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Abstract. The main contribution of this paper is to present the systematic and
low-complexity translation techniques between a class of hybrid systems referred to as
automaton-based Discrete-time Hybrid Automata (DHA) and piecewise a�ne (PWA)
systems. As a starting point, the general modeling framework of the automaton-based DHA
is represented, which models the controlled and uncontrolled switching phenomena between
linear continuous dynamics including discrete and continuous states, inputs and outputs.
The basic theoretical de�nitions on the state trajectories of the proposed DHA with
forward and backward evolutions that yield forward and backward piecewise a�ne (FPWA
and BPWA) systems are given. Next, the well-posedness and equivalency properties are
proposed and the su�cient conditions under which the wellposedness property is achieved
with the automaton-based DHA and PWA systems are given. It is shown that the
graphical structure of the proposed automaton-based DHA makes it possible to obtain
analytically the equivalent PWA system with polynomial complexity in contrast to the
existing numerical translation techniques via decomposed structure of the DHA with
exponential complexity. Examples are presented to con�rm the e�ectiveness of the proposed
translation techniques.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Motivation and literature review
In the dynamical systems theory, the systems that
combine time-driven and event-driven dynamics are
called hybrid systems [1]. In recent years, hybrid sys-
tems have attracted much attention in both academia
and industry, largely due to the embedding of event-
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driven microprocessors in complex automated time-
driven dynamics such as automobile [2], aircrafts [3], air
tra�c control systems [4], process control systems [5],
communication networks [6], robotics [7], biology [8],
circuits and electronics [9], networked control systems
[10], and power systems [11], to list just a few.

The �rst step in the analysis, design and synthe-
sis, control, performance evaluation, and optimization
of hybrid systems is to develop suitable mathematical
models [1]. In hybrid systems, the analytical com-
plexity of continuous dynamic systems merges with the
combinatorial complexity of the discrete-event systems,
leading to the fact that the analysis and synthesis of
these classes of systems are very di�cult. Another
reason for the di�culty of mathematical treatment of
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hybrid systems is the nature of their state sets as the
product of their purely continuous and purely discrete
subsystems state sets. Therefore, in general, it is not
possible to use the rich set of analysis and synthesis
approaches that work for individual continuous or
discrete subsystems.

In this paper, our emphasis is on the models
of hybrid systems in the discrete-time setting. It
should be noted that the discretization in the time
does not imply the discretization of the state space.
Discretization in space is out of the scope of the
present work and the interested readers are referred
to [12,13] and references therein. The discrete-time
sample path is piecewise constant, while the states can
still take values from a set of real numbers. Of the
merits of discrete-time models, one can mention their
suitability for solving optimization problems and sim-
ilar mathematical manipulations such as identi�cation
problems, which would be much more complex in a
continuous-time setting [14,15]. Another advantage is
the elimination of the zeno phenomenon which is prone
to occur in continuous-time hybrid systems models.
The zeno behavior is a phenomenon that is quite rare in
real-life hybrid systems and arises due to the modeling
abstraction [16].

In contrast, discrete-time models are subject to
some limitations. Because of the continuous nature
of the time and the concept of discretization, a level
of approximation should be adopted in the process of
passing from the original hybrid system model in the
continuous-time domain to the discrete-time setting.
Another issue is that when the discrete-time hybrid sys-
tem model is used in the case of an optimization prob-
lem, the size of the resulting mathematical program-
ming increases due to the introduction of a large num-
ber of binary variables, associated with each discrete-
time interval in a time horizon. On the other hand,
the accuracy of the discrete-time hybrid model and the
size of the corresponding mathematical programming
are related to each other in an opposite manner. This
means that to achieve a suitable approximation of the
original continuous-time hybrid model, it is usually
required to use small discretization time, which in turn
leads to large combinatorial problems of intractable size
[17,18]. Nevertheless, when a continuous-time hybrid
system model reaches the point of implementation, a
part of the requirements will be realized using software
in a discrete-time fashion, inevitably. In other words,
the possibility of the direct design and implementation
of continuous-time hybrid systems has been tailored to
the discrete-time hybrid models. Therefore, an inter-
esting and challenging problem is to develop some con-
ditions under which the vital properties established and
valid for the continuous-time hybrid models are also
satis�ed for the discrete-time hybrid models, and vice
versa [19,20]. These are good reasons why the theory

on discrete-time hybrid dynamical systems should be
developed. In this regard, several discrete-time models
of hybrid systems have been proposed in the literature.

In [21], the equivalency relations among some
of discrete-time hybrid modeling frameworks such as
Mixed Logical Dynamical (MLD) systems [22,23], Lin-
ear Complementarity (LC) systems [24], Extended Lin-
ear Complementarity (ELC) systems [25], Min-Max-
Plus-Scale (MMPS) systems [26], and Piecewise A�ne
(PWA) systems [27,28] were presented. The existence
of many equivalent modeling frameworks for a hybrid
system con�rms the signi�cance of the equivalency
concept and translation techniques among these mod-
eling frameworks. A reason behind this importance
is the fact that each modeling framework is suitable
for a speci�c problem at hand. For instance, �nding
stability criteria and controller synthesis for PWA
systems is made easily in this modeling framework [29{
31], while the existence and uniqueness of the solutions
can be investigated easier in LC systems [24,32] and
hybrid automata [23,33]. Therefore, the study on the
equivalency relations among di�erent classes of hybrid
systems is of particular importance, because it provides
the possibility of transferring the theoretical properties
and tools from one modeling framework to another.

Among the available discrete-time hybrid sys-
tems, PWA, MLD, and Discrete-time Hybrid Au-
tomata (DHA) have received much attention in the
literature [34]. In [35], DHA was proposed as a
general modeling framework to obtain hybrid models
oriented toward the solution of analysis and synthesis
problems. The proposed DHA has a decomposed
structure in the sense that the continuous dynamics
are described by a�ne di�erence equations, while
the discrete dynamics are described by Finite State
Machines (FSM). These dynamics are interfaced by
Mode Selector (MS) and Event Generator (EG) ele-
ments in the decomposed structure of the proposed
DHA. Furthermore, a software tool called HYbrid Sys-
tems DEscription Language (HYSDEL) is developed
to obtain equivalent MLD and PWA representations
[36]. While DHA is rich in its expressiveness and is,
therefore, the starting point of modeling, simulation,
and composition of a wide range of hybrid dynamical
systems, it is not suitable to solve controller synthesis
problems because of its heterogeneous discrete and
continuous nature [36]. Motivated by this fact, the
translation of a DHA to its equivalent MLD and PWA
systems has received much attention in the literature
[35,37{41]. While model predictive control techniques
on the basis of online mixed integer optimization are
more computationally tractable for MLD systems [42],
PWA formulation is more suitable for other analysis
and synthesis techniques of hybrid systems such as
stability and stabilization [28,43{45]. The analysis
and synthesis of PWA systems have received much
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attention in the literature, and one can refer to [46,47]
and the references therein. Depending on the structure
of the physical hybrid system, it is often a challenging
task to directly obtain a PWA model of the system [48].
Therefore, it is a common practice that the original
hybrid system is modeled in a convenient modeling
framework such as DHA and then, is translated to the
corresponding PWA system.

There are two di�erent approaches to translating
a decomposed DHA into its equivalent PWA form. In
the �rst method, DHA can be translated into its equiv-
alent MLD representation and then, from MLD into
its equivalent form by using the proposed algorithms
presented in [37,40]. As another method, the DHA
is directly translated into its equivalent PWA form by
using the translation techniques proposed in [38,39,41].
However, due to the decomposed structure of the orig-
inal DHA model, all these translation techniques need
complex and time-consuming cell enumeration and fea-
sibility tests and their complexity grows exponentially
with an increase in the dimension of the Euclidian space
in which the hyperplanes of the EG element of the de-
composed DHA are de�ned. One reason for such high
complexity is that when a hybrid system is formulated
in the decomposed DHA, the information associated
with the structure of the hybrid system becomes hidden
and cannot be exploited using the translation tech-
niques. However, in automaton-based DHA [23], this
structural information is explicitly available from the
graphical net of the DHA and can be e�ciently utilized
to solve DHA to PWA translation problem in a fast and
low-complexity manner without any need for feasibility
tests and applying mixed integer programming.

Although obtaining PWA representation from
decomposed DHA and MLD systems has received much
attention in the literature, to the best of our knowledge,
only few works [49,50] have addressed the problem
of equivalency relations and translation techniques
between PWA systems and automaton-based DHA.
In [49], the equivalency between discrete-time PWA
systems and the set of linear systems combined with
the �nite automaton was represented. However, the no-
tions of the controlled and uncontrolled switching phe-
nomena, the role of reset dynamics, DHA trajectories,
and conditions under which such translations are valid
were not discussed. In [50], the relationship between an
autonomous continuous-time Linear Hybrid Automa-
ton (LHA) and PWA systems with disturbance inputs
was examined. Modeling of the uncertainty associated
with LHA transitions was performed by considering
input disturbances in a PWA model. However, the role
of discrete inputs and controlled switching phenomena
has not been addressed.

1.2. Objectives and contributions
Motivated by the issues mentioned above, the goal of

this paper is to solve the translation problem of an
automaton-based DHA into its equivalent PWA form
with an e�cient and low-complexity manner. In the ex-
isting literature, this problem is solved using traditional
decomposed DHA [35] with exponential complexity
through the numerical solution of the cell enumeration
problem and mixed integer programming techniques
[38,39,41]. This problem is solved easier by using
an automaton-based DHA with polynomial complexity
and in an analytical manner rather than traditional
numerical techniques. In this regard, �rst, a general
discrete-time modeling framework of hybrid systems
called automaton-based DHA is formally de�ned and
represented. This modeling framework is established
based on the continuous-time hybrid automata in the
literature [33,51-55] with some modi�cations in their
modeling structures. The inputs, outputs, and con-
trolled switching phenomena were not considered in the
proposed continuous-time hybrid automaton models in
[33,51{54]. The proposed model in this paper is a
generalization of the HA model in [33,51{54], in which
inputs, outputs, and controlled switching phenomena
are considered, as well. In some aspects, the proposed
model in the present work is related to the existing
continuous-time version of hybrid automata with the
inputs and outputs in [55]. However, in our work,
the transition guards are divided into the controlled
and uncontrolled types and the related notions are
de�ned in more detail. Another di�erence is that in
[55], the discrete inputs a�ect both switching between
submodels and continuous dynamics; however, in our
work, discrete inputs a�ect only the switching between
modes rather than the continuous dynamics. As
compared to our earlier work in [23], the proposed
model in the present work is a somewhat modi�ed
and generalized as to be aligned well to the system
theoretical discussions on the DHA well-posedness
and equivalence relations. For instance, all regions,
invariants, and guards are de�ned as not necessarily
closed polyhedra considering both strict and non-strict
inequalities. Two types of state evolutions namely the
traditional backward evolution [35] and forward evolu-
tion [23] are de�ned for the proposed automaton-based
DHA. Su�cient conditions are provided for the well-
posedness of the proposed automaton-based DHA. The
constructive conversion of the proposed automaton-
based DHA into its equivalent PWA models and vice
versa are formally represented based on two di�erent
types of state evolutions (backward and forward).

1.3. Organization of the paper
The remainder of the paper is organized as follows. In
Section 2, three main classes of discrete-time hybrid
systems are represented including the traditional de-
composed DHA, the proposed automaton-based DHA,
and PWA systems. The concepts of forward and
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backward evolutions for hybrid states are presented and
the well-posedness properties of the DHA and PWA
systems are investigated in this section. Section 3
describes the equivalency relation between automaton-
based DHA and PWA systems. The concepts of
Forward and Backward PWA (FPWA and BPWA)
systems corresponding to forward and backward evo-
lutions of the automaton-based DHA are represented
and e�cient algorithms for the translation of a DHA
into its equivalent FPWA and BPWA systems and vice
versa are represented. The e�ectiveness of the proposed
translation techniques is applied to two examples in
Section 4. Finally, concluding remarks are made in
Section 5.

Notation
R, Z�0 and N are used to denote the set of real, nonneg-
ative integer and positive integer numbers, respectively.
We use f0; 1gn and f0; 1gm�n to denote the set of n-
dimensional column vectors and m�n matrices whose
elements are 0 or 1, respectively. Rk and Rm�n denote
real-valued k-dimensional column vectors and m � n
matrices, respectively. We use In and 0m�n to denote
the n � n identity matrix and the m � n zero matrix
respectively. If x 2 Rk is a vector, then xi is the
ith element of x. Equalities for real vectors must be
understood componentwise. We use 8 and 9 to denote
\for all" and \there exists", respectively. For real
vectors x; y 2 Rk, x 6= y if and only if 9i 2 f1; 2; :::; kg
such that xi 6= yi. Given a set A, P (A) is the power
set of A, i.e., the set of all subsets of A. Let ' be
a collection of sets Ai where i 2 f1; : : : ; Ng. The
general union of the sets in this collection is de�ned
as:

SN
i=1Ai = A1 [ A2 [ : : : [ AN . We distinguish a

function or mapping f(�) : A ! B from a set-valued
mapping g(�) : A ! P (B) by the condition that each
a 2 A is related to a unique element b 2 B by f(�). In
contrast, a set-valued mapping g(�) associates for each
a 2 A a subset g(a) of B. In logical expressions, ^
and _ are used to denote the logical \AND", \OR",
respectively.

2. Discrete-time models of hybrid systems

There are di�erent approaches to the development of
hybrid modeling frameworks [12]:

� One modeling approach is to employ the existing
discrete-event systems modeling frameworks such
as automata and Petri Nets, and the existing con-
tinuous dynamic modeling tools such as di�erence
equations as they are, and then couple them in
a decomposed structure by appropriate interfaces
(discrete-to-continuous and continuous-to-discrete).
The traditional decomposed DHA proposed in [35]
falls into this category of the modeling style.

� The next option is to start from existing discrete
modeling frameworks of the discrete-event systems
such as automata, Petri Nets and extend them by
the injection of the continuous dynamics to each
discrete state. In this modeling approach, discrete
transitions occur based on the invariants of the
discrete states and the guards between discrete
modes, and reset dynamics are implemented during
transition between discrete states. The automaton-
based DHA in [23] falls into this category of model-
ing technique.

Contrary to the decomposed DHA, in automaton-
based DHA, similar to continuous-time hybrid au-
tomata, the continuous dynamic is a property of the
state of the automaton; however, in the decomposed
DHA, the continuous dynamic is not a property of the
state of the automaton and is selected by an inter-
face element called MS according to discrete inputs,
states, and events [35]. The choice of these modeling
approaches depends on the analysis and synthesis
problem at hand. In the sequel, more detailed analysis
is provided on the structure and relations between these
two di�erent modeling frameworks.

2.1. The DHA with a decomposed structure
As shown in Figure 1, the DHA proposed in [35]
decomposes the hybrid system into two interacting sub-

Figure 1. Discrete-time Hybrid Automata (DHA) with a decomposed structure.
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systems: (a) a continuous system with the continuous
input uc(k) 2 Uc � Rmc , the output yc(k) 2 Yc � Rpc
and the state xc(k) 2 Xc � Rnc signals; and (b) a
discrete system with discrete inputs ud(k) 2 Ud �f0; 1gmd , outputs yd(k) 2 Yd � f0; 1gpd , and states
xd(k) 2 Xd � f0; 1gnd . These continuous and discrete
systems are called Switched A�ne System (SAS) and
FSM, respectively. The interaction between these two
subsystems is realized by two interfaces, called as EG
and MS, respectively. The former maps continuous-
valued signals into discrete-valued signals �e(k); the
latter uniquely translates discrete-valued signals into a
discrete-valued signal i(k) that selects a mode of SAS
for continuous-state evolution.

In the sequel, each of these components is de�ned.
SAS is a collection of a�ne systems:

xc(k + 1) = Ai(k)xc(k) +Bi(k)uc(k) + fi(k);

yc(k) = Ci(k)xc(k) +Di(k)uc(k) + gi(k); (1)

where k 2 Z�0 is the time indicator, fAi; Bi; fi; Ci; Di;
gigi2I is a set of matrices of suitable dimensions
and i(k) 2 I , f1; : : : ; sg is an input signal that
chooses the a�ne state update dynamics. The FSM
(or automaton) is described by the following discrete
state-update functions:

xd(k + 1) = fD(xd(k); ud(k); �e(k));

yd(k) = gD(xd(k); ud(k); �e(k)); (2)

where fD(:; :; :) : Xd�Ud�D ! Xd and gD(:; :; :):Xd�
Ud � D ! Yd are deterministic discrete functions and
D � f0; 1gne . The EG generates a binary event
signal �e(k) according to the satisfaction of the a�ne
constraints or thresholds:

�e(k) = fH(xc(k); uc(k)); (3)

where fH(:; :) : Xc � Uc ! D is a vector of descriptive
functions of a linear hyperplane. The MS interface is
described by:

i(k) = fM (xd(k); ud(k); �e(k)); (4)

where fM (:; :; :) : Xd � Ud � D ! I is a deterministic
discrete function. A mode switch occurs at the time
instant k if i(k� 1) 6= i(k). In accordance with a mode
switch i(k) = j, i(k � 1) = h 6= j, h; j 2 D, instead
of evolving xc(k + 1) = Ajxc(k) + Bjuc(k) + fj , it
is possible to associate a reset of the continuous state
vector xc(k + 1) = Ahjxc(k) + Bhjuc(k) + fhj . Such
an state evolution type in the decomposed DHA in
[35] is closely related to the backward evolution of the
automaton-based DHA in [23]. On the other hand, in
the decomposed DHA, there is no counterpart for the
reset dynamics of the self-loop edges in the automaton-
based DHA. From this point of view, the modeling

power and expressiveness of the automaton-based DHA
is greater than that of the decomposed DHA. More-
over, the graphical representation of the automaton-
based DHA facilitates an easier communication with
the model to determine the solution to some of the
problems such as the translation of the model into its
equivalent PWA system. Nevertheless, for the decom-
posed DHA, a tool called HYSDEL has been developed
that provides a convenient textual representation as
an input to the tool and allows describing the hybrid
dynamics in a textual form. The HYSDEL compiler
then translates this form into the corresponding PWA
or MLD models [36], thus providing a multi-modeling
capability. Moreover, the decomposition of hybrid
systems into continuous and discrete subsystems points
to the hybrid nature of the system explicitly and makes
it possible to use the methods available for continuous
and discrete systems to separate subsystems, although
the obtained results for each isolated subsystem are
not valid for the overall hybrid system [12]. In Subsec-
tion 3.2, we return to the issue of the decomposed DHA
model where complexity analysis is to be performed on
the translation techniques from the decomposed and
automaton-based DHAs to PWA systems.

2.2. Automaton-based realization of a DHA
In [23], a general modeling framework called
automaton-based DHA was proposed on the basis of
the extended discrete event systems.

De�nition 1. A discrete-time hybrid automaton DHA
is a collection:

DHA = (Xc; Xd; Yc; Yd; Uc; Ud; fxc(�; �; �); fyc(�; �; �);
fyd(�; �); Init; Inv(�); Ec; Euc; Gc(�); Guc(�);
Rxc(�; �; �)); (5)

where:

� Xc � Rnc is a set of admissible continuous states;

� Xd = fxd1 ; xd2 ; : : : ; xdNd g � f0; 1gnEd is a �nite set
of discrete states where Nd 2 N is the number of
discrete states of the DHA;

� Yc � Rpc is a set of admissible continuous outputs;
� Yd � f0; 1gpd is a set of admissible discrete outputs;
� Uc � Rmc is a set of admissible continuous inputs;
� Ud � f0; 1gmd is the set of admissible discrete inputs

to activate controlled switching events;
� Ec � Xd � Xd is a set of controlled or non-

autonomous switching events;
� Euc � Xd � Xd is a set of uncontrolled or au-

tonomous switching events;
� fxc(�; �; �) : Xc � Uc � Xd ! Xc is a function
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Figure 2. Automaton associated with a Discrete-time Hybrid Automata (DHA).

that determines the evolution of the continuous state
xc(k) in each discrete state;

� fyc(�; �; �) : Xc � Uc � Xd ! Yc is a function which
determines the evolution of the continuous output
yc(k) in each discrete state;

� fyd(�; �) : Xd � Ud ! Yd is a function that speci�es
the discrete output yd(k) evolution corresponding to
each discrete state;

� Init � Xc �Xd is a set of initial states;
� Inv(�) : Xd ! P (Xc � Uc � Ud) is a set-valued

function that describes the invariants or domains of
the DHA, i.e., the valid continuous states, inputs
and discrete inputs associated with discrete states of
the DHA;

� Gc(�) : Ec ! P (Ud) is a controlled guard, i.e., a
condition for controlled switching events;

� Guc(�) : Euc ! P (Xc�Uc) is an uncontrolled guard,
i.e., a condition for uncontrolled switching events;

� Rxc(�; �; �) : Xc � Uc � E ! Xc is a reset map for
continuous state xc(k) where E = Ec [ Euc.

The proposed DHA can be represented as a
directed graph shown in Figure 2.

Each discrete state of the DHA is shown with a
node or a vertex in the graph, while the edges represent
possible transitions between the discrete states. A
discrete-time a�ne dynamical system and an optional
discrete output are assigned to each node as follows:
xc(k + 1) = fxc(xc(k); uc(k); xdi) = Acixc(k)

+Bciuc(k) + hci ; (6)

yc(k) = fyc(xc(k); uc(k); xdi) = Ccixc(k)

+Dciuc(k) + gci ; (7)

yd(k)=fyd(xdi ; ud(k))=Cdixdi+Ddiud(k)+gdi ; (8)

where i 2 f1; 2; : : : ; Ndg, Aci 2 Rnc�nc , Bci 2 Rnc�mc ,
hci 2 Rnc , Cci 2 Rpc�nc , Dci 2 Rpc�mc , gci 2 Rpc ,
Cdi 2 Rpd�nEd , Ddi 2 Rpd�md , gdi 2 Rpd . k 2 Z�0 is
the discrete-time indicator, xc(k) 2 Xc the continuous
state vector, uc(k) 2 Uc the exogenous continuous
input vector, ud(k) 2 Ud the exogenous discrete input
vector, yd(k) 2 Yd the discrete output vector, and
yc(k) 2 Yc the continuous output vector.

To each discrete state xd(k) = xdi 2 Xd, an
invariant set Inv(xdi) is assigned as:

Inv(xdi) = f(xc(k); uc(k); ud(k)) 2 Xc � Uc
�UdjHixc(k) + Jiuc(k) � Ki; ~Hixc(k)

+ ~Jiuc(k) < ~Ki ^ ud(k) = udig; (9)

where Hi, Ji, Ki, ~Hi, ~Ji, and ~Ki are real-valued
matrices with suitable dimensions and i 2 f1; : : : ; Ndg.

Each edge eij = (xdi ; xdj ) 2 E is labeled by an
appropriate guard or switching condition for controlled
or uncontrolled transitions. The uncontrolled switching
condition is a polyhedral partition in the continuous
state-input space as:

Guc(eij) = f(xc(k); uc(k)) 2 Xc � UcjHijxc(k)

+Jijuc(k) � Kij ; ~Hijxc(k) + ~Jijuc(k)

< ~Kijg; (10)

where Hij , Jij , Kij , ~Hij , ~Jij , and ~Kij are real-valued
matrices with suitable dimensions and that 8i; j 2
f1; : : : ; Ndg; then, we have eij 2 Euc. The controlled
switching condition is speci�ed by the values of the
discrete input as:

Gc(eij) =
�
ud(k) 2 Udjud(k) = udij

	
: (11)
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To each controlled and uncontrolled edge eij =
(xdi ; xdj ) of the graph, a reset function is assigned to
update the continuous state during switching between
the subsystems as follows:

xc(k + 1) = Rxc(xc(k); uc(k); eij) = Acijxc(k)

+Bcijuc(k) + hcij ; (12)

where Acij 2 Rnc�nc , Bcij 2 Rnc�mc , hcij 2 Rnc ,
8i; j 2 f1; : : : ; Ndg such that eij 2 E.

Remark 1. In De�nition 1, in a DHA, each transition
edge from discrete state xdi to xdj whose corresponding
reset dynamic is equal to the assigned continuous
dynamic in the incoming discrete state xdj , as in
Eq. (13), is called a transition edge without a reset
dynamic.
Acijxc(k) +Bcijuc(k) + hcij = Acjxc(k) +Bcjuc(k)

+hcj : (13)

The reverse statement also holds, i.e., for any tran-
sition edge without any speci�ed reset dynamic, the
equality condition Eq. (13) is valid.

Remark 2. In Figure 2, the self-loop edges without
reset dynamics are not shown in the directed graph
of the DHA. Given that edge eij is a controlled or
uncontrolled edge, the symbol Gc(eij)=Guc(eij) is used
to denote the respective controlled or uncontrolled
switching guard in the DHA graph. Accordingly,
ud(k) 2 Gc(eij)=(xc(k); uc(k)) 2 Guc(eij) and ud(k) =2
Gc(eij)=(xc(k); uc(k)) =2 Guc(eij) are used to specify
the activation and inactivation of the edge eij at instant

k, respectively. In other words, when the continuous
state and input satis�es a manifold characterized by
the uncontrolled guard conditions, an uncontrolled edge
is activated. Accordingly, when the discrete input
satis�es a controlled guard condition, a controlled edge
or event is activated. A controlled or uncontrolled edge
is inactivated when it is not activated according to the
preceding discussion. Obviously, since any edge in the
DHA graph can only be of controlled or uncontrolled
type from ud(k) 2 Gc(eij)=(xc(k); uc(k)) 2 Guc(eij),
we mean that only one of the conditions ud(k) 2
Gc(eij) or (xc(k); uc(k)) 2 Guc(eij) is satis�ed depend-
ing on whether the respective edge is a controlled or
uncontrolled edge, respectively.

The evolution of the DHA state, input and output
is de�ned based on De�nition 2.

De�nition 2. An execution or run of a DHA over a
discrete-time interval K = [0; k0] = 0; 1; : : : ; k0 where
k0 2 Z�0 is a collection (K;xc(�):K ! Xc; xd(�):K !
Xd; uc(�):K ! Uc; yc(�):K ! Yc; yd(�):K ! Yd)
satisfying the following items:

� Initialization: Let us consider discrete state xdi
of a DHA graph that may be connected to other
nodes of the overall system through incoming and
outgoing edges, as shown in Figure 3. It is supposed
that at instant k = 0, (xc(0); xdi) 2 Init where
i 2 f1; : : : ; Ndg.

� Discrete state evolution:
a) a transition from xd(k) = xdi to xd(k+1) = xdj
where (xdi ; xdj ) 2 Ec [ Euc may occur at the
instant k + 1 if and only if (xc(k); uc(k); ud(k)) 2
Inv(xdi) and (xc(k); uc(k)) 2 Guc(eij)=ud(k) 2

Figure 3. A node of a Discrete-time Hybrid Automata (DHA) with incoming and outgoing edges.
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Gc(eij) (see Remark 2). In other words, there is
a choice between further staying in node i or a
discrete transition.
b) a transition from xd(k) = xdi to xd(k+1) = xdj
where (xdi ; xdj ) 2 Ec [ Euc must occur at the
instant k + 1 if and only if (xc(k); uc(k); ud(k)) =2
Inv(xdi) and (xc(k); uc(k)) 2 Guc(eij)=ud(k) 2
Gc(eij) (see Remark 2).

� Continuous state evolution: The evolution of the
continuous state xc(k+1) can be described using two
di�erent techniques: backward or forward. These
names are chosen to show the order of discrete
states, in terms of the time through which the
continuous dynamics are selected. At each step time
k and in the backward evolution, xd(k) and xd(k�1)
is used while xd(k) and xd(k+1) are employed in the
forward evolution. A detailed discussion is presented
by De�nitions 3 and 4.

De�nition 3. In a backward evolution, at each sample
time k, the selection of the continuous dynamic is
made based on the present and previous values of
the discrete state, i.e., xd(k) and xd(k � 1) and the
activation of the switching guards of the self-loop edges,
i.e., Gc(eii)=Guc(eii). Given (xc(k); xdi) 2 Xc � Xd
and u(k) = [uc(k)T ; ud(k)T ]T where (uc(k); ud(k)) 2
Uc � Ud the continuous state xc(k + 1), k 2 Z�0
of the DHA in the backward evolution is computed
as follows. Assuming xd(�1) = xd(0), compare
xd(k � 1) = xdh with xd(k) = xdi . If xd(k �
1) = xd(k), (xc(k); uc(k); ud(k)) 2 Inv(xdi) and
ud(k) =2 Gc(eii)=(xc(k); uc(k)) =2 Guc(eii), i.e., eii is
inactivated, then compute xc(k + 1) by the continuous
dynamic associated to the node i, namely:

xc(k + 1) = Acixc(k) +Bciuc(k) + hci ;

else if xd(k � 1) = xd(k) and ud(k) 2 Gc(eii)=(xc(k);
uc(k)) 2 Guc(eii), i.e., eii is activated, then compute
xc(k + 1) through the reset dynamic associated to the
edge eii, i.e.:

xc(k + 1) = Aciixc(k) +Bciiuc(k) + hcii ;

else if xd(k�1) 6= xd(k) then compute xc(k+1) through
the reset dynamic associated to the edge ehi, namely:

xc(k + 1) = Achixc(k) +Bchiuc(k) + hchi

Remark 3. If all edges incoming to the discrete state
xdi are without a reset dynamic (see Remark 1), then
xdh = xdi and xdh 6= xdi in De�nition 3 become
superuous and only xd(k) = xdi decides for xc(k+ 1),
namely, xc(k + 1) = Acixc(k) + Bciuc(k) + hci . This
type of backward evolution has been used in some pieces
of literature such as [56{59].

De�nition 4. In a forward evolution, selection of

the continuous dynamic at each sample time is made
based on the current and the next values of the discrete
state, i.e., xd(k) and xd(k + 1) and also the activation
of the switching guards of the self-loop edges, i.e.,
Gc(eii) or Guc(eii). Note that xd(k + 1) = xdj is
available at instant k according to the occurrence of
eij = (xdi ; xdj ) 2 Ec [ Euc (see De�nition 2, discrete
state evolution item). The continuous state xc(k + 1)
is determined by using the following algorithm:

Compare xd(k) = xdi with xd(k + 1) = xdj :
If xd(k) = xd(k + 1), and ud(k) =2 Gc(eii)=(xc(k);
uc(k)) =2 Guc(eii), i.e., eii is inactivated, then compute
xc(k + 1) by using the continuous dynamic associated
to the node i, namely:

xc(k + 1) = Acixc(k) +Bciuc(k) + hci ;

else if xd(k) = xd(k + 1) and ud(k) 2 Gc(eii)=(xc(k);
uc(k)) 2 Guc(eii), i.e., eii is activated, then compute
xc(k + 1) via the reset dynamic associated to the self-
loop edge eii, i.e.:

xc(k + 1) = Aciixc(k) +Bciiuc(k) + hcii ;

else if xd(k) 6= xd(k+1), then compute xc(k+1) through
the reset dynamic associated to the edge eij, namely:

xc(k + 1) = Acijxc(k) +Bcijuc(k) + hcij

Remark 4. If all edges outgoing from the discrete
state xdi are without a reset dynamic (based on Re-
mark 1), then xdi = xdj and xdi 6= xdj in De�nition 4
become redundant and only xd(k+ 1) = xdj decides for
xc(k+1), namely xc(k+1) = Acjxc(k)+Bcjuc(k)+hcj .
This type of forward evolution has been used in some
works of the literature such as [60,61].

� Output evolution: the values of the continuous and
discrete outputs are computed by Eqs. (7) and (8).

It should be noted that the DHA model in De�-
nition 1 is not a single model. In reality, it represents
two di�erent types of models that depend on the type of
evolutions (forward or backward). This issue is much
highlighted when we want to de�ne the hybrid state
x(k) for these two di�erent systems. The state of a
system is loosely de�ned as a set of variables such
that knowledge of them at some time together with the
future inputs is su�cient to allow for the determination
of the system future behavior.

De�nition 5. In the DHA with backward evolution,
according to De�nition 3, knowledge xd(k), xc(k), and
u(k) is not enough to determine xc(k+ 1) and, xd(k�
1) needs to be known. As a result, the state of the
DHA is de�ned as x(k) = [xc(k)T ; xd(k)T ; xd(k�1)T ]T .
On the other hand, based on De�nition 4, the state of
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the DHA with forward evolution is de�ned as x(k) =
[xc(k)T ; xd(k)T ]T .

Rmark 5. It should be noted that remembering the
previous discrete state xd(k � 1) in the DHA with
backward evolution is only required when the DHA
contains reset dynamics. According to Remark 3, when
the DHA is without reset dynamics, the knowledge
of xd(k � 1) is not required to determine the future
behavior of the system. In this case the augmentation
of the DHA state via xd(k � 1) in backward evolution
is not required and the DHA state can be constantly
de�ned as x(k) = [xc(k)T ; xd(k)T ]T for both forward
and backward evolutions.

EDHA(xc(0); xd(0)) is used to denote the set of
all executions of a DHA with the initial condition
(xc(0); xd(0)) 2 Init. EDHA is used to denote the
union of EDHA(xc(0); xd(0)) over all (xc(0); xd(0)) 2
Init. The set ReachDHA in Eq. (14) is de�ned as
the set of all reachable states and outputs with their
corresponding inputs:

ReachDHA = f( ~xc(k); ~xd(k); ~uc(k); ~ud(k); ~yc(k);

~yd(k)) 2 Xc�Xd�Uc�Ud�Yc�Ydj
9K = [0; k0] with k0 2 Z�0

such that 9(K;xc(�); xd(�); uc(�);
ud(�); yc(�); yd(�)) 2 EDHA
such that (xc(k0); xd(k0); uc(k0);

ud(k0); yc(k0); yd(k0)) = ( ~xc(k); ~xd(k);

~uc(k); ~ud(k); ~yc(k); ~yd(k))g: (14)

Remark 6. In particular cases in which the uncon-
trolled switching conditions in Eq. (10) are independent
of the continuous inputs, one can use a one-step
predictive reset. In this situation, the switching between
the discrete states is made one sampling step earlier.
In other words, a switching occurs before the related
guard or switching boundary is actually crossed. An
uncontrolled guard between nodes i and j of the DHA
is crossed at instant k if (xc(k); uc(k)) 2 Guc(eij).
The switching condition is a polyhedral partition in the
continuous state space as follows:

Guc(eij) =
�
xp1c (k) 2 XcjHijxp1c (k) � Kij ; ~Hijxp1c (k)

< ~Kij

�
; (15)

where xp1c (k) = xc(k + 1) = Acixc(k) + Bciuc(k) + hci
is the one step predicted value for the continuous state

at instant k. If the continuous dynamic at node
i is independent of the continuous inputs, in these
conditions i.e., xc(k + 1) = Acixc(k) + hci , then the
idea of one-step predictive reset can be extended to a
multi-step predictive reset. In this case, the switching
condition can be written as follows:

Guc(eij) =
�
xpNc (k) 2 XcjHijxpNc (k)

� Kij ; ~HijxpNc (k) < ~Kij

�
; (16)

where xpNc (k) = xc(k+N) = ANcixc(k)+(
PN�1
l=0 Alci)hci

is N -step predicted value for the continuous state at
instant k and is obtained by recursive implementation
of xc(k + 1) = Acixc(k) + hci .

Remark 7. Based on the preceding discussions,
the combination of the predictive reset mentioned in
Remark 6 and the backward evolution in De�nition 3
is called as backward predictive reset. On the other
hand, the forward predictive reset is the combination
of the predictive reset in Remark 6 and the forward
evolution in De�nition 4. In cases in which the
multi-step predictive reset is impossible in a DHA, the
forward predictive reset has the advantage of one-step
prediction more with respect to the backward predictive
reset, hence better modeling power. This is because in
backward evolutions, there is a one-step delay between
the change of the continuous dynamics and the discrete
states.

Sometimes, as it occurs during modeling of DC-
DC converters in both continuous and discontinuous
conduction modes, due to the discrete-time nature of
DHA modeling framework and the inability of exact de-
tecting of the uncontrolled switching surfaces because
of technical limitation in selecting small discretiza-
tion sample times, it is necessary to use predictive
reset dynamics during the transition between di�erent
modes. This should be done to avoid the state
variables such as inductor current to take unrealistic
negative values and obtain the most exact discrete-
time models. See [23,35,62{64] for more details and
numerical examples.

De�nition 5 represents the concept of the well-
posedness property of a hybrid system model which is
of particular importance for its usability.

De�nition 5. A DHA is well-posed on Xc � Xd,
Uc � Ud, Yc � Yd, if 8x(0) = [xc(0)T ; xd(0)T ]T ,
(xc(0); xd(0)) 2 Init, and 8k 2 Z�0, and
8u(k) = [uc(k)T ; ud(k)T ]T , (uc(k); ud(k)) 2 Uc �
Ud, the state trajectory x(k) = [xc(k)T ; xd(k)T ]T ,
(xc(k); xd(k)) 2 Xc � Xd and the output trajectory
y(k) = [yc(k)T ; yd(k)T ]T , (yc(k); yd(k)) 2 Yc � Yd, are
uniquely de�ned.
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It is noted that the state notation in De�nition 5
is for the forward evolution. In backward evolution,
according to De�nition 5, one can use the augmented
vectors x(0) = [xc(0)T ; xd(0)T ; xd(�1)T ]T and x(k) =
[xc(k)T ; xd(k)T ; xd(k� 1)T ]T where xd(�1)T = xd(0)T
(see De�nition 3).

Theorem 1 states under which conditions the
DHA is well-posed, and therefore, evolves with unique
state and output trajectories over the in�nite time
horizon for all initial conditions in Init. In this
theorem, CInvi, DInvi, and Ci are de�ned as follows:

CInvi = f(xc(k); uc(k)) 2 Xc � Ucj(xc(k); uc(k);

ud(k)) 2 Inv(xdi)g = f(xc(k); uc(k)) 2 Xc

�UcjHixc(k) + Jiuc(k) � Ki; ~Hixc(k)

+ ~Jiuc(k) < ~Kig; (17)

DInvi = fud(k) 2 Udj(xc(k); uc(k); ud(k))

2Inv(xdi)g=fud(k) 2 Udjud(k)=udig; (18)

Ci = f(xc(k); uc(k); ud(k)) 2 Xc � Uc � Udjud(k)

2[
j

Gc(eij) ^ (xc(k); uc(k))

2[
l

Guc(eil); j 6= lg: (19)

8i; j; l 2 f1; : : : ; Ndg such that eij 2 Ec and eil 2 Euc.
The sets CInvi and DInvi determine the continuous
and discrete parts of Inv(xdi), respectively. The set
Ci determines all the values of (xc(k); uc(k); ud(k)) for
which at least one of the controlled and uncontrolled
outgoing edges of the node i to di�erent discrete state
successors is simultaneously enabled. Furthermore,
the sets CInvci , DInvci are the complementary sets of
CInvi and DInvi, respectively. The set ReachXcUcUdDHA
is de�ned as follows:

ReachXcUcUdDHA = f( ~xc(k); ~uc(k); ~ud(k)) 2 Xc � Uc
�Udj9 ~xd(k) 2 Xd;9 ~yc(k) 2 Yc;
9 ~yd(k) 2 Yd such that ( ~xc(k);

~xd(k); ~uc(k); ~ud(k); ~yc(k); ~yd(k))

2 ReachDHAg:
In fact, ReachXcUcUdDHA is the projection of the set
ReachDHA, de�ned in Eq. (14), onto Xc � Uc � Ud.
Theorem 1. The DHA of De�nition 1 is well-posed if
the following conditions are satis�ed.

(a) Xc = Rnc , Yc = Rpc ,
(b) Cdi = 0pd�nEd , Ddi = 0pd�md , gdi 2 Yd,

(c) CInvci =
S
j Guc(eij); 8i; j 2 f1; : : : ; Ndg; eij 2

Euc,

(d) DInvci =
S
j Gc(eij); 8i; j 2 f1; : : : ; Ndg; eij 2 Ec,

(e) Guc(eij)\Guc(eik) = ;;8i; j; k 2 f1; : : : ; Ndg such
that j 6= k, and eij ; eik 2 Euc,

(f) Gc(eij) \ Gc(eik) = ;; 8i; j; k 2 f1; : : : ; Ndg such
that j 6= k and eij ; eik 2 Ec,

(g) Ci = ;; 8i 2 f1; : : : ; Ndg.
Proof. Condition (a) provides an invariant property
for both continuous state xc(k) and continuous output
yc(k) and implies that xc(k) 2 Xc and yc(k) 2 Yc,8k 2 Z�0, when xc(0) 2 Xc and yc(0) 2 Yc. Condition
(b) guarantees that the discrete output update yd(k)
is a piecewise binary function belonging to its corre-
sponding set Yd over in�nite time horizon.

Let us consider an initial condition (xc(0); xd(0))
2 Init such that xd(0) = xdi . The continuous state
xc(k), continuous and discrete outputs, yc(k) and yd(k)
of the DHA are extended uniquely by Eqs. (6){(8)
to (xc(k); uc(k); ud(k)) 2 Inv(xdi)c\ ReachXcUcUdDHA at
instant k. This implies that (xc(k); uc(k); ud(k)) =2
Inv(xdi). Therefore, one can conclude that (xc(k);
uc(k)) =2 CInvi or ud(k) =2 DInvi. Equivalently,
this implies that (xc(k); uc(k)) 2 CInvci or ud(k) 2
DInvci . In Case 1, if (xc(k); uc(k)) 2 CInvci , then,
one can conclude according to Condition (c) that
(xc(k); uc(k)) 2 Sj Guc(eij). This and Condition (e)
imply that de�nitely only one of the uncontrolled
outgoing edges eij 2 Euc is enabled, and the discrete
state of the DHA is changed from xdi to xdj . Therefore,
the continuous state trajectory of the system xc(k) is
extended uniquely by the reset dynamic in Eq. (12) for
forward evolution or by Eq. (6) in backward evolution.
In both types of evolutions, yc(k) and yd(k) evolve
uniquely via Eqs. (7) and (8). In Case 2, if ud(k) 2
DInvci , then one can conclude according to (d) that
ud(k) 2 Sj Gc(eij). This and Condition (f) imply only
one of the outgoing controlled edges eij 2 Ec is enabled,
and the discrete state is changed from xdi to xdj and
xc(k) is evolved by the reset dynamic in Eq. (12) in
the forward evolution or by Eq. (6) in the backward
evolution uniquely. Again, yc(k) and yd(k) change
uniquely via Eqs. (7) and (8). Case 3 takes place when
both (xc(k); uc(k)) 2 CInvci and ud(k) 2 DInvci are
simultaneously valid. However, Condition (g) prevents
from occurring of this case. This can be shown by a
contradiction: Let (xc(k); uc(k)) 2 CInvci and ud(k) 2
DInvci . Then, according to (a) and (b), one can
conclude that (xc(k); uc(k)) 2 Sj Guc(eij) and ud(k) 2S
j Gc(eij). This means that there is a possibility

of simultaneous controlled and uncontrolled transition
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from node i to a di�erent discrete state successor.
Equivalently, this implies that 9(xc(k); uc(k); ud(k)) 2
Ci. In other words, Ci 6= ; and this contradicts
Condition (g). Therefore, whenever the continuous
evolution is impossible in a node of the DHA, say node
i, a discrete transition to a new node, say node j, is
possible and xc(k) is modi�ed uniquely by the reset
dynamics in Eq. (12) associated with the edge eij in
forward evolution, or by the a�ne dynamic of Eq. (6)
associated to the node i of the DHA graph in backward
evolution. Besides, yc(k) and yd(k) change uniquely
via Eqs. (7) and (8). Consequently, the DHAis well
posed.�

Note that the reverse statement does not hold,
since a well-posed DHA may generally be de�ned
on non-satisfying conditions (a) - (g) of Theorem 1.
Moreover, Conditions (a) - (g) are not so restrictive
and are satis�ed when real plants are described in
this modeling framework. This statement is con�rmed
in other related works such as [22] when the well-
posedness property has been de�ned for the MLD sys-
tems. Since the DHA has been proven to be equivalent
to MLD systems [23,35], one can conclude that the
proposed well-posedness conditions in Theorem 1 are
less conservative and are applicable for real plants as
well.

2.3. Piecewise a�ne (PWA) systems
The state-space representation of discrete-time PWA
systems is described by [35,36,39,43,65]:(

x(k + 1) = ~Aix(k) + ~Biu(k) + ~fi
y(k) = ~Cix(k) + ~Diu(k) + ~gi

for (x(k); u(k)) 2 ~
i (20)

where x(k) = [xc(k)T ; xd(k)T ]T is the state, u(k) =
[uc(k)T ; ud(k)T ]T the input, and y(k) = [yc(k)T ; yd
(k)T ]T is the output. The state, input and output
are partitioned in the continuous components xc(k) 2
Xc � Rnc , uc(k) 2 Uc � Rmc , yc(k) 2 Yc � Rpc and
discrete components xd(k) 2 Xd � f0; 1gnd , ud(k) 2
Ud � f0; 1gmd , yd(k) 2 Yd � f0; 1gpd . Each a�ne sub-
system described by the 6-tuple ( ~AI ; ~Bi; ~fi; ~Ci; ~Di; ~gi),
i = 1; � � � ; ~s is de�ned on a cell ~
i � Xc�Xd�Uc�Ud,
i = 1; � � � ; ~s which is a (not necessarily closed) polyhe-
dron on the state-input space de�ned by a system of
inequalities as:

~
i = f(x(k); u(k))j ~Hx;ix(k) + ~Hu;iu(k)

� ~ki; �~Hx;ix(k) + �~Hu;iu(k) < �~kig; (21)

where ~Hx;i, ~Hu;i, ~ki, �~Hx;i, �~Hu;i, and �~ki are matrices
with suitable dimensions. Moreover, ~Ai; ~Bi; ~fi; ~Ci; ~Di;
and ~gi are real matrices of suitable dimensions that

de�ne the a�ne dynamics for all i's. For PWA systems
in Eq. (20), the concept of well posedness is de�ned
as in De�nition 5. A su�cient condition for the PWA
system (Eq. (20)) to be well-posed is given by Lemma 1.

Lemma 1. The PWA system in Eq. (20) is well-posed
on 
 , Xc �Xd � Uc � Ud if the following conditions
are satis�ed:

(a) rows and columns of matrices ~Ai; ~Bi; ~Ci; and ~Di
corresponding to the discrete (binary) states and
outputs are zero such that:

~Ai =
�

~Aci
�~Aci

0nd�nc 0nd�nd

�
;

~Bi =
�

~Bci
�~Bci

0nd�mc 0nd�md

�
;

~fi =
� ~fci

~fdi

�
;

~Ci =
�

~Cci
�~Cci

0pd�nc 0pd�nd

�
;

~Di =
�

~Dci
�~Dci

0pd�mc 0pd�md

�
;

~gi =
�

~gci
~gdi

�
; (22)

where ~fdi 2 Xd, ~gdi 2 Yd, ~Aci 2 Rnc�nc , �~Aci 2
Rnc�nd , ~Bci 2 Rnc�mc , �~Bci 2 Rnc�md , ~fci 2 Rnc ,
~Cci 2 Rpc�nc , �~Cci 2 Rpc�nd , ~gci 2 Rpc , ~Cci 2
Rpc�nc , �~Cci 2 Rpc�nd , ~gci 2 Rpc , ~Dci 2 Rpc�mc ,
�~Dci 2 Rpc�md .

(b) Xc = Rnc , Yc = Rpc .
(c) ~
i \ ~
j = ;, 8i; j 2 f1; � � � ; ~sg and i 6= j.

(d) ~
ci =
Sj=~s
j=1;j 6=i ~
j, 8i 2 f1; � � � ; ~sg.

Proof. Condition (a) implies that the discrete (binary)
state and output trajectories are always binary piece-
wise constant functions. In other words, over in�nite
time horizon, the discrete state xd(k) and output yd(k)
remain in their discrete sets Xd and Yd, respectively.
Condition (b) provides the invariance property for
continuous state xc(k) and output yc(k); it implies that
over in�nite time horizon, the continuous state and
output will remain in their sets if they start from them.
Condition (c) implies that as long as (x(k); u(k)) 2
~
i, the state and output trajectory [x(k)T ; y(k)T ]T
of the PWA system is extended uniquely by the
corresponding a�ne subsystem ( ~Ai; ~Bi; ~fi; ~Ci; ~Di; ~gi) in
Eq. (20). Condition (d) guarantees the continuous
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and discrete state evolutions over in�nite time horizon
and avoids existing regions in the state space that do
not belong to any region ~
i. In other words, the
union of the sets ~
i spans the whole state space, i.e.,

 , S~s

i=1
~
i = Xc � Xd � Uc � Ud where Xc = Rnc

according to Condition (b). Therefore, through the
satisfaction of the Conditions (a){(d), in all cases, the
state and output trajectory of the PWA system in Eq.
(20) is uniquely de�ned 8k 2 Z�0, and as a result, it is
well-posed.

Similar to Theorem 1, regarding the well-
posedness of the DHA, the given conditions in Lemma 1
for the well-posedness of the PWA systems are not nec-
essary. In other words, a well-posed PWA system may
be de�ned while Conditions (a){(d) are not satis�ed. It
is noted that in the continuous-time domain, there are
some pieces of the literature that propose necessary and
su�cient conditions for the well-posedness property of
PWA and Piecewise Linear (PWL) systems [66,67].
However, in these works some of the general aspects of
the PWA systems in Eq. (20) are ignored, of which one
can mention the elimination of the discrete states and
their corresponding dynamics, continuous and discrete
control inputs, controlled switching phenomena, and
continuous and discrete output signals.

The following class of hybrid systems called PWA
system in a logic canonical form (PWA-LC system)
has a fundamental role in developing Lagrange stability
and building on performance analysis based on linear
matrix inequalities [43,68]. Therefore, in terms of
system analysis, it is of particular importance to
represent a hybrid system model in the form of PWA-
LC modeling framework.

De�nition 6. A PWA system in the logic canonical
form (PWA-LC system) is described by the state-space
equations:(

x(k + 1) = Aix(k) +Biu(k) + fi
y(k) = Cix(k) +Diu(k) + gi

for (x(k); u(k)) 2 
i (23)

where:
i = 1; : : : ; s,


i = f(x(k); u(k))jHx;ixc(k) +Hu;iuc(k)

� ki; �Hx;ixc(k) + �Hu;iuc(k) < �ki; ud(k)

= udi ; xd(k) = xdig; (24)

Ai =
�

Aci 0nc�nd
0nd�nc 0nd�nd

�
;

Bi =
�

Bci 0nc�md
0nd�mc 0nd�md

�
;

fi =
�
fci
fdi

�
;

Ci =
�

Cci 0pc�nd
0pd�nc 0pd�nd

�
;

Di =
�

Dci 0pc�md
0pd�mc 0pd�md

�
;

gi =
�
gci
gdi

�
; (25)

fdi 2 f0; 1gnd , gdi 2 f0; 1gpd , Aci 2 Rnc�nc , Bci 2
Rnc�mc , fci 2 Rnc , Cci 2 Rpc�nc , Dci 2 Rpc�mc , gci 2
Rpc .

Similar to Lemma 1, a set of su�cient conditions
can be developed for well-posedness of PWA-LC sys-
tems via Lemma 2.

Lemma 2. The PWA-LC system in Eq. (23) is well-
posed on 
 , Xc � Xd � Uc � Ud if the following
conditions are satis�ed:

(a) fdi 2 Xd, gdi 2 Yd,
(b) Xc = Rnc , Yc = Rpc ,
(c) 
i \ 
j = ; for all i; j 2 f1; � � � ; sg and i 6= j,

(d) 
ci =
Sj=s
j=1;j 6=i 
j , 8i 2 f1; � � � ; sg.

Proof. The proof of this Lemma is similar to that of
Lemma 1 and is omitted for the sake of brevity.

Compared to PWA systems in Eq. (20), the PWA-
LC systems have two additional properties. First,
according to Eqs. (23) and (25), one can see that
the dynamics of continuous-valued variables xc(k) and
yc(k) are not inuenced by the discrete states xd(k)
and inputs ud(k). In fact, the discrete input ud(k)
contributes only to the switching between di�erent
subsystems. The second feature is that when index
i is �xed, according to Eq. (24), xd(k) and ud(k) are
constant within a cell 
i, and xd(k + 1) and yd(k) are
determined by only fdi and gdi .

In the next section, we show how an automaton-
based DHA can be translated into its equivalent PWA
and PWA-LC forms. In the PWA-LC system, the
discrete variables inuence the switching between sub-
models rather than the continuous dynamics. This is
an important feature of the PWA-LC form because it
provides a useful framework to investigate the proper-
ties of the continuous-valued signals for general PWA
systems [43,68].

3. Automaton-based DHA and PWA systems

This section discusses the relationship of the proposed
discrete time hybrid automaton in De�nition 1 with
the class of PWA and PWA-LC systems presented in
Subsection 2.3.
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Figure 4. Concerned part of a Discrete-time Hybrid Automata (DHA) net to extract Backward PWA (BPWA) and
Forward PWA (FPWA) models.

De�nition 7. Let �1 and �2 be two well-posed hybrid
models by inputs u1(k) 2 U1 and u2(k) 2 U2, outputs
y1(k) 2 Y1 and y2(k) 2 Y2, and states x1(k) 2 X1 and
x2(k) 2 X2, k 2 Z�0. The hybrid models �1 and �2
are equivalent on �X = X1 \X2, �U = U1 \U2 and �Y =
Y1 \ Y2 if for all initial conditions x1(0) = x2(0) 2 �X
and for all inputs u1(k) = u2(k) 2 �U , the state and
output trajectories coincide, i.e., x1(k) = x2(k) and
y1(k) = y2(k) for all discrete time steps k 2 Z�0.

De�nition 8. The PWA systems obtained from the
translation of a DHA with the backward or forward
evolution are called backward or forward PWA (BPWA
or FPWA) systems, respectively. The mathematical
representation of BPWA and FPWA systems is similar
to that of the general PWA systems in Eq. (20).

The names FPWA and BPWA reect the evolu-
tion type (forward or backward) under which the DHA
model of De�nition 1 is translated into its equivalent
PWA system.

De�nition 9. The PWA-LC systems obtained from
the translation of a DHA with the backward or for-
ward evolution are called backward or forward PWA-
LC (BPWA-LC or FPWA-LC) systems, respectively.
The mathematical representations of BPWA-LC and
FPWA-LC systems are similar to those of the general
PWA-LC systems in Eq. (23).

Lemma 3 represents a constructive approach to
convert a well-posed automaton-based DHA into its
equivalent PWA and PWA-LC forms. It also plays a
key role to evaluate the complexity of the proposed

translation technique in Proposition 1 and Subsec-
tion 3.2.

Lemma 3. A well-posed DHA in De�nition 1 with de-
�ned backward and forward evolutions in De�nitions 3
and 4 can be transformed into the equivalent well-posed
BPWA and FPWA systems and also into the BPWA-
LC and FPWA-LC systems.

Proof. Let us consider discrete state xdi of a DHA
graph that may be connected to other nodes of the
overall system through in-coming and out going edges,
as shown in Figure 4.

For the brevity of the formulations, the terms in
the BPWA and FPWA forms are only speci�ed for the
continuous state dynamics associated with the discrete
state xdi , the single incoming and self-loop edges at this
node are depicted by the solid lines in Figure 4. The
overall BPWA and FPWA systems can be obtained by
the union of the similar terms for all discrete states and
edges in the DHA.

Case 1: BPWA and BPWA-LC formulation.
The BPWA form in Eq. (26) is obtained through the
backward evolution in De�nition 3. The BPWA form
in Eq. (26) shown in Box I is not in the standard format
of Eq. (20). However, it can be easily transformed to
its standard form by the de�nition of a new augmented
discrete state vector xnewd (k) as in Eq. (27).

xnewd (k) =
�

xd(k)
xd(k � 1)

�
: (27)
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ xd(k � 1) = xdi ^ Inv(xdi)

2664 Aciixc(k) +Bciiuc(k) + fcii
xdi

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ xd(k � 1) = xdi ^Gc(eii)=Guc(eii)

2664 Acixc(k) +Bciuc(k) + fci
xdl

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ xd(k � 1) = xdi ^Gc(eil)=Guc(eil)

...
...2664 Acixc(k) +Bciuc(k) + fci

xdm
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ xd(k � 1) = xdi ^Gc(eim)=Guc(eim)

2664 Achixc(k) +Bchiuc(k) + fchi
xdi

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ xd(k � 1) = xdh ^ Inv(xdi) [Gc(eii)=Guc(eii)

2664 Achixc(k) +Bchiuc(k) + fchi
xdl

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ xd(k � 1) = xdh ^Gc(eil)=Guc(eil)

...
...2664 Achixc(k) +Bchiuc(k) + fchi

xdm
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ xd(k � 1) = xdh ^Gc(eim)=Guc(eim)

...
...

(26)

Box I

Using Eq. (27), Eq. (26) can be rewritten as Eq. (28),
shown in Box II. According to Eq. (28), all the con-
tinuous and discrete dynamics associated with each cell
can be realized in the standard continuous and discrete
dynamics of the PWA form in Eq. (20) or PWA-LC
form described in Eqs. (23) and (25). Moreover, except

one of the regions described by xnewd (k) = [xTdi x
T
dh ]T ^

Inv(xdi) [ Gc(eii)=Guc(eii), all the regions are in the
standard region representation of the PWA form in
Eq. (21) and PWA-LC systems in Eq. (24). However,
this region can be divided into two standard PWA or
PWA-LC regions as xnewd (k) = [xTdi x

T
dh ]T ^ Inv(xdi)
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xnewd (k + 1)

yc(k)
yd(k)

3775 =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdi x
T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^ Inv(xdi)

2664 Aciixc(k) +Bciiuc(k) + fcii
[xTdi x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eii)=Guc(eii)

2664 Acixc(k) +Bciuc(k) + fci
[xTdl x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eil)=Guc(eil)

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdm xTdi ]
T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eim)=Guc(eim)

2664 Achixc(k) +Bchiuc(k) + fchi
[xTdi x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
dh ]T ^ Inv(xdi) [Gc(eii)=Guc(eii)

2664 Achixc(k) +Bchiuc(k) + fchi
[xTdl x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
dh ]T ^Gc(eil)=Guc(eil)

...
...2664 Achixc(k) +Bchiuc(k) + fchi

[xTdm xTdi ]
T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
dh ]T ^Gc(eim)=Guc(eim)

...
...

(28)

Box II

and xnewd (k) = [xTdi x
T
dh ]T ^Gc(eii)=Guc(eii) that share

the same continuous and discrete dynamics. As a
result, the BPWA or BPWA-LC form of a DHA with
the backward evolution can be obtained from Eq. (28)
as in Eq. (29) shown in Box III.

Case 2: FPWA and FPWA-LC formulations:

The FPWA representation is obtained from the forward
evolution of the DHA (see De�nition 4). The speci�ed
FPWA form in Eq. (30), shown in Box IV, corresponds
to the part of the DHA graph which is depicted by
the solid lines in Figure 4. According to Eq. (30),
one can see that the FPWA system is automatically
in the form of standard PWA-LC system described
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xnewd (k + 1)

yc(k)
yd(k)

3775 =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdi x
T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^ Inv(xdi)

2664 Aciixc(k) +Bciiuc(k) + fcii
[xTdi x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eii)=Guc(eii)

2664 Acixc(k) +Bciuc(k) + fci
[xTdl x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eil)=Guc(eil)

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdm xTdi ]
T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eim)=Guc(eim)

2664 Achixc(k) +Bchiuc(k) + fchi
[xTdi x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
dh ]T ^ Inv(xdi)

2664 Achixc(k) +Bchiuc(k) + fchi
[xTdi x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
dh ]T ^Gc(eii)=Guc(eii)

2664 Achixc(k) +Bchiuc(k) + fchi
[xTdl x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
dh ]T ^Gc(eil)=Guc(eil)

...
...2664 Achixc(k) +Bchiuc(k) + fchi

[xTdm xTdi ]
T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
dh ]T ^Gc(eim)=Guc(eim)

...
...

(29)

Box III
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ Inv(xdi)

2664 Aciixc(k) +Bciiuc(k) + fcii
xdi

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^Gc(eii)=Guc(eii)

2664 Achixc(k) +Bchiuc(k) + fchi
xdi

Cchxc(k) +Dchuc(k) + gch
Cdhxd(k) +Ddhud(k) + gdh

3775 xd(k) = xdh ^Gc(ehi)=Guc(ehi)

...
...

(30)

Box IV

by Eqs. (23){(25). Since it is originated from the
forward evolution of DHA, it is called FPWA-LC form
according to De�nition 9.

Remark 8. In some cases, e.g., for the simulation
purposes and not the analysis studies, it is required
to use a more compact representation of the PWA
systems in Eq. (20) with a smaller number of
regions as far as possible. In such conditions, in a
post processing operation, to reduce the number of
polyhedral regions in the standard PWA or PWA-LC
forms, we check all regions whose a�ne subsystems
are the same and attempt to compute their union as

cj =

Sni
k=1

~
k or 
cj =
Sni
k=1 
k where 
cj is the jth

region in the new compact representation, and ni is the
number of regions in the standard PWA or PWA-LC
forms that share the same a�ne subsystems. Since,
in general, the union of the convex polyhedra is not
a convex polyhedron and as a result, the new regions
in the compact representation of these systems may
not be represented as their standard forms in Eq. (21)
[69], they cannot be called PWA forms. However,
in this paper, for the sake of brevity and according
to the fact that in a reverse process these compact
regions can always be decomposed to the same standard
regions in Eq. (21) or Eq. (24) sharing the same a�ne
subsystems, we still call them PWA systems.

De�nition 10. Based on Remark 8, the regions of the
compact forms of PWA or PWA-LC systems obtained
from the union of the regions of the standard forms of

these systems and do not share their a�ne subsystems
with other regions are called independent regions.

According to Remark 8, in some special cases
where the incoming edge ehi 2 E in Figure 4 is without
reset dynamic (see Remark 1), the BPWA form in
Eq. (28) can be further simpli�ed as in Eq. (31), shown
in Box V (see Remark 8). Furthermore, if the
discrete state xdi is without self-loop edge eii 2 E
(see Remark 2), then the BPWA representation in
Eq. (31) can be simpli�ed to a greater degree as in
Eq. (32) shown in Box VI. In contrast to the backward
evolution case in Eq. (31), when the incoming edge
ehi 2 E in Figure 4 is without a reset dynamic (see
Remark 1), the number of regions in Eq. (30) cannot
be reduced further. This is because as it is presented
in Eq. (33), shown in Box VII, although some regions
share the same continuous and discrete state dynamics,
the continuous and discrete output dynamics vary in
these regions.

Remark 9. In special cases where the proposed DHA is
without continuous and discrete outputs given by Eqs.
(7) and (8) or they are identical in all nodes of the
DHA, in the case that the incoming edge ehi 2 E in
Figure 4 is without a reset dynamic (see Remark 1),
the FPWA form in Eq. (30) can be simpli�ed further
as in Eq. (34) shown in Box VIII (see Remark 8).

Furthermore, if the discrete state xdi is without
a self-loop edge eii 2 E (see Remark 2), then the
FPWA representation in Eq. (33) can be simpli�ed
more as in Eq. (35) shown in Box IX. As can be
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xnewd (k + 1)

yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdi x
T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^ Inv(xdi)

[(xnewd (k) = [xTdi x
T
dh ]T ^ [Inv(xdi) [Gc(eii)=Guc(eii)])2664 Aciixc(k) +Bciiuc(k) + fcii

[xTdi x
T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eii)=Guc(eii)

2664 Acixc(k) +Bciuc(k) + fci
[xTdl x

T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eil)=Guc(eil)
[(xnewd (k) = [xTdi x

T
dh ]T ^Gc(eil)=Guc(eil))

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdm xTdi ]
T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eim)=Guc(eim)

[(xnewd (k) = [xTdi x
T
dh ]T ^Gc(eim)=Guc(eim))

...
...

(31)

Box V

seen from Eq. (26), when the edge eij is activated,
the discrete state of the system is changed from xdi
to xdj . However, the continuous state of the system
still evolves through continuous dynamic in the discrete
state xdi or the reset dynamic corresponding to the
edge between xdh and xdi . In this modeling method,
one step sampling delay occurs between the change
of the discrete state and corresponding continuous
dynamic during switching events. This type of PWA
system is called Backward PWA (BPWA) system which
is the result of the backward evolution of the original
DHA. Another approach is that switching among con-
tinuous dynamics of the system is synchronized with
the change of the system discrete state. As can be
seen from Eq. (30), when a switching event occurs
from discrete state xdh to discrete state xdi at the
sampling step k, the continuous state of the system
also evolves with continuous dynamic associated with
the reset dynamic of the transition edge from xdh
to xdi , i.e., Rxchi . With this approach, the change
of the discrete state is synchronized with the change

of the corresponding continuous dynamics during a
switching event. This type of modeling, which is
the result of forward evolution of the DHA, yields an
FPWA.

Despite one step delay compensation in the
FPWA framework, comparison Eqs. (28){(32) with
Eqs. (30){(35) shows that the number of regions in
the BPWA form is always equal to or greater than
that of the FPWA form. The following proposition
is introduced on the number of regions in FPWA
and BPWA forms of a given DHA. The following
parameters are de�ned:

� ninre(i) is the number of incoming edges ehi; h 6= i
in the discrete state xdi with reset dynamics;

� nout(i) is the number of out-going edges eij ; i 6= j
(with or without reset) in the discrete state xdi ;

� nin(i) is the number of incoming edges ehi; h 6= i
(with or without reset) in the discrete state xdi ;
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xnewd (k + 1)

yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdi x
T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^ Inv(xdi)

[(xnewd (k) = [xTdi x
T
dh ]T ^ Inv(xdi))2664 Acixc(k) +Bciuc(k) + fci

[xTdl x
T
di ]

T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^Gc(eil)=Guc(eil)
[(xnewd (k) = [xTdi x

T
dh ]T ^Gc(eil)=Guc(eil))

...
...2664 Acixc(k) +Bciuc(k) + fci

[xTdm xTdi ]
T

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xnewd (k) = [xTdi x
T
di ]

T ^ (Gc(eim)=Guc(eim)

[(xnewd (k) = [xTdi x
T
dh ]T ^Gc(eim)=Guc(eim))

...
...

(32)

Box VI

�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ Inv(xdi)

2664 Aciixc(k) +Bciiuc(k) + fcii
xdi

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^Gc(eii)=Guc(eii)

2664 Acixc(k) +Bciuc(k) + fci
xdi

Cchxc(k) +Dchuc(k) + gch
Cdhxd(k) +Ddhud(k) + gdh

3775 xd(k) = xdh ^Gc(ehi)=Guc(ehi)

...
...

(33)

Box VII

� Nself is the total number of self-loop edges eii with
reset dynamics;

� Ninre is the total number of transition edges eij ; i 6=
j with reset dynamic;

� Nd is the total number of discrete states in DHA.
� Nt is the total number of transition edges eij ; i 6= j

(with or without reset) in the DHA.

Proposition 1. The number of regions in BPWA and
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ Inv(xdi)[(xd(k) = xdh ^Gc(ehi)=Guc(ehi))

2664 Aciixc(k) +Bciiuc(k) + fcii
xdi

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^Gc(eii)=Guc(eii)

...
...

(34)

Box VIII

�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ Inv(xdi)

2664 Acixc(k) +Bciuc(k) + fci
xdi

Cchxc(k) +Dchuc(k) + gch
Cdhxd(k) +Ddhud(k) + gdh

3775 xd(k) = xdh ^Gc(ehi)=Guc(ehi)

...
...

(35)

Box IX

FPWA of a DHA is equal to NRBPWA and NRFPWA

such that:

NRBPWA =Nd+Nself+3Nt+
NdX
i=1

nout(i)nin(i); (36)

NRFPWA = Nself +Nd +Nt: (37)

Proof. According to Eq. (29), one can see that
the number of regions in the BPWA form of a DHA
characterized by the continuous dynamic in the discrete
state xdi , i.e., xc(k + 1) = Acixc(k) +Bciuc(k) + fci is
1 + nout(i). Thus, the total number of such regions isPNd
i=1(1 + nout(i)). The reset dynamic associated with

each self-loop creates only one region. Therefore, the
total number of regions characterized by all self-loops

with reset dynamics of type xc(k + 1) = Aciixc(k) +
Bciiuc(k) + fcii is Nself . Also, the number of the
regions identi�ed by an incoming edge ehi; h 6= i, with
or without reset dynamics is equal to 2 + nout(i). As
a result, the total number of such regions is

PNd
i=1(2 +

nout(i))nin(i). Therefore, the number of regions in a
BPWA form of a DHA can be written as:

NRBPWA =
NdX
i=1

(1 + nout(i)) +
NdX
i=1

(2 + nout(i))nin(i)

+Nself : (38)

Simpli�cation of Eq. (38) yields:

NRBPWA =Nd+Nself+3Nt+
NdX
i=1

nout(i)nin(i): (39)
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According to Eq. (30), one can see that each self-
loop or incoming edge of the discrete state xdi with or
without reset dynamic speci�es a single region in the
FPWA model. Furthermore, the continuous dynamic
associated with each node of the DHA creates only one
region. Therefore, the number of regions in the FPWA
form of a DHA, i.e., NRFPWA , can be written as:

NRFPWA = Nself +
NdX
i=1

1 +
NtX
i=1

1: (40)

Finally, Eq. (40) can be simpli�ed as:

NRFPWA = Nself +Nd +Nt: (41)

The regions whose numbers calculated in Propo-
sition 1 are of standard type as represented in Eqs. (21)
and (24). According to Remark 8, in a post-processing
task, one can merge all the regions sharing the same
a�ne subsystems and achieve more compact forms of
BPWA and FPWA systems with fewer regions. Propo-
sitions 2 and 3 quantify the number of independent
regions (see De�nition 10) in these compact forms of
BPWA and FPWA systems.

Proposition 2. The number of independent regions
in the compact representation of the BPWA equivalent
model of a DHA is equal to NRBPWA such that:

NRBPWA = Nd +Nself +Ninre +Nt

+
NdX
i=1

nout(i)ninre(i): (42)

Proof. According to Eqs. (28), (31) and (32), one
can see that the number of independent regions in the
compact form of a BPWA model characterized by the
continuous dynamic in the discrete state xdi in conjunc-
tion with the incoming edges without reset dynamics
is 1 + nout(i). The reset dynamic associated with each
self-loop edge determines only one independent region.
The number of independent regions identi�ed by the
reset dynamic associated with an incoming edge ehi,
h 6= i, i.e., xc(k + 1) = Achixc(k) + Bchiuc(k) + fchi is
equal to 1 + nout(i). Thus, the total number of such
independent regions is

PNd
i=1(1 + nout(i))ninre(i). As a

result, the total number of independent regions in the
compact form of a BPWA model can be obtained as:

NRBPWA =
NdX
i=1

(1 + nout(i))

+
NdX
i=1

(1 + nout(i))ninre(i) +Nself : (43)

Simpli�cation of Eq. (43) yields:

NRBPWA = Nd +Nself +Ninre +Nt

+
NdX
i=1

nout(i)ninre(i): (44)

From Propositions 1 and 2, one can conclude
that the number of regions in BPWA is greater than
that of the FPWA with a quantity Ninre +

PNd
i=1(1 +

nout(i))ninre(i), and as a result, FPWA is a more
compact representation.

Corollary 1. In the case that the physical plants
do not have reset dynamics (based on Remark 1), the
number of regions in the BPWA and FPWA systems
is identical and equal to Nd +Nt. In these conditions,
according to Remark 5, the augmentation of discrete
state vector via xd(k � 1) similar to what was done in
the case of the equivalent BPWA form in Eq. (27) is
not required.

Reset dynamics or state jumps appear in various
hybrid systems, e.g., the mechanical systems containing
elastic collisions. Usually, the analysis of a system
without jumps (reset dynamics) is easier than that
of with jumps. On the other hand, there are also
many practical examples of hybrid systems that do
not present state jumps in transition from one mode
to another. An example of such hybrid systems is the
gear shift control system of a car or mechanical systems
with inelastic collisions [70,71].

According to Proposition 3, when the conditions
of Remark 9 hold, the number of regions in the FPWA
form can be further reduced compared to that of
Eq. (37) in Proposition 1.

Proposition 3. Let the DHA of De�nition 1 be
without continuous and discrete outputs given by Eqs.
(7) and (8), or these dynamics are identical in all
discrete states of the DHA then, the number of regions
of the FPWA model is determined by:

NRFPWA = Nself +Nd +Ninre: (45)

Proof. According to Remark 9 and Eq. (34), it can
be observed that each self-loop or incoming edge of the
discrete state xdi with reset dynamic speci�es a single
region in the FPWA model. Moreover, the continuous
dynamic associated with each node of the DHA creates
only one region. As a result, the number of regions in
the FPWA model can be computed as:

NRFPWA = Nself +
NdX
i=1

1 +
NdX
i=1

ninre(i): (46)

Simplifying Eq. (46), we have:

NRFPWA = Nself +Nd +Ninre: (47)
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Corollary 2. If the conditions of Proposition 3 hold
and the DHA is without reset dynamics, then the
number of regions in the FPWA form is reduced to Nd.

For a given PWA system in the standard form
of Eq. (20), one can detect whether it is evolved by a
backward evolution or forward evolution. According to
Propositions 1{3, each continuous dynamic associated
with each node of the equivalent DHA appears more
than once in the BPWA form (the precise number is
nout(i) + 1), while in the FPWA systems, it generates
only one region and as a result, it appears only once
in the FPWA form. In other words, in the BPWA
system, one can �nd regions with the same continuous
dynamics, but with di�erent discrete state successors,
while this is not the case for the FPWA systems.
Upon detecting that the given PWA system is either
in the BPWA or FPWA form, one can use the given
algorithms in Lemma 30 to obtain the equivalent DHA.

Lemma 3. Any well-posed BPWA or FPWA system
can be transformed to the equivalent well-posed DHA
based on t De�nition 1.

Proof. Case 1. Translation of the BPWA into
the DHA: According to Eq. (28), it can be observed
that the cells in which xnewd (k) = xnewd (k + 1) either
determine the continuous dynamics associated with
each discrete state of the DHA, i.e., xc(k + 1) =
Acixc(k) +Bciuc(k) + fci and corresponding invariant
set Inv(xdi), or specify the reset dynamics xc(k+ 1) =
Aciixc(k) + Bciiuc(k) + fcii and corresponding guard
conditions Gc(eii)=Guc(eii) in the self-loop edges eii.
Thus, according to Figure 5, one can construct the dis-
crete states of the DHA with the respective continuous
dynamics, invariant conditions, and possible self-loop
edges with the corresponding reset dynamics and guard
conditions. In the process of coding the discrete states
of the DHA, since xnewd (k) = [xd(k)T ; xd(k�1)T ]T , the
binary sub-vector xd(k) can be used for coding.

Regions (28) in which xnewd (k) 6= xnewd (k+ 1) can
be categorized in three groups:

(a) xd(k) = xd(k � 1) and xd(k) 6= xd(k + 1). The

Figure 5. Concerned part of a Discrete-time Hybrid
Automata (DHA) net to extract Backward PWA (BPWA)
and Forward PWA (FPWA) models.

Figure 6. Concerned part of a Discrete-time Hybrid
Automata (DHA) net to extract Backward PWA (BPWA)
and Forward PWA (FPWA) models.

continuous state dynamic in such cells is of type
xc(k + 1) = Acixc(k) + Bciuc(k) + fci which has
already been determined by the cells in which
xnewd (k) = xnewd (k+1) and therefore, does not give
new information about continuous dynamics of the
DHA. However, one can use the discrete state
evolution of xnewd (k) 6= xnewd (k+1) and the related
switching condition to construct the transition
edge between nodes xd(k) and xd(k + 1) with
the corresponding switching guards. However,
in this case, there is not enough information to
characterize the respective reset dynamic. This
data comes from examining other cells in the
BPWA structure, i.e., cases (b) and (c). With this
information, the DHA net of Figure 5 is further
completed, as shown in Figure 6.

(b) xd(k) 6= xd(k � 1) and xd(k) = xd(k + 1).
The continuous state dynamics in these cells are
of type xc(k + 1) = Achixc(k) + Bchiuc(k) +
fchi ; h 6= i. In either case, they specify the possible
reset dynamics associated with the transition edge
between discrete states xd(k � 1) and xd(k). The
respective switching condition can be determined
by the available information in cases (a) or (c).
The available conditions in these types of cells
remaining in the discrete state xd(k) are not new
since they have already been used in the cells
where xnewd (k) = xnewd (k + 1) to specify the
invariant and guard conditions of type Inv(xdi)
and Gc(eii)=Guc(eii), respectively. Based on the
information in this part, the DHA net of Figure 6
is completed to a greater degree, as illustrated in
Figure 7.

(c) xd(k) 6= xd(k�1) and xd(k) 6= xd(k+1). Similar to
case (b), the continuous dynamics in these types of
cells are of type xc(k+1) = Achixc(k)+Bchiuc(k)+
fchi ; h 6= i. They can be used to determine the
possible reset dynamics in the transition edges
between xd(k�1) and xd(k). Further, the available



M. Hejri and H. Mokhtari/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 693{726 715

Figure 7. Concerned part of a Discrete-time Hybrid Automata (DHA) net to extract Backward PWA (BPWA) and
Forward PWA (FPWA) models.

information in the corresponding cell polyhedron
can be used to determine the guard conditions
associated with the transition edges from discrete
states xd(k) to discrete xd(k + 1). All the infor-
mation in this part has been used to construct the
DHA in the previous cases.

With this approach by spanning all the regions of
the BPWA model in Eq. (28), one can construct the
equivalent DHA model.

Case 2. Translation of the FPWA into the
DHA: According to Eq. (30), it can be seen that the
cells in which xd(k) = xd(k + 1) either determine the
continuous dynamics associated to each discrete state
of the DHA, i.e., xc(k + 1) = Acixc(k) + Bciuc(k) +
fci and the corresponding invariant set Inv(xdi), or
specify the reset dynamics xc(k + 1) = Aciixc(k) +
Bciiuc(k) + fcii and corresponding guard conditions
Gc(eii)=Guc(eii) in the self-loop edges eii. Based on
these pieces of information, the DHA nodes with the
associated continuous dynamics, invariant sets and
possible self-loop edges with the corresponding reset
dynamics and guard conditions can be constructed as
shown in Figure 8. The cells in which xd(k) 6= xd(k+1)
can be employed to characterize the transition edges
between discrete states xd(k) = xdh and xd(k+1) = xdi
and the relative reset dynamics and switching guards,
as shown in Figure 8.

By implementing the preceding translation tech-

nique for all regions of the FPWA model of (30), one
can construct the equivalent DHA model.

3.1. BPWA and FPWA in some special cases
In this subsection, more simpli�ed versions of the DHA
and its corresponding BPWA or FPWA representation
are investigated.

De�nition 11. In the DHA of De�nition 1 the discrete
predecessor operator Dpre is de�ned for the discrete
state xdi 2 Xd as the set of discrete states xdh from
which xdi can be reached in one step:

Dpre(xdi) = fxdh j (xdh ; xdi) 2 Ec [ Eucg: (48)

Furthermore, discrete posterior operator Dpost is de-
�ned for the discrete state xdi as a set of discrete states
xdj that can be reached from xdi in one step:

Dpost(xdi) = fxdj j (xdi ; xdj ) 2 Ec [ Eucg: (49)

According to Remark 3, if all edges in a DHA
are without reset dynamics, one can conclude that
considering xd(k�1) in xnewd (k) is superuous and the
selection of continuous dynamics in the DHA is made
by xd(k) only. In this case, the BPWA form corre-
sponding to a part of the DHA graph with incoming
and outgoing edges, but without self-loop edges (see
Remark 2) depicted in Figure 4 is given by Eq. (50),
as shown in Box X, where fxdl ; : : : ; xdj ; : : : ; xdmg 2
Dpost(xdi).

Figure 8. Concerned part of a Discrete-time Hybrid Automata (DHA) net to extract Backward PWA (BPWA) and
Forward PWA (FPWA) models.
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ Inv(xdi)

2664 Acixc(k) +Bciuc(k) + fci
xdl

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^Gc(eil)=Guc(eil)

...
...2664 Acixc(k) +Bciuc(k) + fci

xdj
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^Gc(eij)=Guc(eij)

...
...2664 Acixc(k) +Bciuc(k) + fci

xdm
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^Gc(eim)=Guc(eim)

...
...

(50)

Box X

For the same assumption, i.e., the DHA without
reset dynamic, the FPWA form corresponding to a part
of the DHA shown in Figure 4 is given by Eq. (51),
as shown in Box XI, where fxde ; : : : ; xdh ; : : : ; xdgg 2
Dpre(xdi). There are too many works in the literature
that deal with the analysis and synthesis of only a sub-
class of the general PWA systems in Eq. (20). In most
cases, the discrete states of the general PWA system
in Eq. (20) are ignored [28,46,47,72{74]. Therefore,
the following issue arises: `under what conditions and
evolution types (forward or backward) a DHA can be
reduced to these special and simpli�ed classes of PWA
system without discrete states'.

Lemma 4. In a well-posed DHA with forward evolu-
tion and without reset dynamics, let the following con-
ditions be satis�ed; then, discrete states evolution will
be redundant and can be removed from the equivalent
FPWA system:

(a) The continuous and discrete output dynamics in
all discrete states belonging to Dpre(xdi) are
identical with the continuous and discrete output
dynamics at node xdi where i 2 f1; : : : ; Ndg;

(b) Inv(xdi) = Gc(ehi) or Inv(xdi) = Guc(ehi) where
h; i 2 f1; : : : ; Ndg; h 6= i and xdh 2 Dpre(xdi);

(c) Inv(xdi) \ Inv(xdj ) = ;, where i; j 2 f1; : : : ; Ndg;
i 6= j.

Proof. Since the DHA is well-posed and without
a reset dynamic, the FPWA form corresponding to
the part of the DHA shown in Figure 4 in which the
continuous dynamic Acixc(k) +Bciuc(k) + fci appears
can be represented as Eq. (51). According to Condition
(a), the FPWA system in Eq. (51) can be rewritten
as Eq. (52) is shown in Box XII. Now, based on
Condition (b), Eq. (52) can be rewritten as in Eq. (53),
shown in Box XIII. The FPWA form in Eq. (53) can
be represented in a more compact form of Eq. (54)
shown in Box XIV. Accordingly, the overall FPWA
form of the DHA can be constructed as in Eq. (55)
shown in Box XV. Let Inv(xdi) be satis�ed at instant
k. It is shown that the satisfaction of Inv(xdi) implies
the satisfaction of xd(k) = xdi or xd(k) 2 Dpre(xdi);
therefore, the discrete state evolution is redundant and
continuous dynamic associated to the cell 
i is selected
only based on the satisfaction of Inv(xdi).

This can be shown by a contradiction. Let
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 xd(k) = xdi ^ Inv(xdi)

2664 Acixc(k) +Bciuc(k) + fci
xdi

Ccexc(k) +Dceuc(k) + gce
Cdexd(k) +Ddeud(k) + gde

3775 xd(k) = xde ^Gc(eei)=Guc(eei)

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdhxd(k) +Ddhud(k) + gdh

3775 xd(k) = xdh ^Gc(ehi)=Guc(ehi)

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccgxc(k) +Dcguc(k) + gcg
Cdgxd(k) +Ddgud(k) + gdg

3775 xd(k) = xdg ^Gc(egi)=Guc(egi)

...
...

(51)

Box XI

�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

...
...

2664 Acixc(k) +Bciuc(k) + fci
xdi

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775
xd(k) = xdi ^ Inv(xdi)[(xd(k) = xde ^Gc(eei)=Guc(eei))

...
[(xd(k) = xdh ^Gc(ehi)=Guc(ehi))

...
[(xd(k) = xdg ^Gc(egi)=Guc(egi))

...
...

(52)

Box XII

Inv(xdi) be satis�ed at instant k; xd(k) 6= xdi and
xd(k) =2 Dpre(xdi). Since the DHA and its equivalent
FPWA form in Eq. (55) are well-posed, one of the
cells, say 
j ; j 6= i is activated. Thus, at instant k,
both invariant sets Inv(xdi) and Inv(xdj ) are satis�ed;

9(xc(k); uc(k); ud(k)) 2 Inv(xdi)\ Inv(xdj ). However,
this contradicts condition (c). Therefore, discrete
states in the FPWA form of Eq. (55) are redundant
and can be eliminated from the FPWA system as in
Eq. (56) as shown in Box XVI.
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�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

...
...

2664 Acixc(k) +Bciuc(k) + fci
xdi

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775
xd(k) = xdi ^ Inv(xdi)[(xd(k) = xde ^ Inv(xdi))

...
[(xd(k) = xdh ^ Inv(xdi))

...
[(xd(k) = xdg ^ Inv(xdi))

...
...

(53)

Box XIII

�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

=

8>>>>>>>>>><>>>>>>>>>>:

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 (xd(k) = xdi _ xd(k) 2 Dpre(xdi)) ^ Inv(xdi)

...
...

(54)

Box XIV

�
x(k + 1)
y(k)

�
=

2664 xc(k + 1)
xd(k + 1)
yc(k)
yd(k)

3775 =

=

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

2664 Ac1xc(k) +Bc1uc(k) + fc1
xd1

Cclxc(k) +Dcluc(k) + gcl
Cdlxd(k) +Ddlud(k) + gdl

3775 (xd(k) = xd1 _ xd(k) 2 Dpre(xd1)) ^ Inv(xd1)

...
...2664 Acixc(k) +Bciuc(k) + fci

xdi
Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

3775 (xd(k) = xdi _ xd(k) 2 Dpre(xdi)) ^ Inv(xdi)

...
...2664 AcNdxc(k) +BcNduc(k) + fcNd

xdNd
CcNdxc(k) +DcNduc(k) + gcNd
CdNdxd(k) +DdNdud(k) + gdNd

3775 (xd(k) = xdNd _ xd(k) 2 Dpre(xdNd )) ^ Inv(xdNd )

(55)

Box XV
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24 xc(k + 1)
yc(k)
yd(k)

35 =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

24 Ac1xc(k) +Bc1uc(k) + fc1
Cclxc(k) +Dcluc(k) + gcl
Cdlxd(k) +Ddlud(k) + gdl

35 Inv(xd1)

...
...24 Acixc(k) +Bciuc(k) + fci

Ccixc(k) +Dciuc(k) + gci
Cdixd(k) +Ddiud(k) + gdi

35 Inv(xdi)

...
...24 AcNdxc(k) +BcNduc(k) + fcNd

CcNdxc(k) +DcNduc(k) + gcNd
CdNdxd(k) +DdNdud(k) + gdNd

35 Inv(xdNd )

(56)

Box XVI

3.2. Complexity analysis
In Subsection 2.1, the traditional DHA with a decom-
posed structure was introduced. Here, a summary of
the equivalence between decomposed DHA and PWA
systems proven in [41] is given. By considering �xed
discrete variables ��e, �xd, and �ud, one can obtain the
following PWA system:

xc(k + 1) = AfM (�xd;�ud;��e)xc(k) +BfM (�xd;�ud;��e)

+ffM (�xd;�ud;��e); (57a)

xd(k + 1) = fD(�xd; �ud; ��e); (57b)

yc(k) = CfM (�xd;�ud;��e)xc(k) +DfM (�xd;�ud;��e)

+gfM (�xd;�ud; �deltae); (57c)

yd(k) = gD(�xd; �ud; ��e); (57d)

if xd(k)= �xd; ud(k)= �ud;

(xc(k); uc(k))2X��e ; (27e)

where ��e = fH(xc(k); uc(k)) holds for any point
(xc(k); uc(k)) 2 X��e � Xc � Uc. The PWA form
in Eq. (57) is in the standard form of PWA-LC
representation in Eq. (23). According to our discussion
in Subsection 2.1, since the state evolution in the tradi-
tional DHA is of backward type, based on De�nition 9,
one can call Eq. (57) as the BPWA-LC form of the
decomposed DHA as well.

In the worst case, there are 2(nd+md+ne) possible
combinations of discrete variables (�xd; �ud; ��e), but not
all of them are feasible because of system limitations.
In [41], the authors presented e�cient algorithms that
enumerate all feasible modes of discrete variable ��e
that run in O(n lp(n; d)#M(R)) times and O(nd)

space, where lp(n; d) denotes the complexity of solving
a Linear Program (LP) with n constraints and d =
mc + nc variables, and #M(R) � O(nd) denotes the
number of cells in the corresponding cell enumeration
problem. These notions have several important results.
First, the translation complexity from the decomposed
DHA to the corresponding PWA form is of exponential
type. Second, even with a small number of distinct
hyperplanes, n, in the d-dimensional Euclidean space
Rd, the complexity of cell enumeration problem grows
exponentially as the dimension of continuous state-
input space d becomes large. This issue highlights
the fact that hybrid systems with a small number
of discrete-states may result in high computational
burden when they are translated from the decomposed
DHA formulation to the equivalent PWA forms. Fi-
nally, the translation from the decomposed DHA to
PWA form needs numerical techniques based on the
mixed integer programming that are computationally
expensive. In contrast, according to Proposition 1, the
complexity of the proposed DHA-to-PWA translation
techniques based on the automaton-based DHA is of
polynomial type independent of the continuous state-
input and discrete input space dimensions. Moreover,
in the automaton-based DHA, the translation is made
analytically rather than numerically, without any need
to solve cell-enumeration problems or any other mixed
integer programming algorithms.

4. Examples

In this section, two examples are presented to show how
to use the proposed translation techniques to extract
the BPWA and FPWA forms of a given DHA. The pro-
posed examples in our work are presented to prove the
concept by hand calculations. Although they may seem
toy examples, they represent the typical properties of
more realistic hybrid systems. Furthermore, there are
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some technical subtleties behind these examples. In the
continuous-time domain, the DC-DC converter model
does not represent any reset dynamic or memory type
switching phenomena. Therefore, in the continuous-
time domain, to describe the dynamical behavior of
the converter, we do not need to use hybrid automaton
with memory e�ects; rather, the converter model is
described via a PWA representation without discrete
state dynamics [63]. When the converter dynamic
is described in the discrete-time domain, to prevent
the inductor current from taking unrealistic negative
values, we need to de�ne the reset dynamic. Here is
the point: the DHA representation with discrete state
dynamics is required. The DC-DC converter DHA
represents both controlled and uncontrolled switching
e�ects with reset dynamics. In contrast, the room
temperature control example has intrinsically memory
type dynamics in both continuous- and discrete-time
domains. According to the preceding discussion, these
examples are complementary to each other and com-
plex enough to lead the nontrivial translation task by
hand calculations.

4.1. Temperature control system
Figure 9 shows the DHA of a room temperature control
system [37]. The aim of the control system is to
regulate the room temperature xc(k) between a lower
bound m and an upper bound M . When the heater is
OFF or xd(k) = 0, the room temperature is reduced
according to the dynamic xc(k + 1) = �xc(k), and
when the heater is ON or xd(k) = 1, the temperature
increases based on the dynamic xc(k + 1) = �xc(k) +
(1 � �)uc(k), where uc(k) is a manipulated input

Figure 9. The Discrete-time Hybrid Automata (DHA) of
a temperature control system.

proportional to the heater power and 0 < � < 1 is
a constant.

Since the DHA of Figure 9 satis�es the given
conditions in Theorem 1, it is well-posed. Eqs. (58)
and (59) represent the equivalent BPWA and FPWA
forms of the DHA model of the described temperature
control system, respectively. These forms are obtained
by the schemes introduced in Lemma 3 according to
the DHA of the room temperature control system in
Figure 9. Although the equivalency relation between
the DHA and the resulting FPWA and BPWA systems
automatically transfers the well-posedness property of
the DHA to these systems, one can verify that the
BPWA and FPWA forms in Eqs. (58) and (59), as
shown in Box XVII, satisfy the given conditions in
Lemma 1 and therefore, they are well-posed. As can
be seen, the number of regions in the PWA form of the
BPWA representation is four and in the FPWA form
is two. This is in agreement with the obtained general
results in Proposition 1. Note that the DHA of room
temperature control system is without output and reset
dynamics and according to Corollary 2, the number of
independent regions in FPWA is equal to the number of
nodes Nd = 2 and according to Corollary 1, the number

x(k + 1) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

�
�xc(k)

0

�
xd(k) = 0 ^ xc(k) � m�

�xc(k)
1

�
xd(k) = 0 ^ xc(k) < m�

�xc(k) + (1� �)uc(k)
1

�
xd(k) = 1 ^ xc(k) < M�

�xc(k) + (1� �)uc(k)
0

�
xd(k) = 1 ^ xc(k) �M

(58)

x(k + 1) =

8>>>><>>>>:
�
�xc(k) + (1� �)uc(k)

1

�
(xd(k) = 1 ^ xc(k) < M)
[(xd(k) = 0 ^ xc(k) < m)�

�xc(k)
0

�
(xd(k) = 0 ^ xc(k) � m)
[(xd(k) = 1 ^ xc(k) �M)

(59)

Box XVII
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of regions in the BPWA is the sum of the number of
nodes and transition edges Nd +Nt = 2 + 2 = 4.

4.2. DC-DC converter
A DC-DC step-down (buck) converter with parasitic
elements is shown in Figure 10 [23,63].

The DHA corresponding to the buck converter
with di�erent modes of operation is shown in Figure 11.
In this �gure, N in iL(k +N) is set to 2 for backward
evolution and 1 for forward evolution (see Remarks
6 and 7). As a result, iL(k + 2) = [1 0](A2

d2
xc(k) +

Ad2Bd2 +Bd2) and iL(k + 1) = [1 0](Ad2xc(k) +Bd2).
The vector xd(k) = [xd1(k); xd2(k)]T is de�ned as a
discrete state vector in the DHA of the buck converter
in Figure 11. This �gure has three discrete states
namely [0 1]T , [1 0]T , and [0 0]T that correspond for
the Modes 1; 2, and 3, respectively.

A reset dynamic in Eq. (60) is considered to the
edge between the discrete modes 2 and 3, which are
shown by binary vectors [1 0]T and [0 0]T , respectively.

xc(k + 1) =
�

0 0
0 1

�
(Ac3xc(k) + hc3)

= Ac4xc(k) + hc4 : (60)

Using the reset dynamic, one can update the unrealistic
negative value of the inductor current to zero in one
sampling step. For the backward evolution of the
converter DHA, a new discrete state vector xnewd =
[xd1(k); xd2(k); xd1(k � 1)]T is de�ned. Although, all
bits of the discrete state vector xd(k � 1) are used
according to Eq. (27) to de�ne the new discrete state
vector xnewd = [xd(k)T ; xd(k � 1)T ]T , in the converter
DHA of Figure 11, one can see that using only xd1(k�1)
is enough to specify the reset dynamic in Eq. (60)
between nodes 2 and 3. The well-posedness conditions

Figure 10. DC-DC buck converter.

given in Theorem 14 are satis�ed in discrete states
[0 0]T , [0 1]T . However, for the node [1 0]T that
has both controlled and uncontrolled outgoing edges,
condition (g) of Theorem 1 must be imposed at this
node. As a result, the invariant condition iL(k+N) >
0^ud(k) = 0 and the switching guards associated with
the outgoing edges of the converter DHA in the discrete
state [1 0]T , namely ud(k) = 1 and iL(k + N) � 0,
are always combined by the well-posedness condition
of iL(k + N) > 0 _ ud(k) = 0. Using the proposed
algorithm in Lemma 3, the equivalent BPWA and
FPWA models of the converter DHA in Figure 11
can be written as in Eqs. (61) and (62) shown in
Boxes XVIII and XIX, respectively. As can be seen
from Eqs. (61) and (62), the number of regions in the
BPWA form is nine and in the FPWA representation
is four. According to Proposition 1, for the DHA
of the DC-DC buck converter in Figure 11, we have
ninre(1) = ninre(2) = 0; ninre(3) = 1; nout(1) =
nout(3) = 1; nout(2) = 2; Nself = 0; Nd = 3; Nt = 4,
and Nintre = 1. As a result, based on the given
formulations in Propositions 2 and 3, the number
of independent regions in the equivalent BPWA and
FPWA forms is 9 and 4, respectively, which are aligned
with the obtained results in Eqs. (61) and (62).

5. Conclusion

In this paper, e�ective methods for the translation of
an automaton-based Discrete-time Hybrid Automata
(DHA) to its equivalent Piecewise a�ne (PWA) sys-
tems are presented. In contrast to the existing methods
based on the decomposed structure of the DHA, the
proposed procedure does not need any complex cell
enumeration and numerical feasibility test algorithms.
Hence, it can be easily employed by hand calculations
and applied to the translation of complex and large-
scale DHA models. It was found that changing the
DHA model structure from the traditional decomposed
construction to an automaton-based structure reduced
the order of time complexity of the resulting translation
algorithms from exponential type in the case of the
decomposed DHA to the polynomial type in the case
of automaton-based DHA. For the automaton-based

Figure 11. Discrete-time Hybrid Automata (DHA) of a buck converter.
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x(k + 1) =

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2664 Ad3xc(k) +Bd3

0
0
0

3775 xnewd (k) = [0 0 0]T ^ ud(k) = 0

2664 Ad3xc(k) +Bd3

0
1
0

3775 xnewd (k) = [0 0 0]T ^ ud(k) = 1

2664 Ad1xc(k) +Bd1

0
1
0

3775 xnewd (k) = [0 1 0]T ^ ud(k) = 1
[(xnewd (k) = [0 1 1]T ^ ud(k) = 1)

2664 Ad1xc(k) +Bd1

1
0
0

3775 xnewd (k) = [0 1 0]T ^ ud(k) = 0

2664 Ad2xc(k) +Bd2

1
0
1

3775 xnewd (k) = [1 0 1]T ^ ud(k) = 0 ^ [1 0](A2
d2
xc(k) +Ad2Bd2 +Bd2) > 0

[(xnewd (k) = [1 0 0]T ^ ud(k) = 0 ^ [1 0](A2
d2
xc(k) +Ad2Bd2 +Bd2) > 0)2664 Ad2xc(k) +Bd2

0
0
1

3775 xnewd (k) = [1 0 1]T ^ ud(k) = 0 ^ [1 0](A2
d2
xc(k) +Ad2Bd2 +Bd2) � 0

[(xnewd (k) = [1 0 0]T ^ ud(k) = 0 ^ [1 0](A2
d2
xc(k) +Ad2Bd2 +Bd2) � 0)2664 Ad2xc(k) +Bd2

0
1
1

3775 xnewd (k) = [1 0 0]T ^ ud(k) = 1 ^ [1 0](A2
d2
xc(k) +Ad2Bd2 +Bd2) > 0

[(xnewd (k) = [1 0 1]T ^ ud(k) = 1 ^ [1 0](A2
d2
xc(k) +Ad2Bd2 +Bd2) > 0)2664 Ad4xc(k) +Bd4

0
0
0

3775 xnewd (k) = [0 0 1]T ^ ud(k) = 0

2664 Ad4xc(k) +Bd4

0
1
0

3775 xnewd (k) = [0 0 1]T ^ ud(k) = 1

(61)

Box XVIII

DHA, two types of evolutions, i.e., backward and
forward evolutions, were de�ned and associated with
each type of evolution two types of PWA systems, i.e.,
BPWA and FPWA systems, were extracted. Some
formulations were provided that could quantify the

exact number of regions in the BPWA and FPWA
systems. It was shown that the number of such regions
in the BPWA systems was larger than that of the
FPWA forms of an order of at least Nt, where Nt
is the number of transition edges in the DHA graph.
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x(k + 1) =

=

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

24 Ad3xc(k) +Bd3

0
0

35 xd(k) = [0 0]T ^ ud(k) = 0

24 Ad1xc(k) +Bd1

0
1

35 (xd(k) = [0 0]T ^ ud(k) = 1)
[(xd(k) = [0 1]T ^ ud(k) = 1)
[(xd(k) = [1 0]T ^ ud(k) = 1 ^ [1 0](Ad2xc(k) +Bd2) > 0)24 Ad2xc(k) +Bd2

1
0

35 (xd(k) = [0 1]T ^ ud(k) = 0)
[(xd(k) = [1 0]T ^ ud(k) = 0 ^ [1 0](Ad2xc(k) +Bd2) > 0)24 Ad4xc(k) +Bd4

0
0

35 xd(k) = [1 0]T ^ ud(k) = 0 ^ [1 0](Ad2xc(k) +Bd2) � 0

(62)

Box XIX

Examples were presented to provide evidence for the
merit of the proposed techniques. The signi�cance
of this research topic is to transfer the analysis and
synthesis techniques, e.g., the controller synthesis and
stability analysis, from one class of hybrid systems to
another.
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