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Abstract. In classical inventory control problems, it is usually assumed that all of the
items are of perfect quality and the inspection process works perfectly well. However,
in practice, the order lots often contain imperfect items, and the inspection process is
not necessarily error-free. In this article, we extended the economic order quantity model
under imperfect items where the inspection process involves type-I and -II errors. The
type-I error can lead to recognition of perfect items as defective, while the type-II error can
result in the delivery of imperfect items to customers. In the proposed inventory problem,
the customers who receive and return imperfect items wait for replacement with perfect
items as a batch at the end of a special inspection process. Besides, the imperfect quality
items are sold out as discounted items. Our problem considers more than one sales per
cycle for returned items from market which causes a reduction in the inventory costs. We
presented two cases depending on the length of the special inspection process. A numerical
example was provided to compare two cases and a sensitivity analysis was discussed to
assess the e�ect of the main parameters on the total pro�t.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Today, Supply Chain Management (SCM) has become
a vital issue for companies because, through that,
they can maintain their market share in complex
competitive environments. The main objective of
SCM is to transfer the products and services from
suppliers to endpoint customers [1]. One of the e�cient
tools that can make more pro�t for supply chins is
inventory management [2]. It determines when and
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how much order placement meets customer service
requirements and satis�es cost-e�ective production.
The �rst classical inventory model is the Economic
Order Quantity (EOQ). The EOQ determines the order
lot size that holds a balance between holding costs and
ordering costs in the planning horizon. EOQ's simple
formulation has led to its ever-increasing application
in industrial and research environments through the
last century. Although EOQ is the most well-known
model of inventory, some of its assumptions rarely
occur in real-life situations. During the last decades,
a numerous number of researches have been presented
in the literature so as to improve the classical EOQ
model by relaxing its basic assumptions. As mentioned
above, one of these unrealistic assumptions is that all
of the produced items are of perfect quality. How-
ever, in practice, defective items are received due to
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out of control production process, weak maintenance
planning, failure in transportation, inadequate training
of workers, insu�cient work control, and weak audit
process. In order to formulate the inventory policy with
imperfect quality items, one of the most repeated and
practical approaches is to assume that a percentage
of the received or produced lots are defective. An
inspection process should be instituted to recognize
those items.

It is often impossible to avoid inspection errors
due to human errors, on-calibrated measurement in-
struments, environmental factors, etc. Every inventory
model under inspection errors should decide what ac-
tion is needed on returning items from the market. The
most common actions in literature are: (i) replacement
with non-defective items and (ii) refunding with full
price. In the case of replacement with a non-defective
item, note that the replacement item may also be im-
perfect again. Delivering imperfect items to customers
more than once can be detrimental to the credibility of
the company and may even lead to the loss of sales. To
prevent this, in this research, an inventory model with
imperfect items is proposed under inspection error,
which, through a complementary inspection process,
ensures that the delivered items to customers who have
once received imperfect items are non-defective.

The rest of this article is organized as follows.
Section 2 reviews articles on classical inventory models
with imperfect quality items. Section 3 provides
nomenclature, assumptions, and model description and
develops a mathematical model. In Section 4, a nu-
merical example is presented to illustrate the proposed
inventory model, and a sensitivity analysis is performed
for the main parameters of the model. In Section 5,
some of the results of the model are deduced, and
possible orientations for future research are outlined.

2. Literature review

In recent decades, some researchers have extended the
classic inventory models for imperfect items. They
have used di�erent approaches for this purpose. One
of those that has recently attracted a substantial deal
of attention is that the percentage of imperfect items
is supposed to be a known parameter. Salameh and
Jaber [3] is the �rst researcher that developed the
classic inventory control models (EOQ/EPQ) consid-
ering this assumption. Imperfect items are recognized
through a 100% inspection process and, at the end of
the inspection process, are sold as a single batch at
a discounted price. Hayek and Salameh [4] suggested
an Economic Production Quantity (EPQ) model in
which the imperfect items changed into perfect items
through a rework process and backorder was allowed.
Chiu et al. [5] presented an EPQ model in which
the work process processed a certain percentage of

imperfect items to convert them to perfect items. They
also considered lower holding cost for imperfect items.
Afterward, Rezaei [6] and Wee et al. [7] extended the
model of Salameh and Jaber [3] with the backordering
shortage allowed. Moreover, Jaber et al. [8] extended
the model of Salameh and Jaber [3] considering the
learning e�ect for imperfect items. In their research,
the percentage of imperfect items follows a logistic
learning curve. Rezaei and Davoodi [9] studied the
supplier selection problem in a multi-item inventory
model with imperfect items. They also considered
a limited warehouse capacity. Chung et al. [10]
proposed an EOQ where a rented warehouse could
be used for holding the items. They supposed that
inspection was performed simultaneously in warehouses
and they investigated two cases depending on which
warehouse inspection would end sooner. Chang and
Ho [11] revisited the mathematical relations of Wee
et al. [7] according to the renewal-reward theorem.
Khan et al. [12] reviewed the extensions of this context
in literature by categorizing the literature according
to six speci�cations. Al-Salamah [13] developed an
EOQ model that could not recognize imperfect items
through the 100% inspection due to a destructive
test in the inspection process. To do so, a single
acceptance sampling plan was employed. Tsou et al.
[14] considered an inventory problem with an imperfect
production process where the production and rework
processes were executed simultaneously. Jaber et al.
[15] extended the model of Salameh and Jaber [3] for a
case that replaced imperfect items with non-defective
items. They provided replacement by repairing or
purchasing from a local supplier. Besides, Vishkaei
et al. [16] presented an inventory model that stored
imperfect items after the inspection until the end of the
cycle and then returned them to the supplier. Mezei
and Bj�ork [17] examined the impact of backorders on
a fuzzy EPQ model. Farhangi et al. [18] developed
an EOQ model with imperfect quality items where all
of imperfect items were exchangeable under complete
backorder. Zhou et al. [19] studied an inventory
model with an imperfect production process where
the manufacturer faces a one-time-only discount. In
addition, Hsu and Hsu [20] suggested an EPQ model
in which the shortage was completely backorderd and
defective items could be sold as discounted items in
three time periods: (i) immediately after inspection,
(ii) at the end of the production process, and (iii) at
the end of the cycle. Datta [21] established an inven-
tory problem with an imperfect production process in
which the defective rate might decrease by investing
in technology, training, and so on. Likewise, the
demand rate depends upon selling price and shortages
are permitted. Abdel-Aleem et al. [22] determined the
decision variables of an inventory-production system
using a response surface methodology. They also
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assumed that there were scrap and reworkable items
in the production lot. Jaggi et al. [23] considered
an inventory model with imperfect quality items. It
was assumed that the perfect items would deteriorate
through time. Moreover, the warehouse had a lim-
ited capacity and delay in payments was permitted.
Taleizadeh et al. [24] presented an EPQ model whose
imperfect items become non-defective items through
a rework process. They assumed that the rework
process was outsourced. Mokhtari [25] considered
external supplier ordering in an EPQ model for avoid-
ing shortage in a joint production-ordering inventory
problem. He determined the optimal number of sub-
production cycles and EOQ simultaneously. Liao et
al. [26] considered an EOQ model with imperfect
items in which there were two warehouses and trade
credit. They examined all possible scenarios about
the duration of the inspection process and payment
time. Cheng et al. [27] presented an integrated vendor-
buyer inventory model with imperfect quality items.
The vendor inspects own produced items and after
recognition, sends out the imperfect items from the
inventory system at a pre-determined cost. Mokhtari
[28] discussed a manufacturing inventory model in
which the order lot of raw material contained some
imperfect quality (salvage) items. Besides, the pro-
duction process produces some imperfect (reworkable)
items. Parsaeifar et al. [2] determined the coordinated
decisions on pricing, recycling, and greenness in a
3-echelon supply chain where retailers returned the
imperfect quality items to the manufacturer for recy-
cling. Recently, Mokhtari and Asadkhani [29] studied
an EPQ model with preventive maintenance in which
there were two cases considered for the disposal time of
imperfect quality items at the end of every production
or sub-production cycle. Nobil et al. [30] proposed an
inventory model with an imperfect production process
involving multiple products. A fraction of products are
also reworkable and scrap items.

The work presented by Yoo et al. [31] was the
�rst research that incorporated inspection errors into
inventory models under imperfect quality items. In
their model, a rework process is utilized to convert:
(i) the imperfect items in the inspection process and
(ii) imperfect returned items into non-defective items.
Afterward, Khan et al. [32] proposed an EOQ model
where the inspection process was also imperfect (with
possible error). Lin and Chen [33] suggested an EOQ
model that in addition to the inspection errors, consid-
ered quantitative discounts and backordering shortage.
Hsu [34] revisited an error in calculating the holding
cost of the model of Khan et al. [32] and, then,
determined the corrected optimal order lot size. Hsu
and Hsu [35] presented an EPQ model with error in
its inspection process. The imperfect items can be
sold at a discounted price at the end of the production

process or at the end of the cycle. Shari� et al. [36] de-
scribed an EOQ model in which there were inspection
errors and backorder. Chang et al. [37] developed an
inventory model in which items identi�ed as defective
in an erroneous inspection process as well as defective
items returned by customers were sold at a discounted
price. Additionally, Aggarwal and Aneja [38] proposed
an inventory model where the inspection process for
received batches was erroneous. They assumed that the
items identi�ed as imperfect were reworked. Jauhari et
al. [39] analyzed an inventory system in a supply chain
in which the manufacturer had an imperfect production
process and the retailer attempted to recognize these
items through an imperfect inspection process. Zhou
et al. [40] suggested an EOQ model with salvage items
in which the inspection process was also imperfect.
Besides, they assume that backorder was allowed and
delay in payment might occur. Khanna et al. [41]
considered an EPQ model in which the inspection
process was imperfect and the rework process was
performed for return items from the market. So�ana
and Rosyidi [42] analyzed the inventory system in a
two-level supply chain. The vendor produced imperfect
items and also the customer had an imperfect inspec-
tion process. Khan et al. [43] introduced a vendor-
buyer supply chain in which the vendor's production
rate increased due to learning e�ect. The buyer also
performed an inspection process which was error-prone.
Pal and Mahapatra [44] studied an inventory system
in which the production process and the inspection
process were imperfect. Retailers received defective
items that resulted from the manufacture�s inspection
errors, and after recognizing them, there were three
possible scenarios: (i) full discounting, (ii) full return
to the manufacturer, and (iii) partial discounts and
returns. Wangsa and Wee [45] considered a single
vendor-buyer supply chain whose manufacturer had
a deteriorating production process which resulted in
delivering imperfect items to the buyer. The buyer also
instituted an erroneous inspection process to classify
and send back the defective items to the vendor.

Table 1 compares the proposed problem of this
article with existing problems in the literature. As can
be seen, several papers have considered inspection er-
rors in classic inventory models with imperfect quality
items. The majority of these studies replace imperfect
items with the items that the inspector recognizes as
perfect, while none of their models ensures delivering
perfect quality items to the customers who received
imperfect quality items once. Under these conditions,
it is always possible that a customer will receive
imperfect quality items, even more than once. Since
the service level is important in real-world markets, we
design a mechanism for resolving this problem in such
an inventory problem. This article develops a model
which replaces returned items from the market with
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Table 1. Literature review of inventory models with imperfect quality items.

Paper EOQ/
EPQ

Backorder
Multiple sales
for imperfect

items

Inspection
error

Batch replacement
for returned

items
Salameh and Jaber [3] EOQ � � � �
Hayek and Salameh [4] EPQ

p � � �
Rezaei [6] EOQ

p � � �
Wee et al. [7] EOQ

p � � �
Yoo et al. [31] EPQ � � p �
Chung et al. [10] EOQ � p � �
Chang and Ho [11] EOQ

p � � �
Lin and Chen [33] EOQ

p � p �
Khan et al. [32] EOQ � � p �
Al-Salamah [13] EOQ

p � p �
Hsu [34] EOQ � � p �
Hsu and Hsu [35] EPQ

p � p �
Vishkaei et al. [16] EOQ

p � � �
Shari� et al. [36] EOQ

p � p �
Mezei and Bj�ork [17] EPQ

p � � �
Chang et al. [37] EOQ � � p �
Aggarwal and Aneja [38] EPQ � � p �
Jauhari et al. [39] EOQ � � p �
Hsu and Hsu [20] EPQ

p p � �
Zhou et al. [19] EOQ

p � p �
Taleizade et al. [24] EPQ

p � � �
Khanna et al. [41] EPQ � � p �
Khan et al. [43] SC � � p �
So�ana and Rosyidi [42] EOQ � � p �
Pal and Mahapatra [44] EPQ � � p �
Liao et al. [26] EOQ � p � �
Parsaeifar et al. [2] SC � � � �
Wangsa and Wee [45] EOQ

p � p �
Mokhtari and Asadkhani [29] EPQ � p � �
This paper EOQ � p p p

a batch containing perfect quality items by a perfect
inspection process. Moreover, due to the reduction
of the holding cost, some of the literature researches
assume more than one sales per cycle for imperfect
quality items. Therefore, we also add such exibility
to our proposed model where holding cost is high and
multiple sales of returned items can occur.

3. Mathematical modeling

This section describes and formulates the proposed
inventory problem. For this purpose, the nomenclature
used throughout this paper is given �rst. Then, the

model assumptions are introduced and the inventory
problem is then described. Finally, based on the
nomenclature and assumptions, the model is formu-
lated and the optimal order size is calculated.

3.1. Nomenclature and assumptions
We utilize the following nomenclature throughout this
article.

Parameters and variables
y Order size (decision variable)
D Demand rate per unit time
k Ordering cost per order
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C Variable purchasing cost per unit
h Holding cost per unit per unit of time
S Selling price of a non-defective item

per unit
V Selling price of a defective item per

unit
p Probability that an item being

defective
� Type I error probability
� Type II error probability
f(p) Probability density function of p
f(�) Probability density function of �
f(�) Probability density function of �
x Regular inspection rate per unit time
d Regular inspection cost per unit
ca Cost of accepting a defective item
cr Cost of rejecting a non-defective item
t1 Regular inspection time per cycle
t2 Special inspection time per cycle
u Special inspection cost per unit
� Waiting cost per unit per unit of time
w Number of discounted sales of returned

items per cycle
T Inventory cycle length
B1 Number of items that are classi�ed as

defective per cycle
B2 Number of defective items that are

returned per cycle
E[�] Expected value
TP Total pro�t per cycle
TRU Total revenue per unit time
TCU Total cost per unit time
TPU Total pro�t per unit time

We consider the following assumptions for con-
structing the mathematical model:

� Inventory model contains a single stage with a single
item;

� Demand rate is constant, known and continuous;
� All of the demand should be satis�ed;
� Lead time is assumed to be zero;
� The replenishment is instantaneous;
� Order lot contains defective items;
� The percentage of defective items is a random

variable;
� All items are inspected in a regular process;
� The regular inspection process is imperfect (with

possible error).

3.2. Description and formulation
As mentioned before, we aim to develop an inventory
control model with imperfect quality items under in-
spection errors, batch replacement, and multiple sales
of returned items. Figure 1 illustrates the behavior
of the inventory level during the inventory planning
horizon. The buyer orders a lot of size y from a
vendor that contains a percentage of the defective items
p. Immediately after receiving the order, the regular
inspection process begins in order to identify defective
items. The inspection process evaluates the quality
of all received items under a 100% inspection pro-
cess. During the inspection interval t1, the inspection
process operates under known screening rate x and
inspection cost per unit d. It is also assumed that the
regular inspection process is imperfect. The imperfect
inspection process results in two types of possible
error. The type-I error occurs if inspector recognizes
a non-defective item as defective one, while type-II
error occurs if the inspector recognizes a defective item
as a non-defective one. In addition to two types of
error, there are two other possible choices by inspector
which are without error: (i) When defective items
are recognized as defective ones and (ii) When non-
defective items are recognized as non-defective ones.

In summary, we can classify items into four pos-
sible cases after the regular inspection process. Case I
indicates non-defective items which are recognized as
non-defective items, Case II is related to non-defective
items which are recognized as defective items (type
I error), Case III contains defective items which are
recognized as defective items, and Case IV includes
defective items which are recognized as non-defective
items (type II error). The number of items in each
case can be calculated as follows:

Case I:

y (1� p) (1� �) ; (1)

Figure 1. The inventory level over time.
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Case II:

y (1� p)�; (2)

Case III:

yp (1� �) ; (3)

Case IV:

yp�: (4)

A number of items that are recognized as defective
(Cases II and III), denoted by B1, are sold at the end
of the regular inspection process. The inspector rec-
ognizes B2 number of defective items as non-defective
ones by mistake and delivers them to the customer.
Then, the customer recognizes these items as defective
and then, returns them. Therefore, these items are
sold at a discounted price per unit V . These returned
items are sold based on multiple sales through batch of
size w. The quantity of B1 and B2 can be obtained as
follows:

B1 = y� (1� p) + yp (1� �) ; (5)

B2 = yp�: (6)

If we subtract B1 and B2 items from the batch items,
the remaining items are consumed in order to satisfy
the demand. By substituting B1 and B2 into T and
simplifying the result, we have:

T =
y �B1 �B2

D
=
y (1� p) (1� �)

D
: (7)

It is obvious that for avoiding the shortage, the number

of items used for satisfying the demand must be at least
equal to demand in cycle length. Therefore, we have:

yE (1� p)E (1� �) � DT: (8)

Also, for avoiding shortage in the regular inspection
process, the regular inspection rate in every period
must be large enough that can still satisfy the demand
after subtracting B1 and B2 items. So it can be
concluded that:

xE (1� p)E (1� �) � D: (9)

To ensure that customers do not receive defective items
more than once in every cycle, we need a special in-
spection process. The customers that receive defective
items as non-defective items return them. To ensure
they receive non-defective items for the second time,
they have to receive items through special inspection.
The special inspection process starts immediately after
the regular inspection process and its purpose is to sep-
arate B2 non-defective items from the items recognized
as non-defective in the regular inspection process and
not consumable until the end of the regular inspection
process. This process incurs screening cost per item u.
According to Figure 1, the special inspection process
time is t2 � t1. After the end of the special inspection
process, the non-defective items are sold as a batch
to waiting customers. It causes an instantaneous
reduction in inventory level (B2). The selling prices of
non-defective and defective items per unit are denoted
by S and V , respectively.

Figure 2 depicts the e�ect of the regular and
special inspection processes on inventory ow.

Figure 2. E�ect of regular and special inspection processes on inventory ow.
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Let us de�ne t3 as the maximum value of time
that the special inspection process can �nish. In other
words, t3 denotes the maximum value of t2. Moreover,
let us de�ne tL as the remaining time, at the time,
till end of inventory cycle length, i.e., t3 + tL = T .
As it is obvious, the proportion of non-defective items
to defective items at any moment of special inspection
process is Ratio = y(1�p)(1��)

yp� . At time t3, we have
B2 number of non-defective items and then, according
to Ratio, the number of the remaining items DL is
calculated as follows:

y (1� p) (1� �)
yp�

=
B2

DL
)

DL =
B2p�

(1� p) (1� �)
: (10)

After �nishing the special inspection process at time
t3, the time that takes to consume DL items, i.e., tL,
under demand rate D can be computed as follows:

tL =
yp2�2

(1� �) (1� p) : (11)

By using tL and knowing that t3 + tL = T , we can
conclude that:

t3 =
y
h
(1� �)2(1� p)2 �Dp2�2

i
D (1� �) (1� p) : (12)

The main purpose of this section is to determine the
order size which optimizes the total pro�t per unit
time. To do so, we calculate the total revenue and
cost functions for one cycle of the proposed inventory
problem. The revenues of one cycle, denoted by TR,
represent the sum of sales of non-defective items, sales
of recognized defective items, and sales of returned
defective items. Therefore, we can write total revenue
TR as follows:

TR (y) = Sy (1� p) (1� �) + V
�
y (1� p) (�)

+yp (1� �) + yp�
�
: (13)

The total cost of the proposed inventory system is the
sum of the procurement cost, the total inspection cost,
the inspection error cost, the holding cost, and the
waiting cost. The procurement cost PC equals the sum
of ordering and purchasing costs as follows:

PC = k + cy; (14)

where k indicates the �xed ordering cost and c denotes
the purchasing cost of items per unit. The total
inspection cost per cycle TIC equals the sum of

regular inspection cost and special inspection cost. As
discussed before, every item must pass through the
regular inspection process, while the special inspection
seeks to recognize B2 non-defective items. Therefore,
TIC can be computed as follows:

TIC = dy + uyp�; (15)

where d and u are the regular and special inspection
costs per unit, respectively. The inspection error cost
IEC consists of the cost incurred by the reject cost
of non-defective items due to type-I error and the
cost incurred by the acceptance cost of defective items
due to type-II error. Considering these costs, IEC is
formulated as follows:

IEC = cry (1� p) (�) + cayp�; (16)

where cr is the reject cost of non-defective items per
unit and ca is the acceptance cost of defective items per
unit. The holding cost per cycle includes the holding
cost of non-defective items, the holding cost of items
recognized as defective, and the holding cost of the
returned items. Then, HC can be calculated as follows:

HC = h
�
y2

x
[(1� p)�+ p (1� �)] + t2yp�

+
y2(1� p)2(1� �)2

2D

+
y2p� (1� p) (1� �)

2wD

�
; (17)

where h is the holding cost of items per unit per unit
of time. The waiting cost per cycle WC is related to
the customers that return defective items which are
recognized as non-defective and have to wait until the
end of the special inspection process to receive non-
defective items. This cost is calculated as follows:

WC =
�B2T

2
; (18)

which can be simpli�ed by substituting B2 and T to:

WC =
�
2

(yp�)
�
y (1� p) (1� �)

D

�
=
�y2p� (1� p) (1� �)

D
: (19)

The total cost TC is obtained by summing the pro-
curement cost, the total inspection cost, the inspection
error cost, the holding cost, and the waiting cost as
follows:
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TC = k + cy + dy + uyp� + cry (1� p) (�)

+cayp� +
hy2� (1� p)

x
+
hy2p (1� �)

x

+ht2yp� +
hy2(1� p)2(1� �)2

2D

+
hy2p� (1� p) (1� �)

2wD

+
�y2p� (1� p) (1� �)

D
: (20)

Now, two di�erent cases are considered in terms of
special inspection time period. Case 1 is considered
where the special inspection process time is negligible
and assumed zero. In this case, the special inspection
cost is high due to high �xed costs, while there is no
holding cost for items from the special inspection pro-
cess. Case 2 is considered when the special inspection
time is maximum; in this case, the special inspection
cost is less than that in Case 1; however, the items in
the special inspection process have a high holding cost.
Two cases are discussed in detail in the sequel:

Case 1: t2 = t1

In this section, we customize the presented general
model to a case in which the special inspection process
time is negligible (t2 = t1) and the special inspection
cost per unit is higher than the regular inspection cost
u = u1 (u1 > d). By substituting the amounts of t2
with y=x and u with u1 in TC and then, subtracting
the total costs of a cycle from the total revenues of a
cycle, the total pro�t of a cycle TP (y) is obtained as
follows:

TP (y) = TR� TC = Sy (1� p) (1� �)

+V y (1� p)�+ V yp (1� �) + V yp�

�k � Cy � dy � u1yp� � cry (1� p) (�)

�cayp� � hy2 (1� p)�
x

� hy2p (1� �)
x

�hy2p�
x
� hy2(1� p)2(1� �)2

2D

�hy2p� (1� p) (1� �)
2wD

��y2p� (1� p) (1� �)
D

: (21)

Since p, �, and � are random variables with a known
probability density function based on renewal reward

theorem, we can conclude that the total pro�t per unit
time is calculated as follows:

E [TPU (y)] =
E [TP (y)]
E [T ]

: (22)

By substituting total pro�t TP (y) and cycle length T
into E[TPU(y)], it can be re-written as follows:

E [TPU (y)] = SD +
V DE [�]
E [1� �]

+
V DE [p]E [1� �]
E [1� p]E [1� �]

+
V DE [p]E [�]

E [1� p]E [1� �]
� KD
yE [1� p]E [1� �]

� CD
E [1� p]E [1� �]

� dD
E [1� p]E [1� �]

� u1DE [p]E [�]
E [1� p]E [1� �]

� crDE [�]
E [1� �]

� caDE [p]E [�]
E [1� p]E [1� �]

� hyDE [�]
xE [1� �]

� hyDE [p]E [1� �]
xE [1� p]E [1� �]

� hyDE [p]E [�]
xE [1� p]E [1� �]

�hyE
h
(1� p)2

i
E
h
(1� �)2

i
2E [1� p]E [1� �]

�hyE [p]E [�]
2w

� �yE [p]E [�] : (23)

To determine the order size that maximizes the total
pro�t per unit time, the �rst derivative and the second
derivative of E[TPU(y)] are derived as follows:

@E [TPU (y)]
@y

=
KD

y2E [1� p]E [1� �]
� hDE [�]
xE [1� �]

� hDE [p]E [1� �]
xE [1� p]E [1� �]

� hDE [p]E [�]
xE [1� p]E [1� �]

�hE
h
(1� p)2

i
E
h
(1� �)2

i
2E [1� p]E [1� �]

� hE [p]E [�]
2w

��E [p]E [�] ; (24)

@2E [TPU (y)]
@y2 = � 2KD

yE [1� p]E [1� �]
: (25)

Since the second derivative of E[TPU(y)] is always
smaller than zero, E[TPU(y)] is a concave function and
has a unique and global optimum that can be obtained
by setting the �rst derivative of E[TPU(y)] to zero (see
Eq. (26) in Box I). If we relax the conditions that we
used for designing our proposed inventory problem, i.e.,
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y�1 =vuuut KD�
hDE[�]
xE[1��] + hDE[p]E[1��]

xE[1�p]E[1��] + hDE[p]E[�]
xE[1�p]E[1��] + hE[(1�p)2]E[(1��)2]

2E[1�p]E[1��] + hE[p]E[�]
2w +�E [p]E [�]

�
[E [1�p]E [1��]]

:
(26)

Box I

there is no defective items (p = 0) with no inspection
errors, then the optimal order size is reduced to the
optimal order size for the classic EOQ model, i.e.,
y�1 = y�EOQ =

p
2kD=h. This veri�es the expressions

derived in the model (Case 1).

Case 2: t2 = t3

In this section, we customize the general model pre-
sented before to a case in which the special inspection
time is maximum, i.e.:

t2 =
y
h
(1� �)2(1� p)2 �Dp2�2

i
D (1� �) (1� p) :

The special inspection cost is u = u2(u2 � u1). By
substituting the amounts of t2 and u in TC and, then,
subtracting the total costs of a cycle from the total
revenues of a cycle, the total pro�t of a cycle TP (y)
would be:
TP (y) = TR (y)� TC (y) = Sy (1� p) (1� �)

+V y (1� p)�+ V yp (1� �) + V yp�

�k � Cy � dy � u2yp� � cry (1� p) (�)

�cayp� � hy2 (1� p)�
x

� hy2p (1� �)
x

�hy
2p�

h
(1� �)2(1� p)2 �Dp2�2

i
D (1� �) (1� p)

�hy2(1� p)2(1� �)2

2D

�hy2p� (1� p) (1� �)
2wD

��y2p� (1� p) (1� �)
D

: (27)

Therefore, using renewal reward theorem, E[TPU(y)]
is given by Eq. (28) as shown in Box II. To achieve the
optimal order size, the �rst and the second derivatives
of E [TPU (y)] are obtained by Eqs. (29) and (30) as
shown in Box III.

As can be seen, the second derivative of
E[TPU(y)] is always smaller than zero; thus,
E[TPU(y)] is a concave function. For an optimal
order size that maximizes the total pro�t per unit
time, there is a unique and global solution that can

E [TPU (y)] = SD +
V DE [�]
E [1� �]

+
V DE [p]E [1� �]
E [1� p]E [1� �]

+
V DE [p]E [�]

E [1� p]E [1� �]
� KD
yE [1� p]E [1� �]

� CD
E [1� p]E [1� �]

� dD
E [1� p]E [1� �]

� u1DE [p]E [�]
E [1� p]E [1� �]

� crDE [�]
E [1� �]

� caDE [p]E [�]
E [1� p]E [1� �]

� hyDE [�]
xE [1� �]

� hyDE [p]E [1� �]
xE [1� p]E [1� �]

�hyE [p]E [�]E
h

1
1�p
i
E
h

1
1��

in
E
h
(1� �)2

i
E
h
(1� p)2

i�DE �p2�E ��2�o
E [1� p]E [1� �]

�hyE
h
(1� p)2

i
E
h
(1� �)2

i
2E [1� p]E [1� �]

� hyE [p]E [�]
2w

� �yE [p]E [�] : (28)

Box II
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@E [TPU (y)]
@y

=
KD

y2E [1� p]E [1� �]
� hDE [�]
xE [1� �]

� hDE [p]E [1� �]
xE [1� p]E [1� �]

�hE [p]E [�]E
h

1
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1
1��

in
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h
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E
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(1� �)2

i
2E [1� p]E [1� �]

� hE [p]E [�]
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� �E [p]E [�] : (29)

@2E [TPU (y)]
@y2 = � 2KD

yE [1� p]E [1� �]
: (30)

Box III

y�2 =vuuuuuuuuuuut

KD�
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[E [1�p]E [1��]]

(31)

Box IV

be obtained by setting the �rst derivative to zero (see
Eq. (31) shown in Box IV). Similar to Case 1, if we
relax the conditions that we used for designing our
proposed inventory problem, then the optimal order
size is reduced to the optimal order size for the classic
EOQ model, i.e., y�2 = y�EOQ =

p
2KD=h. This veri�es

the expressions derived in the model (Case 2).

4. Experimental results

In this section, a numerical example is provided for
investigating the application of the proposed problem
in two cases. The optimal order sizes are obtained and,
then, optimal expected values for the total pro�t per
unit time of Cases 1 and 2 are calculated separately.
Then, two cases are compared to select the more
pro�table one. Finally, we execute a sensitivity analysis
for the main parameters of the problem and discuss the
results.

4.1. Numerical example
This section presents a numerical example for compar-
ing the application of two proposed models in terms

of total pro�t per unit time. Numerical examples'
parameters are: D = 100000 units per unit time,
k = $160 per order, c = $30 per unit, h = $4 per unit
per unit of time, S = $45 per unit, V = $20 per unit,
x = 400000 per unit time, d = $1 per unit, ca = $200
per unit, cr = $30 per unit, u1 = $16 per unit, u2 = $8
per unit, � = $12 per unit per unit of time, and w = 8
per cycle:

f (p) =

(
1
b�a a < p < b
0 O:W:

;

f (�) =

(
1
d�c c < � < d
0 O:W:

;

f (�) =

(
1

f�e e < � < f
0 O:W:

:

Table 2 presents the optimal order size and the
expected pro�t per unit time for Cases 1 and 2.
Furthermore, it shows the expected revenues and costs
per unit time separately. Optimal order size for
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Table 2. The optimal order size and total pro�t per unit time for two cases.

Parameters Case 2 Case 1 Case 2-Case 1 %

y� 2722.49 2724.05 { {

E[TRU(y)] 4625850.34 4625850.34 0.00 0.00
Sales (non-defective items) 4500000 4500000 0.00 0.00
Sales (recognized defective items) 124149.66 124149.66 0.00 0.00
Sales (returned defective items) 1700.68 1700.68 0.00 0.00

E[TCU(y)] 3386473.17 3387146.29 {673.12 {0.0198
Procurement 3195022.30 3195018.72 3.58 0.0001
Regular inspection 106292.51 106292.51 0.00 0.00
Special inspection 680.27 1360.54 {680.27 {50
Inspection errors 78231.29 78231.29 0.00 0.00
Holding 6220.65 6217.06 3.59 0.0577
Waiting 26.13 26.15 {0.02 {0.0572

E[TPU(y)] 1239377.17 1238704.05 673.12 0.0547

Cases 1 and 2 is calculated. The expected pro�t
per unit time for Cases 1 and 2 is also achieved.
Moreover, the last column of the table shows the
relative percentage deviation between Cases 1 and 2
by % = (Case 2� Case 1) =Case 1�100. Case 2 gains
$673.12 pro�t per unit time more than Case 1. It is
also obvious that both cases have equal revenues and
the pro�tability in Case 2 corresponds to its lower cost
value. According to the model expression section, Case
1 model has less holding cost than Case 2 model; in
return, Case 2 model is less expensive in the special
inspection section. According to the results presented
in Table 2, Case 1 saves $3:59 per unit time in terms
of holding cost, while Case 2 has $680:27 per unit time
less cost in terms of the special inspection cost. It is
noteworthy that Case 1 maintains a better standing
than Case 2 in terms of procurement cost, but its
excellence is so low that it does not a�ect the pro�t
per unit time.

Figure 3 shows the expected pro�t per unit time
for Cases 1 and 2 as a function of order size. This �gure
demonstrates the concavity of total pro�t per unit time

Figure 3. The comparison of the total pro�t per unit
time for two cases.

for both cases graphically. According to this �gure, we
see that considering an order size larger than optimal
order size, in both models, the pro�t per unit time
decreases with a smaller slope than considering the
order size smaller than the optimal order size. When
order size is 2400, the pro�t per unit time decreases
by 0.008% with respect to the optimal value, while at
order size 3000, the pro�t per unit time decreases by
0.004% with respect to the optimal value. Also, it is
obvious that Case 2 yields a better pro�t for all the
ranges and amounts close to the optimal order size of
both models. Figure 3 con�rms that Case 2 gains 0.05%
pro�t more than Case 1 for every value of order size.
Since results imply that Case 2 is more pro�table than
Case 1, the sensitivity analysis will be carried out for
this case in the sequel.

4.2. Sensitivity analysis
In this section, an analysis of sensitivity is performed
for di�erent numbers of the main parameters, the
percentage of defective items p, the probability of type-
I error /, probability of type-II error �, the number of
discounted sales per cycle w, the holding cost per unit
per unit of time h, the special inspection cost per unit
u2, the waiting cost per unit per unit of time �, and the
demand rate per unit time D in Case 2 of the problem.
For each parameter, the number of parameters changes
in the range of {50% to +50%, while the remaining
parameters are �xed and, then, the e�ects of changes in
parameter on pro�ts, revenues, and costs are recorded.
For parameters of the same nature and scale, the
analysis is depicted on a single plot. Table 3 shows
the variation of total pro�t per unit time with respect
to the changes of defective items percentage p. Because
f(p) follows a uniform distribution with the parameters
a and b, in order to change E(p), we consider di�erent
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Table 3. Sensitivity analysis of the probability of an item being defective p.
a 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Change
b 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
E(p) 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06 0.06
% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2372.77 2523.56 2614.01 2676.06 2722.49 2759.39 2790.06 2816.43 2839.73 +

E[TRU(y)] 4582465.64 4593144.95 4603934.36 4614835.57 4625850.34 4636980.45 4648227.71 4659594.00 4671081.20 +
Sales (non-
defective items)

4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective
recognized items)

81632.65 92098.38 102672.00 113355.19 124149.66 135057.16 146079.48 157218.44 168475.90 +

Sales (items
returned from market)

832.99 1046.57 1262.36 1480.38 1700.68 1923.28 2148.23 2375.55 2605.30 +

E[TCU(y)] 3311751.71 3329754.56 3348329.21 3367260.09 3386473.17 3405937.37 3425638.35 3445569.48 3465728.03 +
Procurement 3130719.67 3146352.95 3162340.50 3178575.59 3195022.30 3211666.19 3228501.24 3245525.26 3262738.09 +
Regular inspection 104123.28 104657.25 105196.72 105741.78 106292.52 106849.02 107411.39 107979.70 108554.06 +
Special inspection 333.19 418.63 504.94 592.15 680.27 769.31 859.29 950.22 1042.12 +
Inspection errors 69554.35 71690.21 73848.10 76028.34 78231.29 80457.31 82706.77 84980.02 87277.46 +
Holding 7009.82 6620.38 6420.14 6299.75 6220.65 6165.72 6126.19 6097.09 6075.40 {
Waiting 11.39 15.14 18.82 22.48 26.14 29.80 33.48 37.18 40.89 +

E[TPU(y)] 1270713.93 1263390.39 1255605.14 1247575.48 1239377.17 1231043.08 1222589.36 1214024.52 1205353.16 {
% 2.53 1.94 1.31 0.66 0.00 -0.67 {1.35 {2.05 {2.75 {

Table 4. Sensitivity analysis of the type-I error probability �.
c 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

Change
d 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350 0.0375 0.0400
E(�) 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.0300
% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2701.69 2706.87 2712.06 2717.27 2722.49 2727.72 2732.96 2738.22 2743.49 +

E[TRU(y)] 4604377.10 4609704.64 4615059.22 4620441.05 4625850.34 4631287.30 4636752.14 4642245.07 4647766.32 +
Sales (non-
defective items)

4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective
recognized items)

102693.60 108016.88 113367.17 118744.70 124149.66 129582.27 135042.74 140531.28 146048.11 +

Sales (items
returned from market)

1683.50 1687.76 1692.05 1696.35 1700.68 1705.03 1709.40 1713.80 1718.21 +

E[TCU(y)] 3322058.53 3338039.83 3354102.30 3370246.53 3386473.17 3402782.84 3419176.19 3435653.85 3452216.48 +
Procurement 3162796.94 3170792.07 3178827.80 3186904.44 3195022.30 3203181.70 3211382.96 3219626.41 3227912.36 +
Regular inspection 105218.86 105485.23 105752.96 106022.05 106292.52 106564.36 106837.61 107112.25 107388.32 +
Special inspection 673.40 675.11 676.82 678.54 680.27 682.01 683.76 685.52 687.29 +
Inspection errors 47138.05 54852.32 62605.75 70398.64 78231.29 86104.01 94017.09 101970.87 109965.64 +
Holding 6205.35 6209.12 6212.93 6216.77 6220.65 6224.57 6228.52 6232.51 6236.54 +
Waiting 25.94 25.99 26.04 26.09 26.14 26.19 26.24 26.29 26.34 +

E[TPU(y)] 1282318.58 1271664.81 1260956.93 1250194.52 1239377.17 1228504.46 1217575.95 1206591.23 1195549.85 {
% 3.46 2.61 1.74 0.87 0.00 {0.88 {1.76 {2.65 {3.54 {

values for b while leaving the remaining parameters
unchanged. The optimal order size in the range of
p has increased 466.96 unit, which can be concluded
that by increasing the defective items percentage p, the
order size increases such that we can still satisfy the
demand and no shortage occurs. As logical reasoning
also con�rms, by increasing parameter p, total pro�t
per unit time should decrease. Table 3 indicates that
the total revenues and total costs per unit time are
increasing; however, increase in costs is higher than
the revenues. In the changes range, the total revenue
per unit time has increased for $88615.56 and total

costs per unit time have increased for $153976.32 which
ultimately leads to $65360.76 in total pro�t per unit
time. The reason is that the revenue is generated
upon increasing the sales of the items recognized as
defective items (returning items from the market),
but increase in the percentage of defective items will
increase procurement costs, regular inspections costs,
special inspection costs, inspection errors costs, and
waiting costs.

Table 4 shows the pro�t variation according to
variations in type-I error probability �. Also, f(�)
follows the uniform distribution with parameters c
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Table 5. Sensitivity analysis of the type-II error probability �.

e 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

Change
f 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350 0.0375 0.0400

E(�) 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.030 0

% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2726.12 2725.19 2724.28 2723.38 2722.49 2721.61 2720. 76 2719.93 2719.11 {

E[TRU(y)] 4625850.34 4625850.34 4625850.34 4625850.34 462585 0.34 4625850.34 4625850.34 4625850.34 4625850.34 0.00

Sales (non-

defective items)
4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective

recognized items)
125000.00 124787.41 124574.83 124362.24 124149.66 123937.07 123724.49 123511.90 123299.32 {

Sales (items

returned from market)
850.34 1062.93 1275.51 1488.10 1700.68 1913.27 2125.85 2338.44 2551.02 +

E[TCU(y)] 3377612.99 3379828.11 3382043.19 3384258.21 3386473.17 3388688.06 3390902.87 3393117.59 3395332.21 +

Procurement 3195013.98 3195016.10 3195018.19 3195020.26 3195022.30 3195024.30 3195026.26 3195028.18 3195030.05 +

Regular inspection 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 0.00

Special inspection 340.14 425.17 510.20 595.24 680.27 765.31 850.34 935.37 1020.41 +

Inspection errors 69727.89 71853.74 73979.59 76105.44 78231.29 80357.14 82482.99 84608.84 86734.69 +

Holding 6225.38 6224.23 6223.07 6221.87 6220.65 6219.40 6218.10 6216.77 6215.39 {

Waiting 13.09 16.35 19.61 22.88 26.14 29.39 32.65 35.90 39.16 +

E[TPU(y)] 1248237.35 1246022.23 1243807.15 1241592.13 1239377.17 1237162.28 1234947.47 1232732.75 1230518.13 {

% 0.71 0.54 0.36 0.18 0.00 {0.18 {0.36 {0.54 {0.71 {

and d. We adjust c and d such that E(�) changes
in the range of {50% to +50%. Also, by increasing
�, the order size increases too, but has a far less
increase than parameter p and only increases 41.8 unit.
The total revenues per unit time in the range of �
increase as $43389.22 and the total costs per unit time
increase as $130157.95. Costs have grown three times
than revenues, causing pro�t decrease as $86768.73 in
the range of variations. Loss of greater pro�t than
parameter p occurs for three reasons; �rst, revenues
do not grow as p; second, the costs of inspection errors
increase with more gradient because of � change; and
third is that holding cost decreases with increase in p,
but increases when � increases.

Table 5 shows the total pro�t variations per unit
time according to the variations of the type-II error
probability �. It is assumed that f(�) follows a uniform
distribution with the parameters e and f , the same as
the two previous parameters. Here, the parameters e
and f change in such a way that E(�) varies according
to the desired range. Unlike the parameters of p and �,
this time with increase in the parameter �, the optimal
order size decreases partially by as much as 7.01. The
total pro�t per unit time is still inversely proportional
to the parameter �; however, this time, it is less
sensitive than the two previous parameters. There are
several reasons why this happens. First reason is that
the revenue from selling recognized defective items in
the range of � decreases, while the revenue from sales of
returned items from the market increases, and then the
total revenue remains unchanged. The second reason
is that the total cost per unit time only increases up to

Figure 4. The e�ect of changes in the parameters p, �,
and � on total pro�t per unit time.

$17719.22, which is less than those of the two previous
parameters. The reason for this is the constancy of
regular inspection cost and decrease in holding costs.
The rest of the costs, although they have grown, in
most cases have become more lenient in there increase
gradient.

Figure 4 illustrates the variations of total pro�t
per unit time for the parameters p, �, and � in
the range of {50% and 50%. Obviously, all three
parameters have an inverse relationship with total
pro�t per unit time. The gradient �gure for parameter
p indicates that the uctuations in its values will have
the greatest e�ect on the total pro�t per unit time.
Also, with the variations in the parameter p, even
though it has less e�ect on earning the pro�t per unit
time, it is almost parallel to the level of the parameter
�. The total pro�t per unit time by variations in the
parameter � in the range of similar variations of the
parameters p and � exhibits lower sensitivity. It can
be concluded that in our proposed model, controlling
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Table 6. Sensitivity analysis of the cost of rejecting a non-defective item cr.
cr 15.00 18.75 22.50 26.25 30.00 33.75 37.50 41.25 45.00 Change
% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 0.00

E[TRU(y)] 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 0.00
Sales (non-
defective items)

4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective
recognized items)

124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 0.00

Sales (items
returned from market)

1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 0.00

E[TCU(y)] 3355860.93 3363513.99 3371167.05 3378820.11 3386473.17 3394126.23 3401779.29 3409432.35 3417085.42 +
Procurement 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 0.00
Regular inspection 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 0.00
Special inspection 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 0.00
Inspection errors 47619.05 55272.11 62925.17 70578.23 78231.29 85884.35 93537.41 101190.48 108843.54 +
Holding 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 0.00
Waiting 26.14 26.14 26.14 26.14 26.14 26.14 26.14 26.14 26.14 0.00

E[TPU(y)] 1269989.41 1262336.35 1254683.29 1247030.23 1239377.17 1231724.11 1224071.05 1216417.99 1208764.92 {
% 2.47 1.85 1.23 0.62 0.00 {0.62 {1.23 {1.85 {2.47 {

Table 7. Sensitivity analysis of the cost of accepting a defective item ca.
ca 100.00 125.00 150.00 175.00 200.00 225.00 250.00 275.00 300.00 Change
% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 0.00

E[TRU(y)] 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 0.00
Sales (non-
defective items)

4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective
recognized items)

124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 0.00

Sales (items
returned from market)

1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 0.00

E[TCU(y)] 3377969.77 3380095.62 3382221.47 3384347.32 3386473.17 3388599.02 3390724.87 3392850.72 3394976.57 +
Procurement 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 0.00
Regular inspection 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 0.00
Special inspection 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 0.00
Inspection errors 69727.89 71853.74 73979.59 76105.44 78231.29 80357.14 82482.99 84608.84 86734.69 +
Holding 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 0.00
Waiting 26.14 26.14 26.14 26.14 26.14 26.14 26.14 26.14 26.14 0.00

E[TPU(y)] 1247880.57 1245754.72 1243628.87 1241503.02 1239377.17 1237251.32 1235125.47 1232999.62 1230873.77 {
% 0.69 0.51 0.34 0.17 0.00 {0.17 {0.34 {0.51 {0.69 {

and leading the variation of the probability of the type-
I inspection error is prioritized.

Table 6 shows the changes of total pro�t per unit
time according to the variations in parameter cr (cost
of rejecting a non-defective item). This parameter
varies between $15 and $45. As can be expected, the
optimal order size remains constant with an increase
in cr. Table 6 con�rms that cr does not a�ect any of
the revenue components and, therefore, has no e�ect
on the total revenue per unit time. In contrast, the
total cost per unit time has increased as $61224.49, and
the only reason is the increase of inspection error cost
to this value. Moreover, the remaining costs remain
unchanged. As a result, the total pro�t per unit time
will decrease as the total cost per unit time increases.

The last row of the table shows that the change in pro�t
per unit time, according to the cr, is linear and has a
signi�cant impact on pro�t.

Table 7 shows the changes of total pro�t per unit
time according to variations in the parameter ca (cost
of accepting a defective item). We will change this
parameter in the range of $100 to $300. As it is obvious,
ca does not play a role in optimal lot size formula and,
therefore, the optimal order size does not change with
its variations. As we expected, an increase in the ca
only increases the inspection error cost, which leads
to an increase in the total cost per unit time and a de-
crease in total pro�t per unit time as the same amount.

Figure 5 shows the graph of changes for total
pro�t per unit time for two parameters ca and cr in



2904 H. Mokhtari and J. Asadkhani/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 2890{2909

Figure 5. The e�ect of changes in the cost of rejecting a
non-defective item cr and the cost of accepting a defective
item ca on total pro�t per unit time.

the range of {50% and 50%. As shown in this �gure,
increasing both parameters will reduce total pro�t per
unit. Moreover, this �gure shows that the growth
of the parameter a�ects ca the pro�t value with a
slower gradient than the parameter cr. The point
that can cause ambiguity in analyzing the sensitivity
of these two parameters is their range of variations.
The parameter ca has changed between $100 and $300
and has more severe variations than cr that uctuates
between $15 and $45. The nature of the two parameters
is the same, but unexpectedly the total pro�t per unit
time of the model is more sensitive to cr. The cause
is the coe�cient that is multiplied by two parameters
in each cycle. The ca, although bigger, is multiplied
by the coe�cient yp�, but the cr parameter takes
coe�cient y(1 � p)�. In the numerical example, y�
is equal to y�, but p = 0:04 and 1 � p = 0:96, which
proves the logic of the above contradiction. Therefore,
although cr has a smaller value, its decrease makes it
more pro�table than ca.

Table 8 shows the changes in total pro�t per unit

time according to the changes in the parameter � (the
waiting cost per unit time). This table changes the
value of the parameter � from {50% to 50% while
leaving the remaining parameters unchanged. By
increasing the value of the parameter �, the order size
must be reduced, which is supported by the results
presented in this table. Despite a decrease in the
optimal batch size, separated revenues per unit time
and, consequently, total revenues per unit time remain
constant because they are independent of the order size
and the waiting cost per unit time. Moreover, following
the mentioned change, procurement costs, inspection
error costs, and waiting costs are rising and holding
costs are reduced. According to the results presented
in the table, the sensitivity of total pro�t per unit time,
with respect to the parameter �, is insigni�cant.

Figure 6 shows variations of total pro�t per unit
time through variations in the parameter � in the range
of {50% to 50%. As it is clear in this �gure, the pa-
rameter � has an inverse relationship with total pro�t
per unit time. Furthermore, total pro�t variations are
quite low due to the low sensitivity of optimal order size
to this parameter, which causes little variations in pro-
curement cost, inspection error costs, and holding cost.

Table 9 shows the variations of total pro�t per
unit time according to the changes in parameter w (the
number of discounted sales of returned items per cycle).
We change the parameter w from 4 to 12 times bigger
to examine the uctuations of all components of total
pro�t and order size. Obviously, optimal order size
increases upon increasing the parameter w. Changing
this parameter does not make any di�erence in the com-
ponents of total revenues per unit time. As it is shown
in Table 9, regular inspection cost, special inspection

Table 8. Sensitivity analysis of the waiting cost per unit time �.

� 6.00 7.50 9.00 10.50 12.00 13.50 15.00 16.50 18.00 Change
% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2725.34 2724.63 2723.91 2723.20 2722.49 2721.78 2721.06 2720.35 2719.64 {

E[TRU(y)] 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 0.00

Sales (non-

defective items)
4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective

recognized items)
124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 0.00

Sales (items

returned from market)
1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 0.00

E[TCU(y)] 3386460.10 3386463.37 3386466.63 3386469.90 3386473.17 3386476.44 3386479.70 3386482.97 3386486.23 +

Procurement 3195015.76 3195017.40 3195019.03 3195020.67 3195022.30 3195023.93 3195025.57 3195027.20 3195028.83 +

Regular inspection 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 0.00

Special inspection 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 0.00

Inspection errors 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 +

Holding 6227.17 6225.54 6223.91 6222.28 6220.65 6219.03 6217.40 6215.78 6214.16 {

Waiting 13.08 16.35 19.61 22.87 26.14 29.40 32.65 35.91 39.16 +

E[TPU(y)] 1239390.24 1239386.97 1239383.71 1239380.44 1239377.17 1239373.90 1239370.64 1239367.37 1239364.11 {

% 0.0011 0.0008 0.0005 0.0003 0.0000 {0.0003 {0.0005 {0.0008 {0.0011 {
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Table 9. sensitivity analysis of the number of discounted sales of returned items per cycle w results.
w 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Change
% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2722.37 2722.42 2722.45 2722.47 2722.49 2722.50 2722.51 2722.52 2722.53 +

E[TRU(y)] 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 0.00
Sales (non-
defective items)

4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective
recognized items)

124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 0.00

Sales (items
returned from market)

1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 0.00

E[TCU(y)] 3386473.72 3386473.50 3386473.35 3386473.25 3386473.17 3386473.11 3386473.06 3386473.02 3386472.99 {
Procurement 3195022.57 3195022.46 3195022.39 3195022.34 3195022.30 3195022.27 3195022.25 3195022.23 3195022.21 {
Regular inspection 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 0.00
Special inspection 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 680.27 0.00
Inspection errors 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 0.00
Holding 6220.93 6220.82 6220.74 6220.69 6220.65 6220.62 6220.60 6220.58 6220.56 {
Waiting 26.13 26.14 26.14 26.14 26.14 26.14 26.14 26.14 26.14 0.00

E[TPU(y)] 1239376.63 1239376.84 1239376.99 1239377.09 1239377.17 1239377.23 1239377.28 1239377.32 1239377.35 +
% {0.000044 {0.000026 {0.000015 {0.000006 0.000000 0.000005 0.000009 0.000012 0.000015 +

Figure 6. The e�ect of changes in the waiting cost per
unit time � on total pro�t per unit time.

cost, inspection errors cost, and waiting cost are �xed,
but procurement and holding costs are decreasing by
increasing w, which result in an increase in total pro�t
per unit time. Of course, the important point is that
the total pro�t per unit time is less than $1 in the range
of changes. The last row of the table clearly shows
that this parameter has special properties over the six
previous parameters. First, in contrast to the remain-
ing parameters, there is a direct relationship with total
pro�t per unit time. Second, its sensitivity analysis is
nonlinear and third, for the total pro�t per unit time,
it is the most non-sensitive parameter until now.

Figure 7 shows variations of total pro�t per unit
time through variations in the parameter w in the
range of {50% to 50% of its original amounts. As it
is expected from the results in Table 9, the variations
are nonlinear and exponential; however, the intensity
of total pro�t variations per unit time is so low. The
reason for this is that the parameter w is a part of the
holding cost, and the total holding cost is only 0.2% of
the total cost. In fact, its uctuation, although is high
on the holding cost scale, does not have much e�ect on
total pro�t per unit time.

Table 10 shows the variations of total pro�t

Figure 7. The e�ect of changes in the number of
discounted sales of return items per cycle w on total pro�t
per unit time.

Figure 8. The e�ect of changes in special inspection cost
per unit for Case 2 u2 on total pro�t per unit time.

per unit time according to the parameter u2 (special
inspection cost per unit for Case 2). We will change
u2 between $4 and $12 to see how it a�ects total pro�t
per unit time. Changing this parameter has no e�ect
on the optimal order size. The last column of the table
also indicates that the remaining components of total
pro�t per unit time do not change and the pro�t will
decrease exactly to the same amount.

Figure 8 shows variations of total pro�t per unit
time for the parameter u2 in the range of {50% to 50%.
It is clear that parameter u2 has an inverse relationship
with the total pro�t per unit time. Of course, by
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Table 10. Sensitivity analysis of special inspection cost per unit for Case 2 u2 results.

u2 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00
Change

% {50.00 {37.50 {25.00 {12.50 0.00 12.50 25.00 37.50 50.00

y�2 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 2722.49 0.00

E[TRU(y)] 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 4625850.34 0.00

Sales (non-

defective items)
4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 4500000.00 0.00

Sales (defective

recognized items)
124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 124149.66 0.00

Sales (items

returned from market)
1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 1700.68 0.00

E[TCU(y)] 3386133.03 3386218.07 3386303.10 3386388.14 3386473.17 3386558.20 3386643.24 3386728.27 3386813.31 +

Procurement 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 3195022.30 0.00

Regular inspection 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 106292.52 0.00

Special inspection 340.14 425.17 510.20 595.24 680.27 765.31 850.34 935.37 1020.41 +

Inspection errors 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 78231.29 0.00

Holding 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 6220.65 0.00

Waiting 26.14 26.14 26.14 26.14 26.14 26.14 26.14 26.14 26.14 0.00

E[TPU(y)] 1239717.31 1239632.27 1239547.24 1239462.20 1239377.17 1239292.14 1239207.10 1239122.07 1239037.03 {

% 0.027 0.021 0.014 0.007 0.000 {0.007 {0.014 {0.021 {0.027 {

increasing the special inspection cost per unit from
$4 to $12, the total pro�t increased only by 0.0005%;
therefore, controlling this parameter or attempting to
decrease it would have little e�ect on total pro�t rise.

5. Conclusions

In this paper, the classical Economic Order Quantity
(EOQ) model was developed for a case in which the
order batch contains some defective items and there
are possible inspection errors (types I and II) that may
occur in recognizing the defective items. Nowadays,
most customers prefer to receive non-defective items;
however, it is possible due to type-II error. This
unpleasant experience could reduce the credibility of
the vendor or even make lost sales. Hence, we added
a special inspection process, which was performed
immediately after the regular inspection process, to
prevent delivering more than one defective item to
customers. For this purpose, at the end of the special
inspection process, batch replacement was carried out
for satisfying demand for the returned sales items. In
addition, we provided multiple sales opportunities for
returning items from the market, which gives more
exibility to the model. Then, we presented two cases
based on the length of the special inspection process.
The �rst case considers the insigni�cant length of
the special inspection, while the second case assumed
the length of the inspection process to be maximum

possible time. The concavity was proved for the total
pro�t per unit time of both cases, and then the optimal
order size was derived for both cases analytically. A
numerical example was presented to compare the two
cases and analyze the results. The numerical example
showed the superiority of Case 2 against Case 1 in
terms of total pro�t per unit time. The greater
pro�tability of Case 2 resulted from greater savings
in the special inspection cost than Case 1. Finally,
we performed a comprehensive analysis of sensitivity
for the main parameters of the problem. The results
indicated that by increasing the probability that an
item is defective p, the type-I error probability �, the
type-II error probability �, the cost of rejecting a non-
defective item cr, the cost of accepting a defective item
ca, the waiting cost per unit time � and the special
inspection cost per unit u2, and the total pro�t per
unit time will decrease; in contrast, increase in the
number of discounted sales of returned items per cycle
w increases pro�t per unit time. The total pro�t per
unit time had high sensitivity to the parameters such
as type-I error probability �, the probability that an
item is defective p and the cost of rejecting a non-
defective item cr, and slight sensitivity to the number
of discounted sales of returned items per cycle w and
the waiting cost per unit time �.

As an interesting area for future research, this
study can be extended to a case which assumes that
the special inspection time is a function with respect to
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special inspection cost per unit. Moreover, the holding
cost for perfect quality items can be di�erent from
that of imperfect quality items. Another interesting
area for future study is the extension of this model for
cases with scrap, reject or repairable items. Further,
the proposed inventory problem can be incorporated
into the concepts of pricing, quantitative discounts for
purchasing, and delay in payment.
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