model in a stretching cylinder.

The properties of non-Newtonian uids are dif-
ferent from those of Newtonian uid. Many materials
show the non-Newtonian behavior, i.e., blood, apple
sauce, toothpaste, paint etc. Non-Newtonian uids are
complex in nature and due to their rheological proper-
ties are involved in constitutive equation. These types
of uids are not described by single expression due to
their various characteristics. Micropolar uids are with
micro structure. Eringen [8] developed the concept of
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micropolar uid and explained the behavior of certain
uids. Physically a micropolar uid is one which
contains suspensions of rigid particles. In previous
years, the study of micropolar uid has received a great
deal of attention because of its numerous applications
in industries like colloids and polymeric suspension,
animal's blood etc. The micro structural e�ect in the
uid was observed by Je�ery [9]. He showed that the
presence of these particles cause the uid velocity to be
increased. Ericksen [10] introduced the �eld equations
for micropolar uid.

Flow caused by stretching surface is employed
in extrusion process. Crane [11] found the solution
of the stretching surface. The process of stretching
occurs in the manufacturing processes of both polymer
and metal sheets and paper production. The �nial
production quality depends on the rate of heat transfer
at the stretching surface. Following that, the numerical
and analytical studies on stretching ow are reported
in [12{23].

The purpose of this research is to explore the
e�ect of magnetic �eld on micropolar uid resulted
from curved stretching surface. The Cattaneo-Christov
heat model is used to formulate the problem. The
resulting non-linear equations are solved by OHAM.
The obtained series solutions are plotted graphically
and discussed physically.

2. Mathematical formulation

The steady boundary layer ow of a micropolar uid
along a curved linearly stretching surface looped in a
circle of radius R is considered. The origin O is �xed
by applying two opposite and equal forces along the x
direction and r is perpendicular to it. The magnetic
�eld of strength B0 is imposed in the r direction. The
temperature of surface is Tw, where Tw > T1 with
T1 denoting ambient temperature of uid. Under the
above conditions, the governing equations are given
as [21]:
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According to the de�nition of spin gradient viscosity in
the relevant professional literature:
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The boundary conditions for the problem is:

u = ax; v = 0; N=�m0
@u
@r
; T = Tw;

at r = 0;

u! 0;
@u
@r
!0; N ! 0; T ! Tw;

as r !1; (7)

where m0 (0 � m0 � 1) is a constant. We use the
following similarity transformations into Eqs. (1) to
(5):
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By using the above transformations, Eq. (1) is satis�ed
identically. Eqs. (2){(5) become:
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k .
Pr is the Prandtl number, s is the radius of

curvature, W is the material parameter, and M is the
magnetic parameter.

Eliminating the pressure from Eqs. (9) and (10),
we get:
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Pressure can be obtained from Eq. (10):
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Boundary conditions are:

f(0)=0; f 0(0)=1; g(0)=0; �(0)=1;

f 0(1)=0; f 00(1)=0; g(1)=0; �(1)=0: (15)

The skin friction and couple stress coe�cient are the
physical quantities of interest, which are expressed as:
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in which Trs and Mw are the wall shear stress and wall
couple stress respectively, which are given by:

Mw = � @N
@r

at r = 0; (17)

Trs=(K+�)
�
@u
@r
� u
r+R

�
+KN at r = 0:

(18)

We use Eq. (8) into Eqs. (16) to (18). Eq. (16) becomes:
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3. Optimal homotopic solutions

We solve the above ODE's by using the optimal
homotopy method. The initial guesses, linear operator
and auxiliary functions for the velocity, micro rotation
and heat equation are assumed as follows:

hf =e�� = hg = h�; (21)

Lf =f iv + f 000; Lg=g00�g; L�=�00��; (22)

f(0)=1�e��; g(0)=�e��; �(0)=e��: (23)

The properties are:

Lf = C1 + C2x+ C3x2 + C4e��; (24)

Lg = C5e� + C6e��; (25)

L� = C7e� + C8e��: (26)

The problem above in zero and nth order is:
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3.1. Convergence analysis of solution
In order to achieve a monotonically convergent solu-
tion, we compute the square residual error for velocity,
micro rotation and heat pro�le at di�erent order of
approximation as shown in Table 1.
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Table 1. Averaged squared residual error using ef0 = �0:2241, eg0 = �0:6912, and e�0 = �0:7473.

Order of approximation Velocity pro�le Microrotation pro�le Heat pro�le
2 0.0175963 0.944401 0.0089331
6 1:71823� 10�8 0.000336992 0.000155282
8 2:20359� 10�11 0.0000326767 0.0000292079
10 3:44715� 10�14 4:02022� 10�6 6:19856� 10�6

16 1:97832� 1022 2:88388� 10�8 9:19524� 10�8

18 1:00026� 10�24 7:44158� 10�9 2:48415� 10�8

20 3:12887� 10�27 2:05994� 10�9 6:92851� 10�9

22 9:26106� 10�30 5:9866� 10�10 1:98329� 10�9

26 1:53235� 10�34 5:60164� 10�11 1:72693� 10�10

28 6:43954� 10�35 1:78235� 10�11 5:2201� 10�11

30 2:60764� 10�36 5:79454� 10�12 1:59845� 10�11

4. Results and discussion

In this section, we compute the graphical impact
of involved parameters, micro-rotation, velocity and
temperature pro�le. Figure 1 shows the impact of M
on velocity pro�le. We can see that velocity pro�le
decreases when we raise the value of M . The magnetic
force is a resistive quantity which works against the
ow in response to decrease in velocity. In Figure 2, we
analyzed the e�ect of material parameter on velocity.
As the value of W increases the velocity also increases.

Figure 1. E�ect of M when W = 1 and s = 7.

Figure 2. E�ect of W when M = 0:5 and s = 7.

The inuence of curvature on velocity pro�le is given in
Figure 3; as shown in this �gure the velocity increases
with increase in the value of s. Figure 4 is plotted for
impact of magnetic parameter on microrotation pro�le.
As we can see, the micro-rotation pro�le decline by
rising the value of M . Figure 5 illustrates the behavior
of micro-rotation pro�le with curvature parameter.
From this �gure, it is clear that the micro-rotation
pro�le increases as the value of s increases. Figure 6

Figure 3. E�ect of s when W and M = 0:8.

Figure 4. E�ect of M pro�le when s = 7 and W = 1.



A. Afsar Khan et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 223{230 227

Figure 5. E�ect of s when W = 3 and M = 0:8.

Figure 6. E�ect of W when s = 7 and M = 0:8.

Figure 7. E�ect of Pr when s = 7 and  = 0:5.

explains the e�ect of W on microrotation pro�le. It
is observed that micro-rotation pro�le increases with
increase ofW . From Figure 7, it can be noticed that the
temperature pro�le shows decreasing behavior when we
increase the Pr. Actually, the Prandtl number is the
ratio between the thermal di�usivity and momentum
di�usivity. We can observe from Figure 8 that the
temperature pro�le decreases by increasing the value
of . It means that more time is required to transfer
energy from one particle to another particle by enhanc-
ing the thermal relaxation time. Figure 9 illustrates the
impact of curvature parameter on temperature pro�le.
We can see the temperature pro�le of uid increases as

Figure 8. E�ect of  when s = 7 and Pr = 1.

Figure 9. E�ect of s when W = 2:5 and  = 0:6.

Figure 10. E�ect of M when W = 7 and s = 0:5.

s increases. Figure 10 represents the impact of M on
the pressure of uid. As M increases, the pressure of
uid decreases near the surface. In Figure 11, we can
see that pressure increases by increasing the value of
s. Figure 12 shows the e�ect of W on pressure, the
similar e�ect is observed in Figure 10.

As shown in Table 2, to examine the validity
and reliability of the results of the present study,
they are compared with �ndings of Hayat and Qasim
(2010) [17]. In this regard we assumed the at
stretching surface, by taking s ! 1, i.e., s = 1000.
The results of the previous study was obtained using
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Figure 11. E�ect of s when M = 1:5 and W = 0:5.

Figure 12. E�ect of W when M = 1:5 and s = 1:0.

HAM, while the numerical result of the present study
was obtained using OHAM via BVPh2 and in the
present study the at surface is considered. Table 3
presents the value of couple stress coe�cient for the
distinct values of M and W by �xing the s = 7. We
have noticed that by enhancing the values of W and M ,
the RCmes showed the increasing behavior. Regarding
the value of heat transfer rate at surface, we observed
that the heat transfer rate enhanced by enhancing the
value of Pr and  (Table 4).

Table 2. Comparison of numerical value of physical
quantity Re1=2

s Cf at di�erent values of m and W with
s = 1000.

W M Hayat and
Qasim (2010)

Present study

0 0.5 1.1180 1.1182
1 1.5305 1.5307
2 1.8152 1.8153
4 2.2456 2.2454
1 0.0 1.3678 1.3679

0.5 1.5305 1.5307
1.0 1.9422 1.9424
1.5 2.4873 2.4871

Table 3. Numerical result of couple stress coe�cient for
ResCm at di�erent values of W and m with s = 0:7.

W M ResCm
0.3 0.1 0.239926
0.5 0.301092
1 0.45178
1 0.1 0.45178

0.5 0.644904
0.9 0.733538

Table 4. Value of heat transfer rate �0(0) at the surface
s = 0:2.

 Pr ��0(0)

0.0 1.0 1.90748
0.2 1.91475
0.4 1.92206
0.2 0.9 1.90167

1.0 1.91475
1.5 1.98096

5. Conclusions

In this study, we examined the MHD ow of a mi-
cropolar uid over a curved stretching surface. The
Cattaneo-Christov model has been implemented to see
the thermal e�ect. The following observations may be
extracted from the graphical results:

1. The pressure distribution increases by increasing
M , s, and W near the boundary of the curved sur-
face and it tends to zero away from the boundary;

2. The microrotation and velocity of the uid decrease
by enhancing the value of M ;

3. The velocity and microrotation of the uid increase
by increasing the curvature parameter;

4. The temperature of the uid is declined by enhanc-
ing the thermal relaxation time;

5. Future researchers need to consider the modi�ed
Fick's theory.

Nomenclature

P Pressure
v Velocity in r direction
u Velocity in x directions
� Electrical conductivity
T Temperature
N Micro-rotation parameter in the

rx-plane
� Spin gradient viscosity
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� Fluid density
k Thermal conductivity
K Vortex viscosity
j Micro-inertial per unit mass
� Kinematics viscosity of uid
� Thermal relaxation time
cp Speci�c heat

� Viscosity of uid

j =
�
ax

Reference length
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