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Abstract. In recent years, biofuels have attracted considerable attention as a renewable
and clean source of energy and have been playing the role of suitable alternatives to fossil
fuels. One of the most attractive types of biofuels is Acetone-Butanol-Ethanol (ABE),
which is produced in a batch fermentation process by the anaerobic bacterium Clostridium
acetobutylicum and sugar-based substrate as feedstock. In this paper, the optimization
of this process was carried out according to a bi-objective function. A hybrid model
of Multi-Objective Di�erential Evolution (MODE) algorithm and distinguished decision-
making methods, namely linear programming technique for multidimensional analysis of
preference (LINMAP), Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS), and Shannon's entropy, were applied to �nd the �nal optimal operating point.
The initial concentration of substrate and the �nal operating time of the process were
selected as decision variables to maximize the two main objectives in terms of solvent yield
and productivity. A Pareto optimal set presents a wide range of optimal operating points,
and a proper operating condition can be selected based on the necessities of the applicant.
The best optimal point obtained by TOPSIS, according to the lowest value of deviation
index, was also compared with the results of the economy-based optimization.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Due to the rapid depletion of fossil fuel resources
and the serious concerns over environmental pollution
resulting from petroleum fuel emissions, the demand
for biofuels is rising. Biobutanol is a valuable biofuel
that can be used as a direct substitution of gasoline or
as a fuel additive. Besides, butanol is used as a solvent
in chemical industries and as an intermediate in chem-
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ical synthesis and pharmaceutical manufacturing. In
recent years, due to the increasing petroleum prices and
energy requirement, cheaper separation technology,
and growing demand for renewable energy resources,
the ABE fermentation process as a common way to
produce butanol has been taken into account [1].

ABE can be synthesized biologically by the anaer-
obic bacterium Clostridium acetobutylicum and pro-
duces three solvents (acetone, butanol, and ethanol),
two intermediate metabolites (butyric acid and acetic
acid), and two gases (carbon dioxide and hydrogen) [2].
In the ABE bioreactor, the substrate is the glucose
syrup. The metabolic pathway of ABE production
is divided into two separate phases: acidogenesis and
solventogenesis. During the acidogenesis phase, the
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bacterial culture mainly produces butyric and acetic
acids and, during the solventogenic phase, acetic and
butyric acids are converted to acetone and butanol,
respectively [3].

To improve the performance of the ABE process,
it is required to implement the process under opti-
mal conditions by considering economic feasibility and
safety. Several research studies have been conducted on
the optimization of the ABE fermentation process for
high butanol production. These studies can be divided
into two categories: mathematical model-based opti-
mization and experimental design-based optimization.

Extensive studies have been performed on the
optimization of the ABE process in the fed batch and
continuous reactors based on the mathematical model,
which are presented as follows. Dynamic optimization
of the semi-batch ABE fermentation with in situ per-
vaporation membrane separation was accomplished by
Lin and Lee [4] to determine the optimal feeding pro�le
through time. Sandu et al. [5] selected the substrate
concentration, the inoculum volume, and the feed 
ow
rate as decision variables to maximize the production of
solvents in the ABE fed-batch biosynthesis. Grisales-
Diaz and Olivar-Tost [6] optimized economically a
process involving simultaneous sacchari�cation, ABE
fermentation from lignocellulose, and detoxi�cation
by liquid-liquid extraction using a simplex search
method. Elmeligya et al. [7] proposed an arti�cial
neural network as a metamodel for optimizing the
biobutanol production process via the integrated ABE
fermentation-membrane pervaporation process. Kim
et al. [8,9] suggested a model-based optimization strat-
egy for the ABE fermentation process coupled with
an ex-situ recovery system with periodically switched
adsorption column for continuous biobutanol produc-
tion. The Sequential Quadratic Programming (SQP)
algorithm was used to search the optimal operating
conditions, leading to the most pro�table cyclic steady
state. Mariano et al. [10,11] performed a dynamic
optimization for the continuous ABE fermentation
process containing a fermentor, a cell retention system,
and a vacuum 
ash vessel to maximize the butanol
productivity using Particle Swarm Optimization (PSO)
and SQP algorithms. Sharma and Rangaiah [12]
optimized a three-stage fermentation process, which is
integrated with cell recycling and inter-stage extraction
for ethanol productivity and xylose conversion using
MODE algorithm. Sharif Rohani [13] implemented the
multi-objective optimization for the ABE continuous
process coupled with an in situ separation unit, namely
vacuum fermentation, gas stripping, and pervapora-
tion, to determine the optimal operating conditions.
The butanol speci�c productivity, average butanol
concentration, and sugar conversion were selected as
objective functions. The Pareto-optimal solutions
obtained by Genetic Algorithm (GA) were ranked by

the Net Flow Method (NFM) to �nd the best point.
Generally, the experimental design-based opti-

mization (second category) was carried out by sev-
eral researchers using Response Surface Methodol-
ogy (RSM) [14,15]. Wang and Blascheck [16] per-
formed batch experiments by Central Composite De-
sign (CCD) [15] and RSM optimization to evaluate the
e�ect of initial glucose concentration, agitation rate,
and PH on butanol production. YouSheng et al. [17]
optimized experimental conditions for the production
of butanol in a batch bioreactor based on enzymatic
hydrolysis of corn stalk by adopting Plackett-Burman
Design (PBD) [18] and CCD to screen the key factors.
Singh et al. [19] used PBD and RSM methodology to
optimize fermentation medium for enhancing butanol
production from glucose by Clostridium beijerenckii
strain CHTa. Optimization of the ABE batch process
parameters containing acid concentration, tempera-
ture, incubation time, algal hydrolysate concentration,
inoculum size, and initial pH was carried out by Dubey
et al. [20] to enhance biobutanol production from
Sargassum wightii hydrolysate. Kumar et al. [21]
suggested the utilization of the agro residue corncob
for the production of the ABE using Clostridium aceto-
butylicum and optimized this batch bioreactor through
RSM. Zheng et al. [22] enhanced the ABE production
from eucalyptus hydrolysate with optimized nutrient
supplementation containing FeSO4.7H2O, tryptone,
and yeast extract through statistical experimental de-
signs. Al-Shorgani et al. [23-25] used PBD to optimize
the batch ABE culture conditions in order to screen
the most signi�cant factors a�ecting the biobutanol
production by various anaerobic bacteria. Recently,
Khunchantuek and Fiala [26] and Sirisantimethakom et
al. [27] investigated the optimization of the various key
factors a�ecting butanol production from sugarcane
juice and sweet sorghum stem juice, respectively, by
Clostridium beijerinckii TISTR 1461 using RSM.

Continuous and fed-batch cultures are alterna-
tives for the ABE process, yet with their own intrinsic
disadvantages. The ABE fermentation was imple-
mented widely in the batch reactor during its commer-
cial production years. The batch fermentation is easier
to operate and less likely to be contaminated [28]. Ac-
cording to the content mentioned in the previous para-
graph, all studies on the optimization of the ABE batch
process are based on the experimental design. To the
best knowledge of the authors, this is the �rst time the
optimization of the ABE batch fermentation process
has been conducted based on a mathematical model.
In this regard, it is essential to assess the response
of optimization techniques for the ABE fermentation
process, which can be a very e�ective tool in the search
for economic feasibility of the ABE fermentation plants
by operating under optimal conditions.

In 1997, the Di�erential Evolution (DE) algo-
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Table 1. The kinetic rates for the batch ABE fermentation process proposed by Votruba et al. [2].

Equation De�nition

rX = � (y (t)� 1)CX (t)� k2CX (t)CB (t) Rate of biomass growth

rS = �k3CS (t)CX (t)� k4
CS(t)

ks+CS(t)CX (t) Rate of substrate utilization

rBA = k5CS (t) kI
kI+CB(t)CX (t)� k6

CBA(t)
kBA+CBA(t)CX (t) Rate of butyric acid production

rB = k7CS (t)CX (t)� 0:841rBA Rate of butanol production

rAA = k8
CS(t)

kS+CS(t)
kI

kI+CB(t)CX (t)� k9
CAA(t)

kAA+CAA(t)
CS(t)

kS+CS(t)CX (t) Rate of acetic acid production

rA = k10
CS(t)

kS+CS(t)CX (t)� 0:484rAA Rate of acetone production

rE = k11
CS(t)

kS+CS(t)CX (t) Rate of ethanol production

rCO2 = k12
CS(t)

kS+CS(t)CX (t) Rate of carbon dioxide production

rH2 = k13
CS(t)

kS+CS(t)CX (t) + k14CS (t)CX (t) Rate of hydrogen production

rithm for solving optimization problems was proposed
by Storn and Price [29] for the �rst time. The
DE method is a stochastic optimization algorithm for
minimizing an objective function subject to a number
of linear or nonlinear constraints. DE has been success-
fully used by several researchers such as Babu et al. [30-
32] and Khademi et al. [33-36] in various �elds. After
that, MODE algorithm, as an extended DE method,
proposed by Babu et al. [37] has been successfully used
to handle multi-objective optimization problems.

In this paper, a dynamic mathematical model is
considered for the ABE batch fermentation process.
The model is implemented with the aim of identifying
important parameters containing an initial concen-
tration of substrate and operating time a�ecting the
biosynthesis of products in the fermentation process. A
study on the optimization of ABE fermentation process
is carried out according to two categories: (1) A multi-
objective optimization using the MODE algorithm as
an exceptionally simple evolution strategy. In this way,
an optimum value is selected from the Pareto-optimal
front using a set of decision-making tools, namely
TOPSIS [38], LINMAP [39], and Shannon's entropy
[40] methods, based on deviation index, and (2) An
economy-based optimization using the DE algorithm.

2. Mathematical model

The mathematical model represents the biochemical
kinetics and culture-related physiological aspects of
the batch ABE fermentation process. The kinetic
model used in this study was developed by Votruba
et al. [2] based on the following assumptions: (i)
There are no culture restrictions by phosphate, ni-
trogen, trace elements, and growth factors; (ii) Sugar
(glucose) is the only limiting substrate in the batch
fermentation process. The mathematical modeling
accomplished by other researchers such as Yerushalmi
et al. [41,42], Mulchandani and Volesky [43], Srivastava

Table 2. Constants for the kinetic model proposed by
Votruba et al. [2].

Parameter Value Unit
k1 0.0090 L/g substrate.h.
k2 0.0008 L/g butanol.h
k3 0.0255 L/g biomass.h
k4 0.6764 g substrate/g biomass.h

k5 0.0136 g butyric acid
L/g substrate g biomass h

k6 0.1170 g butyric acid/g biomass. H

k7 0.0113
g butanol
L/g substrate
g biomass H

k8 0.7150 g acetic acid/g biomass.h
k9 0.1350 g acetic acid/g biomass.h
k10 0.1558 g aceton/g biomass.h
k11 0.0258 g ethanol/g biomass.h
k12 0.6139 g CO2/g biomass.h
k13 0.0185 g H2/g biomass.h
k14 0.00013 g H2.L/g substrate.g biomass.h
kI 0.833 g butanol/L
kS 2.0 g substrate/L
kAA 0.5 g acetic acid/L
kBA 0.5 g butyric acid/L
� 0.56 {

and Volesky [44], and Sandu et al. [5] is on the basis
of the kinetic model proposed by Votruba et al. [2].

The kinetic rates for the batch culture are sum-
marized in Table 1. These equations represent ki-
netic rates for the biomass, substrate, intermediate
compounds, and key products (acetone, butanol, and
ethanol). The constants that appear in kinetics expres-
sions are tabulated in Table 2.

A hyperbolic relation for product inhibition and
a linear relation of the culture physiological state (y)
with respect to substrate concentration are added to
this model. Variation of y versus time was reported by
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Votruba et al. [2] as follows:

dy(t)
dt

=
�
k1CS(t)

kI

kI + CB(t)
� �(y(t)� 1)

�
y(t): (1)

A di�erential mass balance equation to describe the
dynamic of the process is expressed as follows:

dCi(t)
dt

= ri(t); (2)

where i denotes biomass (X), glucose (S), butanol (B),
acetone (A), ethanol (E), Butyric Acid (BA), Acetic
Acid (AA), carbon dioxide (CO2), and hydrogen (H2).

3. Optimization

3.1. Di�erential evolution algorithm
Di�erential Evolution (DE) is an e�ective intelli-
gent optimization algorithm and a population-based
stochastic search method. This technique has been pre-
sented as an e�cient, fast, robust, and simple method
for stochastic global optimization. The main algorithm
of DE can be found in the literature [37,45], and it
consists of a four-step procedure: (1) random choice of
an initial population vector, (2) mutation/perturbation
(3) crossover/recombination, and (4) selection.

3.2. Various strategies of DE
The DE algorithm can support various strategies de-
pending on the speci�c problem applied. Related
strategies can be di�erent based on the vector to be
mutated, the number of di�erence vectors selected for
mutation, and �nally the pattern of the recombination
used. Ten various strategies with the symbolic form
DE=x=y=z were designed by Price and Storn [46].
DE stands for di�erential evolution, x denotes the
vector to be mutated that can be the best member
of the previous population or can be selected at
random (best or rand, respectively), y represents the
number of di�erence vectors for mutation of x (1 or 2),
and z stands for the type of the recombination used
(exp: exponential; or bin: binomial). In this study,
DE/best/1/bin strategy is used due to its simple form
and performance.

3.3. Choosing DE parameters
Some general instructions are available for selecting
the crucial parameters such as crossover probability
constant (CR), population size (NP), and scaling factor
(F) that a�ect the performance of DE. Mostly, popu-
lation size must be roughly 5-10 times the number of
decision variables [30]. F is situated in the domain of
0.4 to 1.0. At �rst, a scaling factor equal to 0.5 can be
tested; then, F and/or NP increase(s) if the population
converges before the usual time. Moreover, CR should
be in the range of 0.1 to 1.0 [30]. More aspects of the
pseudo-code of DE, its strategies, and the parameters

Table 3. Strategy and parameters applied to DE.

Strategy DE/best/1/bin

Population size (NP) 50
Scaling factor (F) 0.8
Crossover probability constant (CR) 1
Number of generations 300

were published by Babu and Munawar [30] and Babu
and Angira [31,32]. In the present work, the strategy
and parameters used for DE are presented in Table 3.

3.4. Multi-Objective Di�erential Evolution
(MODE)

Simultaneous optimization of several objectives can
be performed by either a single-objective function, in
which a weighted average is used for a combination
of the individual objectives (known as the weighted-
sum method) or multi-objective functions capable of
supporting the simultaneous optimization of two or
more incompatible objectives [47]. Such objective
functions are often in con
ict with each other. The
trade-o� between multiple objectives creates a set of
optimal solutions, namely \Pareto-set". The MODE,
which is an extension of DE, is used to solve the multi-
objective optimization problems.

Figure 1 presents the steps involved in the MODE
algorithm. The algorithm can be summarized as
follows: An initial population is randomly generated in
the feasible region. All dominated points are eliminated
from the population. The rest of the non-dominated
points are maintained for crossover and are allowed
to undergo DE operations. Three parent vectors are
randomly chosen. A child vector is created from the
three-parent vectors and is put into the population
if it dominates the �rst parent vector; otherwise, a
new selection process has been accomplished [45]. The
termination criterion of this procedure is an assigned
number of generations. A detailed representation of
MODE algorithm using DE approach and the general
pseudo-code for MODE can be found in the litera-
ture [37,48].

3.5. Optimization problem formulation
In this study, two types of the optimization problem are
considered: multi-objective optimization and economy-
based optimization. In the economy-based optimiza-
tion, practically, the value of a bio-species can vary
signi�cantly, sometimes from one to ten-fold, depend-
ing on the economical evaluation methods. Therefore,
the results of the economy-based optimization severely
depend on the value of species over time. Instead, a
multi-objective optimization considerably increases the
role of a decision-maker to select the optimal point from
the Pareto-set, and its results do not change over the
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Maximize : f1(C0
S ; tf ) = 2YA(tf ) + YB(tf ) + 6YE(tf )

C0
s ; tf f2(C0

S ; tf ) = 2PA(tf ) + PB(tf ) + 6PE(tf )

Subject to : Equation (i); i = 1; 2
and 0 � C0

S � 150 gL�1

10 � tf � 48 h
(3)

Box I

Figure 1. Flowchart of the MODE algorithm.

years. Nevertheless, both optimizations are performed
and their results are compared together.

3.5.1. Bi-objective optimization
In this process, 6 variables including yield and pro-
ductivity of acetone, butanol, and ethanol can be
considered as objective functions; however, since it is
di�cult to discuss and visualize the optimal results of 6
objectives, the number of objectives is reduced to 2
by weighting. The weighted-sum method is applied
to each function. A general form of this constrained

optimization problem is obtained by Eq. (3) as shown
in Box I.

The 3:6:1 solvent concentration ratio of acetone,
butanol, and ethanol is commonly observed at the �nal
stage of the batch ABE fermentation process by C.
acetobutylicum [3,49]. In other words, CB=CE �= 6 and
CB=CA �= 2. Therefore, the objective functions f1 and
f2 are considered, i.e., the summation of the solvent
yield and productivity with weighting factors of 2, 1,
and 6 for acetone, butanol, and ethanol to equalize the
orders of the magnitude of each term. Eqs. (1) and (2)
and the kinetic rates represented in Table 1 are the
equality constraints of this problem.

Two decision variables including the initial con-
centration of substrate, C0

s , and �nal operating time
of batch fermentation process, tf , are considered for
maximizing these two objective functions. Since C0

s
is an important parameter and has a direct e�ect on
the solvent yield, this variable is chosen as a decision
variable. The range of this parameter is selected based
on the information in the literature [2,50]. Functional
relationships presented by Votruba et al. [2] for the
batch ABE fermentation are reliable for the glucose
concentration in the range of 0-50 gL �1. Moreover,
butanol production was studied by Nanda et al. [50]
with glucose as a control substrate at levels varying
from 50-150 gL�1. Therefore, an upper bound of
150 gL�1 is chosen for the initial concentration of
substrate.

In order to allow for cell growth and solvent
production, fermentation time was set to 48 h. In
the incomplete fermentation of ABE, the process was
allowed to proceed for another 48 h. No further changes
were observed during this additional time, as reported
by Yerushalmi and Volesky [51]. Therefore, the upper
bound of the �nal operating time is set to 48 h. The
lower bound for the �nal operating time has been
selected with no prior intention.

3.5.2. Pro�t function
A simpli�ed pro�t function is considered as a single-
objective function for the economy-based optimization
of the batch biological reactor. This constrained
optimization problem is generally formulated obtained
by Eq. (4) as shown in Box II, where NA is the



3406 M.H. Khademi and S. Zandi Lak/Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 3401{3414

Maximize:
C0
s ; tf

Pro�t(C0
S ; tf ) = 10�3

�
365� 24
tf + tc

��
CA(tf )NA + CB(tf )NB+
CE(tf )NE � (C0

S � CS(tf ))NS

�
US$L�1year�1

Subject to : Equation (i); i = 1; 2;
and : 0 � C0

S � 150 gL�1

10 � tf � 48 h;
(4)

Box II

price of acetone (=US$0.38 kg�1), NB is the price of
butanol (=US$0.34 kg�1), NE is the price of ethanol
(=US$0.28 kg�1), NS is the price of glucose. Economic
calculation is carried out based on the production of
ABE from corn. The prices of corn, acetone, ethanol,
and butanol are the same as those assumed by Qureshi
and Blaschek [52]. Corn of 5:14 � 108 kg (moisture
14%) will result in 3:65 � 108 kg glucose; in addition,
the price of corn is considered US$0.07923 kg�1 [52].
Therefore, the price of glucose is US$0.111 kg�1. Of
note, the pro�t function does not include the cleaning
cost in each cycle, bacterial culture and nutrition costs,
and separation costs in the separation of by-products
(acetic acid and butyric acid) from the ABE and
unreacted materials.

4. Decision-making method

The process of decision-making is necessary for se-
lecting the best optimal solution from available points
located at Pareto-set. In this research, three decision-
making approaches including LINMAP, TOPSIS, and
Shannon's entropy are used. Before implementing
any decision-making process, it is compulsory to unify
the scale and dimension of all the objectives by one
of the Euclidean, linear, or fuzzy non-dimensioned
methods [53].

4.1. Euclidian approach
In this study, the solvent yield has no unit while
the unit of solvent productivity is gL�1 h�1. The
non-dimensionalized Euclidean approach is applied to
unify the dimension of these objective functions as
follows [53]:

Fkj =
fkjqPm
k=1 (fkj)

2
j = 1; 2; (5)

where Fkj is the element of non-dimensionalized ob-
jective matrix, fkj is the element of the objectives
matrix at various optimal solutions of the Pareto-
optimal front, k is the index of various points on Pareto
front, m is the total number of points on Pareto front,
and j stands for the index of each objective.

4.2. LINMAP method
In the multi-objective optimization, the ideal solution
does not lie on the Pareto-set. An ideal solution is a
point that optimizes each objective regardless of other
objectives. In the LINMAP decision-making approach,
the Euclidian distance of each solution on the Pareto-
set from the ideal solution, Dideal

k , is computed as
follows:

Dideal
k =

q
(Fk1 � F ideal

1 )2 + (Fk2 � F ideal
2 )2; (6)

where F ideal
1 and F ideal

2 are the ideal solutions for f1
and f2. In the LINMAP approach, the point with
minimum distance from the ideal solution is chosen
as a desired ultimate solution [54]; therefore, k�nal =
arg mink(Dideal

k ):

4.3. TOPSIS method
In the TOPSIS decision-making approach, a non-ideal
solution in addition to the ideal solution is considered.

Dk =
Dnon�ideal
k

Dideal
k +Dnon�ideal

k
; (7)

Dnon�ideal
k =q

(Fk1 � F non�ideal
1 )

2
+ (Fk2 � F non�ideal

2 )
2
; (8)

where Dnon�ideal
k is the Euclidian distance between

each point and non-ideal solution, and F non�ideal
1 and

F non�ideal
2 are the non-ideal solutions for f1 and f2,

respectively. The TOPSIS approach computes the
�nal solution on Pareto front with maximum Dk [55];
therefore, k�nal = arg maxk(Dk).

4.4. Shannon's entropy method
Shannon's entropy method is established based on
the weight of each objective function. The linear
normalization of the jth objective for the kth point,
Lkj , is evaluated as follows:

Lkj =
FkjPm
k=1 Fkj

k = 1; 2; : : : ;m j = 1; 2;
(9)

DDj = 1 +
Pm
k=1 Lkj lnLkj

ln(m)
; (10)
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Wj =
DDjP2
j=1DDj

; (11)

Skj = WjLkj : (12)

Shannon's entropy decision-making approach com-
putes the �nal desired optimal solution on Pareto-
set based on the maximum Sk [40]; hence, k�nal =
arg maxk(Skj).

4.5. Deviation index
A criterion for selecting a �nal optimal solution from
the optimum points obtained by LINMAP, TOPSIS,
and Shannon's entropy decision-making methods is
`Deviation Index' (DI). The deviation index of opti-
mal outcome with respect to the ideal and non-ideal
solutions can be given as follows:

DIi1 =
q

(F i1 � F ideal
1 )2 + (F i2 � F ideal

2 )2; (13)

DIi2 =
q

(F i1�F non�ideal
1 )

2
+(F i2�F non�ideal

2 )
2
; (14)

DIi =
DIi1

DIi1 +DIi2
i = 1; 2; 3; (15)

where DIi represents the deviation index of optimal
point for the ith decision-making approach (i = 1; 2,
and 3 denote the LINMAP, TOPSIS, and Shannon's
entropy decision-making methods, respectively). The
�nal optimal solution from the Pareto-set and the more
appropriate decision-making technique is recognized
with the lowest value of the deviation index [56];
therefore, i�nal = arg mini(DIi).

5. Numerical solution

The mathematical model of the batch culture con-
sisting of 10 Ordinary Di�erential Equations (ODEs)
(see Eqs. (1) and (2), as well as Table 1) and the
relevant initial conditions generated an initial value
problem. The initial conditions are C0

X = 0:03 gL�1,
C0
S = 50 gL�1, and y0 = 1; the concentration of other

components is equal to zero. The ODEs with the initial
conditions are simultaneously solved by the Runge-
Kutta method of the fourth order in the MATLAB
programming environment.

6. Results and discussion

In this section, dynamic behavior and e�ect of the
initial substrate concentration on the performance of
the batch bioreactor are investigated. The performance
of the bioreactor is analyzed in terms of solvent yield,
substrate conversion, and solvent productivity as fol-
lows:

Solvent yield =
Csolvent(t)

C0
S

; (16)

Substrate conversion =
C0
S � CS(t)
C0
S

; (17)

Solvent productivity =
Csolvent(t)

Fermentation time
: (18)

6.1. Model validation
In Figure 2, the mathematical model is validated
against the experimental data reported by Votruba et
al. [2]. This validation is carried out for the solvents,
sugar, and biomass concentrations. It is observed in
Figure 2 that the batch model agrees well with the
experimental data.

6.2. E�ect of the initial concentration of
substrate

Figure 3(a) and (b) show the e�ect of the initial con-
centrations of substrate 25, 50, 100, and 150 gL�1 on
the butanol and acetone yield, respectively, at various
operating times. At a constant initial concentration of
substrate, the solvent yield increases until the reaction
rate approaches zero. According to Figure 3(a), in-
creasing the initial concentration of substrate from 25
to 150 gL�1 leads to an increase in the butanol yield
from 0.16 to 0.31 (nearly two folds) in the stationary
non-equilibrium state. The increasing rate of butanol
yield increases rapidly with an initial concentration of
substrate. As seen in Figure 3(b), the acetone yield
in the stationary non-equilibrium state increases to
reach a certain value and, then, begins to decrease as a
result of increasing the initial concentration of glucose
from 25 to 150 gL�1. This could be due to butanol
inhibition/toxicity and, also, the inhibitory e�ect of
the substrate. Behavior similar to the trend of acetone
yield occurs for the ethanol yield at di�erent initial
concentrations of substrate. Therefore, C0

S has a large

Figure 2. Comparison between simulation results (solid
lines) and experimental data (marker) reported by
Votruba et al. [2] for C0

X = 0.03 gL�1, C0
S = 50 g L�1.
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Figure 3. E�ect of the initial concentration of substrate
on the (a) butanol yield and (b) acetone yield at various
operating times.

e�ect on the solvent yield and must stay on the list of
optimization parameters.

Figure 4 represents the time variations of sub-
strate conversion at the initial substrate concentra-
tions of substrate 25, 50, 100, and 150 gL�1. At a
given initial concentration of glucose, the substrate
conversion increases during the operating time and,
then, reaches the stationary non-equilibrium state.
Increasing the initial concentration of substrate shifts
the S-shaped conversion pro�le to the left. This trend
also occurs for the pro�le of solvent yield (see Figure 3).
The system approaches the stationary non-equilibrium
state after 40, 25, 18, and 15 h at C0

S = 25, 50, 100,
and 150 gL�1, respectively. Therefore, increasing the
initial substrate concentration leads to a decrease in the
time to the stationary non-equilibrium state. Finally,
in the stationary non-equilibrium state, the substrate
conversion reaches 1 for all initial concentrations of
substrate.

The e�ect of the initial concentration of substrate

Figure 4. E�ect of the initial concentration of substrate
on the substrate conversion at the various operating times.

on the butanol and acetone productivity is illustrated
in Figure 5(a) and (b), respectively. According to these
�gures, at a given initial concentration of substrate,
the solvent productivity increases during the initial
period of the operating time and a peak spot develops
and, then, decreases monotonically. The butanol and
acetone (also ethanol) productivity increases with the
initial concentration of substrate from 25 to 150 gL�1.
Increasing the initial concentration of substrate causes
the migration of the peak spot to the left in addition
to causing an increase in the solvent productivity
at this peak spot. At C0

S = 100 gL�1, this peak
spot occurs at the operating times of 13.31, 15.75,
and 15.96 h for the butanol, acetone, and ethanol,
respectively. Therefore, the operating time plays an
important role in the solvent productivity. As the peak
spots arise at di�erent operating times for each solvent,
a proper objective function (like f2) must be de�ned to
determine the optimal �nal operating time.

6.3. Bi-objective optimization results
With due attention to the subjects of Section 3.5.1
and the parametric sensitivity analysis performed in
Section 6.2, the bi-objective optimization approach
is used to �nd the optimal initial concentration of
substrate and the �nal operating time to maximize
simultaneously f1 and f2, subject to di�erential mass
balance equations as the equality constraints. In order
to optimize the ABE fermentation process, the MODE
code is integrated with a set of ordinary di�erential
equations (Eqs. (1) and (2)).

The objective function f1 versus f2 is plotted,
as indicated in Figure 6. The curve in this �gure is
introduced as a Pareto set, and each point in the Pareto
set corresponds to an optimal solution and certain
values of decision variables. It is obvious that the
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Figure 5. E�ect of the initial concentration of substrate
on the (a) butanol productivity and (b) acetone
productivity at the various operating times.

Figure 6. Pareto-optimal front in objective space.

suggested algorithm is able to generate a set of optimal
solutions, not a unique solution. The obtained Pareto-
optimal front is well distributed, which means that
MODE performs well and is successful for this problem.
Twelve non-dominated optimum points are obtained by
the optimization algorithm. These points are equally
good and have optimum values of both solvent yield
and productivity. Shifting from one point to another
leads to the enhancement of one objective function at
the expense of the other. Three points A, B, and C
are considered in this set. For instance, when shifting
from point A to C, the objective function f1 increases
and f2 decreases. The comparison of the experimental
data and the optimum points in Figure 6 shows that the
experimental data lie below the Pareto-optimal front,
meaning that these data were not taken in optimal con-
ditions. Votruba et al. [2] reported these experimental
data at C0

S = 50 gL�1 and �nal fermentation time of 27
and 32 h. Table 4 represents the optimal values of the
initial concentration of substrate and �nal operating
time, as well as the objective functions (f1 and f2), for
three chosen points, A, B, and C (shown in Figure 6).
Point A shows the optimal operating conditions for the
maximum solvent productivity, and point C illustrates
the optimum operating conditions corresponding to the
maximum solvent yield.

Table 4 veri�es the fact that the two decision
variables are in contrast in nature with respect to
the objective functions. In order to determine the
contrasting parameters and obtain a further under-
standing of the problem, the optimal decision variables
are drawn against both objective functions, as shown
in Figure 7(a)-(d). Figure 7(b) and (c) illustrate that
C0
S and tf have a strong opposing e�ect on f1 and f2,

respectively. An increase in the initial concentration
of substrate and the �nal operating time leads to a
decrease in the solvent yield and solvent productivity,
respectively. Figure 7(a) and (c) reveal that when
the �nal operating time increases from lower bound to
upper bound, f1 increases from 0.42 to 0.64; however,
f2 decreases from 6.10 to 1.23. The optimum value of
the initial concentration of glucose is found to vary from
54.72 to 145.36 gL�1, whereas the optimal �nal oper-
ating time is found to change between 10 and 28.56 h.

Therefore, it should be taken into consideration
that even the higher �nal operating time is favored for
the solvent yield, which in turn decreases the solvent
productivity. An opposing trend is observed for C0

S .
Increasing the initial concentration of substrate will
lead to higher solvent productivity and, yet, lower
solvent yield.

The Pareto-optimal front supplies a vast-ranging
optimum set of operating conditions, where all points
have the potential to give a �nal solution. The impor-
tance of the objective functions, design conditions, and
demands of the user are the criteria for the selection
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Figure 7. Values of decision variables corresponding to the points on a Pareto set in Figure 6 versus objective functions.

Table 4. Operating conditions, objective function, and deviation index corresponding to LINMAP, TOPSIS, and
Shannon's solutions and points A, B, and C in Figure 6.

Optimization Decision-making
methods

Decision variables Objective functions Deviation
indexC0

S (gL�1) tf (h) f1 f2 (gL�1h�1)

Bi-objective Point A 145.36 10 0.420 6.109 0.245
Point B 142.53 15.15 0.557 5.247 0.204
Point C 54.72 28.56 0.644 1.234 0.754
LINMAP 142.53 15.15 0.557 5.247 0.204
TOPSIS 139.56 11.56 0.489 5.909 0.191
Shannon's entropy 145.36 10 0.420 6.109 0.245
Ideal solution { { 0.644 6.109 0
Non-ideal solution { { 0.420 1.234 1

Single-objective based on maximum solvents yield 52.36 45.53 0.644 0.741 0.763
Single-objective based on maximum solvents productivity 150 11.16 0.451 6.579 0.198

of a proper solution from Pareto-optimal front. How-
ever, a suitable decision-making process is required for
selecting the best solution from the Pareto set. In this
study, the �nal optimal point has been chosen using
three decision-making methods of TOPSIS, LINMAP,
and Shannon's entropy. The �nal optimum solution
re
ected by TOPSIS, LINMAP, and Shannon's entropy
decision-making approaches and the ideal and non-
ideal solutions are represented in Figure 6. The
optimal values of the two objective functions, the

initial concentration of substrate, �nal operating time,
and deviation index obtained through these decision-
making approaches are listed in Table 4. The lowest
value of deviation index describes the closeness of
each point to the ideal solution and its distance from
the non-ideal solution. According to the values of
the deviation index, the optimum point obtained by
TOPSIS with DI = 0:191 is more suitable than that
found by LINMAP and Shannon's entropy approach
with DI = 0:204 and 0.245, respectively. Therefore,
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a combination of the bi-objective optimization results
and the decision-making methods shows that the sub-
strate initial concentration of 139.56 gL�1 and the �nal
operating time of 11.56 h are the best feasible points
for the ABE fermentation process. At this point, the
solvent yields including YA = 0:073, YB = 0:283, YE =
0:010 and the solvent productivities including PA =
0:881, PB = 3:415, PE = 0:122 g L�1h�1 are achieved.

The last two rows of Table 4 indicate the results
of single-objective optimization based on maximum
solvent yield and maximum solvent productivity, sep-
arately. Lower deviation indexes for the bi-objective
optimization in comparison with the corresponding
values for single-objective conclude that the results of
bi-objective optimization are more favorable.

6.4. Economy-based optimization results
The economy-based optimization of the ABE fermen-
tation process is carried out using the DE algorithm.
From a pro�t function point of view, results show that
the initial concentration of 150 gL�1 and the �nal oper-
ating time of 11.52 h are the most economical operating
points, in which the solvent yields are YA = 0:073,
YB = 0:295, YE = 0:010 and solvent productivities are
PA = 0:957, PB = 3:842, PE = 0:135 gL�1 h�1. At
this point, the pro�t value is US$2.62 L�1 year�1.

6.5. Comparison between TOPSIS solution
and economy-based optimization

A comparison between the results of economy-based
optimization and TOPSIS solution as an optimal point
of bi-objective optimization is shown in Table 5. Al-
though the amounts of solvent yield are almost the
same in both optimizations, the amounts of solvent
productivity in the economy-based optimization are
more than those in TOPSIS solution. The �nal fer-
mentation time in TOPSIS solution is nearly identical
to that in economy-based optimization; however, the
substrate consumption in TOPSIS solution is 7% lower
than that in the economy-based optimization. In the

Table 5. Comparison between TOPSIS solution and the
economy-based optimization.

TOPSIS
solution

Economy-based
optimization

C0
S (gL�1) 139.56 150

tf (h) 11.56 11.52
YA 0.073 0.073
YB 0.283 0.295
YE 0.010 0.010
PA (gL�1h�1) 0.881 0.957
PB (gL�1h�1) 3.415 3.842
PE (gL�1h�1) 0.122 0.135
Pro�t (US$L�1 year�1) 2.319 2.62

last row of this table, the pro�t value of economy-
based solution is 13% higher than that of TOPSIS
solution. Hence, the optimal point obtained through
the economy-based optimization is a more economical
operating point compared with the TOPSIS solution.

7. Conclusion

This study investigated the bi-objective optimization
and economy-based optimization of a batch ABE bio-
logical reactor by a dynamic mathematical model. The
model was validated against the experimental data, as
reported by Votruba et al. [2], and good agreement
was obtained. The e�ect of the initial concentration of
substrate on substrate conversion, solvent yield, and
solvent productivity was investigated. The MODE
algorithm, as an e�ective and robust optimization
method, was used to specify the optimal operating
conditions, namely initial concentration of substrate
and �nal operating time of the process; in this re-
gard, two objective functions were de�ned in terms of
solvent yield and productivity. A Pareto optimal set
was achieved, and a �nal optimum point was chosen
through TOPSIS, LINMAP, and Shannon's entropy
decision-making methods. The following key results
are achieved:

� The butanol yield increased with the initial con-
centration of substrate; however, the acetone and
ethanol yield �rstly increased and, then, decreased;

� The maximum value of the solvent productivity
could be increased by increasing the initial concen-
tration of substrate; this maximum point occurred
in a shorter operating time period;

� Based on the economy-based optimization, the most
economical operating condition was found at an
initial concentration of 150 gL�1 and the �nal
operating time of 11.52 h;

� The best optimal point obtained by TOPSIS
decision-making approach according to the lowest
value of deviation index was achieved at an initial
substrate concentration of 139.56 gL�1 and the �nal
operating time of 11.56 h. However, the application
of multi-objective optimization can considerably aid
decision-maker in choosing any one of the optima
from the Pareto set corresponding to his/her interest
in order to maximize a speci�c objective.

Nomenclature

C Concentration, g L�1

DDj deviation degree of the jth objective
function

DI Deviation Index
F Objective function
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F Non-dimensionalized objective function
K Kinetic constant in the models
kI Inhibition constant
kS Saturation constant for substrate

(glucose)
kAA Saturation constant for acetic acid
kBA Saturation constant for butyric acid
N Cost, US$kg�1

P Productivity, g L�1h�1

R Rate of reaction, g L�1h�1

T Time, h
tc Cleaning time in each cycle (= 2 h)
tf Final operating time (h)
Wj Weight of jth objective function
Y Yield
y Marker of the physiological state of the

culture
Greek letters
� Number of bacterial culture

Superscripts
0 Initial conditions

Subscripts
A Acetone
AA Acetic Acid
B Butanol
BA Butyric Acid
CO2 Carbon dioxide
E Ethanol
H2 Hydrogen
S Substrate (glucose)
X Biomass
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