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Abstract. In the current study, an analytical solution based on a modi�ed couple
stress theory for a nonlinear model describing the couple 3D motion of a functionally
graded tapered micro-bridge is presented. The small scale e�ects and the nonlinearity
arising from the mid-plane stretching are taken into consideration. Governing equations
of motion are derived utilizing modi�ed couple stress theory and applying the Hamilton
principle. Dynamic and static analyses to determine the e�ects of lateral distributed
forces and mid-plane stretching are investigated. Towards this aim, analytical the
Homotopy-pade technique is employed to capture the nonlinear natural frequencies in
high amplitude vibrations of tapered micro-bridges with di�erent types of geometry and
material composition. The obtained results of frequencies propose that there is good
agreement between the present analytical results and the numerical ones, as opposed to
the well-known multiple-scale method. Furthermore, comparing the results in 2D and 3D
analyses shows that in 2D analysis, the sti�ness and natural frequency of the micro-beam
is underestimated and it is observed that increasing the tapered ratio has di�erent impacts
on natural frequencies for micro-beams with di�erent slender ratios.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Micro-beams are of major importance in the �elds of
micro/nano electro-mechanical systems such as those
in sensors and actuators [1]. Beams used in these
applications have thicknesses in the order of microns
and sub-microns. The size dependent behavior of these
structures has been empirically observed by several
researchers [2{5]. Incorporating the concept of the
length scale parameter, an experimentally measurable
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property accounting for dislocation and distortion of
constitutive crystals and the grain size of a speci�c
material [6] has led to many investigations on size
e�ect phenomena over the past few decades, and some
non-classical continuum theories have been developed.
Mindlin [7] introduced the higher-order gradient the-
ory, regarding the �rst and second derivatives of the
strain tensor, for elastic materials. Subsequently,
using Mindlin's formulation, the strain gradient theory
was proposed by Fleck and Hutchinson [8{10] ,which
considers only the �rst derivatives of the strain tensor.
Ansari [11] developed a model using the modi�ed strain
gradient theory to describe the linear and nonlinear
vibrational behavior of fractional viscoelastic Timo-
shenko micro/nano beams. In this paper, a predictor-
corrector technique is utilized to deal with the set
of nonlinear governing equations. Based on strain
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gradient elasticity theory, an analytical solution is
proposed for an Euler-Bernoulli FG nano beam by Li et
al. [12]. In this study, the device is lying on an elastic
foundation and the bending and buckling behavior are
investigated.

Another well-known theory which involves size ef-
fects, is the couple stress theory introduced by Mindlin
and Tiersten [13].

The modi�ed couple stress theory proposed by
Yang et al. [6] considers the equilibrium equation of
forces and couples, and moments of couples, applied to
a single material element. In this theory, two classical
and one additional material constant are introduced to
reect the microstructure-related size inuences.

Based on the modi�ed couple stress theory, the
dynamic and static response of homogeneous and Func-
tionally Graded Materials (FGMs), including linear
vibration, elastic bending, post buckling and non-
linear vibration, have been investigated by many re-
searchers [14{17]. FGMs are inhomogeneous com-
posites of two di�erent constituents, typically metal
and ceramic, with a desired continuous change in
compositional characteristics as a function of position
along speci�ed dimensions. Application of FGMs
has been widely extended in various industrial �elds,
especially in designing micro and nano systems such as
thin �lms in the form of shape memory alloys [18,19]
Atomic Force Microscopes (AFMs) [20], and mi-
cro/nano electro-mechanical systems [21{25].

In addition to FG functionality in micro beams,
non-prismatic beams, i.e. beams with a varying cross-
section (abruptly or gradually) along the length of the
beam, play an important role in di�erent �elds [26],
in which they can be used architecturally and aes-
thetically in aspects of engineering design to optimize
the strength and weight of the structure. One of the
e�ective applications of tapered micro beams is in the
micro energy harvester, in which tailoring the struc-
tural parameters of the cantilever beam could lead to
an increased harvester power [27] and can considerably
inuence the natural frequency of microstructures [28].
Baghani et al. [26] by considering the assumption of
the inextensibility of the neutral axis, studied large
amplitude free vibrations of tapered micro-bridges on
a nonlinear elastic foundation. Dynamic analysis of
a parabolic tapered Euler-Bernoulli cantilever beam
under a travelling mass is accomplished by Zhao et
al. [29].

In most investigations performed on the behavior
of micro and sub micro beams, the problem is consid-
ered a 2D case, so there is a geometric imperfection,
since the beam is under 3D deformation and the-
mid plane stretching may lead to a coupling between
the displacements of lateral directions. Due to the
importance of micro-beams and micro-systems, the
couple 3D deformations of these structures have been

studied by many researchers. Considering mid plane
stretching and geometric non-linearity, Mojahedi et
al. [30,31], and Mojahedi and Rahaeifard [32] studied
3 dimensional motion for the micro/nano beam and
reported the static, dynamic and instability behavior
of an electro-static actuated bridge and cantilever
micro/nano gyroscope and micro bridges.

The Euler Bernoulli beam theory is the most well-
known for calculating beam deformation with a slender
ratio, commonly, L=h > 10. According to this theory,
due to ignoring shear strains, a plane after deformation
remains a plane and still perpendicular to the central
line of the beam. Employing the modi�ed couple stress
theory in the Euler-Bernoulli beam model, the results
show larger bending sti�ness than in classical ones [33].
Euler-Bernoulli beam theory can predict the lateral and
bending deformation. However, in this paper, a strain
tensor is built to include the deformation in both lateral
and in axial directions.

The aim of is this paper, �rstly, is to present
a mechanical model to illustrate the 3D motion of
an FGM double tapered micro-bridge. Subsequently,
the impacts of nonlinearity caused by considering the
third dimension in the calculations, and e�ects of
material composition, tapered ratio and geometrical
properties on the static and dynamic responses are
investigated. An analytical Homotopy-pade method is
implemented to estimate the natural frequencies of the
micro-bridges. As will be discussed in the paper, the
Homotopy method is more general than multiple scale
methods employed in many nonlinear problems [34].
In the Multiple Time Scale (MTS) technique, using
a small physical parameter, the nonlinear problems
are transferred into a sequence of linear perturbed
problems. This small parameter is not needed in
Homotopy Analysis Method (HAM) and gaining higher
order approximations are easier, leading to smaller
computational cost. In addition to low simulation cost,
here, we demonstrate that HAM is more appropriate
for strong nonlinearities and high amplitudes. For this
purpose, a comparison study is undertaken to capture
the accuracy of HAM as opposed to MTS, as a classic
perturbation method. The consistency of calculated
analytical results with numerical ones is also presented.

2. Problem formulation

Figure 1 shows two views of a FG tapered micro-bridge
under lateral loads. The deformation and distributed
load in the z direction are depicted by ŵ

�
x̂; t̂
�
, f̂z,

and in a y direction by v̂(x̂; t̂) and f̂y, respectively.
The strain energy density, employing the couple stress
theory, is written as:

~� =
1
2

(�ij"ij + �ijmij) ; (1)
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Figure 1. A schematic view of micro-bridge under distributed forces in lateral directions.

where �ij and "ij are the components of stress and
strain tensor, respectively, mij is the deviatoric part
of the couple stress tensor and �ij is the symmetric
curvature tensor.

Assuming exible motions in both directions,
the relation between transverse displacements and the
rotation vector components becomes:

~� = �@ŵ
@x̂

ê2 � @v̂
@x̂
ê3: (2)

The non-zero components of the deviatoric part of
the couple stress tensor and the symmetric curvature
tensor are recorded as:(
�ij = 1

2 (�i;j + �j;i)
mij = 2l2��ij

!
(
mxy = myx = ��l2 @2ŵ

@x̂2

mxz = mzx = ��l2 @2v̂
@x̂2 (3)

In which l and � symbolize the material length scale
parameter and the shear modulus, respectively. The
displacement �eld according to the Euler-Bernoulli
beam theory for a micro-beam subjected to a dis-
tributed load in both lateral directions can be written
as [35]:

u1 = û�ẑ @ŵ
@x̂
�ŷ @v̂

@x̂
; u2 = v̂ (x̂) ; u3 = ŵ (x̂) ; (4)

where û is the axial deformation. Utilizing the von-
Karman relation, the nonzero strain (i.e. the axial
strain) is derived [32]:

"x=
@û
@x̂
�ẑ @2ŵ

@x̂2 �ŷ @
2v̂
@x̂2 +

1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2

: (5)

Thus, the axial stress in the beam would be:

�x = E
�
@û
@x̂
� ẑ @2ŵ

@x̂2 � ŷ @
2v̂
@x̂2 +

1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2�
; (6)

in which E is the young modulus of elasticity.
The potential and kinetic energy of the beam

according to Eq. (1) is written, respectively, as:

V =
Z L

0

"x
A

~�dA

#
dx̂ =

1
2

Z L

0

�x
A

(�x"x + �xymxy

+ �yxmyx + �xzmxz + �zxmzx)dA
�
dx̂; (7)

T =
1
2

Z L

0
�(x̂)A(x̂)

"�
@û
@t̂

�2

+
�
@v̂
@t̂

�2

+
�
@ŵ
@t̂

�2
#
dx̂;
(8)

where � (x̂), A (x̂), and L are the mass per unit volume,
cross section and the length of the beam, respectively.

Considering the work of external forces on the
micro bridge as wext =

R L
0

h
f̂y v̂ + f̂zŵ

i
dx̂, the La-

grangian of the motion, then, is given as:

L =T � V +Wext =
1
2

Z L

0
�(x̂)A(x̂)"�

@û
@t̂

�2

+
�
@v̂
@t̂

�2

+
�
@ŵ
@t̂

�2
#
dx̂�

Z
A
E(x̂)

264�@û@x̂ � ẑ @2ŵ
@x̂2 � y @2v̂

@x̂2 + 1
2

� @v̂
@x̂

�2 + 1
2

�@ŵ
@x̂

�2�2

��(x̂)l(x̂)2
�
@2v̂
@x̂2

�2 � �(x̂)l(x̂)2
�
@2ŵ
@x̂2

�2

375
dx̂+

Z L

0

h
f̂y v̂ + f̂zŵ

i
dx̂:

(9)

Applying the Hamilton principle, one has :

�
Z t̂

0
Ldt̂ = 0: (10)

Expanding the integral in Eq. (10), the governing
equations of motion for the doubly clamped micro-
beam are as follows:

@
@x̂

 
E (x̂)A(x̂)

 
@û
@x̂

+
1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2
!!

= �(x̂)A(x̂)
@2û
@t̂2

; (11)
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�(x̂)A(x̂)
@2v̂
@t̂2

+
@2

@x̂2

��
�(x̂)A(x̂)l(x̂)2

+E(x̂)Iz(x̂)
�
@2v̂
@x̂2

�
� @
@x̂

�
E(x̂)A(x̂)

�
@û
@x̂

+
1
2�

@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2�@v̂
@x̂

�
= f̂y; (12)

� (x̂)A (x̂)
@2ŵ
@t̂2

+
@2

@x̂2

��
� (x̂)A (x̂) l (x̂)2

+E (x̂) Iy (x̂)
�
@2ŵ
@x̂2

�
� @
@x̂

�
E(x̂)A(x̂)

�
@û
@x̂

+
1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2�@ŵ
@x̂

�
= f̂z: (13)

In Eq. (14), the appropriate boundary conditions are
given for the doubly clamped microbridge:

û
�
0; t̂
�

= û
�
L̂; t̂
�

= 0; v̂
�
0; t̂
�

= v̂
�
L̂; t̂
�

= 0;

@v̂
@x̂
�
0; t̂
�

=
@v̂
@x̂

�
L̂; t̂
�

= 0; ŵ
�
0; t̂
�

= 0;

ŵ
�
L; t̂
�

=0;
@ŵ
@x̂
�
0; t̂
�

=0;
@ŵ
@x̂
�
L; t̂
�

=0: (14)

In the case of no axial forces, longitudinal inertia is
negligible [31]. Thus, by solving Eq. (11) and applying
the corresponding boundary conditions, one arrives at:

For doubly clamped BCs:

ubridge(x̂; t̂) =�
Z x̂

0

"
1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2
#
dx̂

+

R x̂
0

1
E(x̂)A(x̂)dx̂R L

0
1

E(x̂)A(x̂)dx̂Z L

0

"
1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2
#
dx̂: (15)

Substituting ubridge(x̂; t̂) from Eq. (15) into Eqs. (12)

and (13), the governing equations of motion for a FG
tapered micro-beam take the following forms:

@2

@x̂2

��
�(x̂)A(x̂)l(x̂)2 + E(x̂)Iz(x̂)

�
@2v̂
@x̂2

�
+ �(x̂)A(x̂)

@2v̂
@t̂2
� 1R L

0
1

E(x̂)A(x̂)dx̂"Z L

0

1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2

dx̂

#
@2v̂
@x̂2 = f̂y;

(16)

@2

@x̂2

��
�(x̂)A(x̂)l(x̂)2 + E(x̂)Iy(x̂)

�
@2ŵ
@x̂2

�
+ �(x̂)A(x̂)

@2ŵ
@t̂2
� 1R L

0
1

E(x̂)A(x̂)dx̂"Z L

0

1
2

�
@v̂
@x̂

�2

+
1
2

�
@ŵ
@x̂

�2

dx̂

#
@2ŵ
@x̂2 = f̂z;

(17)

where A(�) = A0�2, Iy(�) = I0y�4, Iz(�) = I0z�4. As
shown in Figure 2, � = 1 + ("0 � 1)x, "0 is the tapered
ratio, and I0y and I0z are the moments of inertia about
the y and z axes, respectively, at � = 1. A0 is also the
cross section at � = 1.

Using power-law functions to ensure a smooth
distribution of stresses along the longitude direction
and all the interfaces, the FG material properties are
expected to vary along the axis of the beam as [36]:

E(x̂) = E0 + (E1 � E0)(x̂=L)n;

�(x̂) = �0 + (�1 � �0)(x̂=L)n;

v(x̂) = v0 + (v1 � v0)(x̂=L)n;

l(x̂) = l0 + (l1 � l0)(x̂=L)n;

�(x̂) =
E0 + (E1 � E0)(x̂=Ln)

2(1 + v0 + (v1 � v0)x̂=ln)
; (18)

where n is the power index parameter, v0 and v1 are
the Poisson ratios, indices `0' and `1' represent the

Figure 2. Initial con�guration of the tapered micro-bridge.



Sh. Haddad et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2889{2901 2893

material type at x = 0 and x = 1 of the micro-beam,
respectively.

The following dimensionless parameters are uti-
lized:

t=
t̂
�
; �2 =

�0A0L4

E0Ioy
; x=

x̂
L
; w=

ŵ
L
; v=

v̂
L
;

fy =
f̂yL3

E0Ioy
; fz =

f̂zL3

E0Ioy
; b =

b̂
L
; h =

ĥ
L
; (19)

in which ĥ and b̂ are the thickness and width of the
cross section of the micro-bridge, respectively, as shown
in Figure 2. The dimensionless equations of motion are
derived as:

�y(x)!2 @2v
@t2

+ (y2(x)� y1)
@2v
@x2 + y3(x)

@3v
@x3

+ y4(x)
@4v
@x4 = fy; (20)

�z(x)
@2W
@t2

+ (z2(x)� z1)
@2W
@x2

+ z3(x)
@3W
@x3 + z4(x)

@4W
@x4 = fz; (21)

where:

y1
=

L2

E0I0y

R 1
0

1
2

� @v
@x

�2 + 1
2

�@w
@x

�2 dxR 1
0

1
E(x)A(x)dx

;

y2(x) =
@2(�(x)A(x)l2(x) + E(x)Iz(x))

E0I0y@x2 ;

y3(x) = 2
@

E0I0y@x
�
�(x)A(x)l2(x) + E(x)Iz(x)

�
;

y4(x) =
�(x)A(x)l2(x)

E0I0y
+
E(x)Iz(x)
E0I0y

;

�y(x) =
�(x)A(x)
�0A0

: (22)

�z(x) = �y(x);

z1 = y1 ;

z4(x) =
�(x)A(x)l(x)2

E0I0y
+
E(x)Iy(x)
E0I0y

;

z2(x) =
@2(�(x)A(x)l2(x) + E(x)Iy(x))

E0I0y@x2 ;

z3(x) = 2
@(�(x)A(x)l(x)2 + E(x)Iy(x))

E0I0y@x
: (23)

In this paper, a single pre-assumed mode approach is
considered to discretize Eqs. (20) and (21). Assume
the deections v and w are as follows:

v (x) = qy (t)�y (x) ;

w (x) = qz (t)�z (x) ; (24)

where �y (x) and �z (x) are the normalized, self-similar
(i.e. independent of the motion amplitude) assumed
mode shapes of the beam in y and z directions,
respectively. Accordingly, qy(t) and qz(t) are the gen-
eralized coordinates of the assumed deection modes
�y (x) and �z (x), respectively. Applying the Galerkin
decomposition method, the weak forms of Eqs. (20) and
(21) are constructed in the forms of:

�qy + �yqy + �yqy(q2
y + �q2

z) = Fy; (25)

�qz + �zqz + �zqz(q2
z=�+ q2

y) = Fz; (26)

where:

�y =
Z 1

0

�A
�0A0

�2
ydx; Fy =

1
�y

Z 1

0
fy�ydx;

�y=
1
�y

Z 1

0

1
E0I0y

@2

@x2

��
�Al2+EIz

� @2�y
@x2

�
'ydx:

(27)

�z =
Z 1

0

�A
�0A0

�2
zdx; Fz =

1
�z

Z 1

0
fz�zdx;

�z=
1
�z

Z 1

0

1
E0I0y

@2

@x2

��
�Al2+EIz

� @2�z
@x̂2

�
�zdx;

(28)

�y = � EA
2�yE0I0y

Z 1

0
L2 @2�y

@x2 �ydx:
�
@�y
@x

�2
�����
x=1

;

� =

�
@�z
@x

�2�
@�y
@x

�2

�������
x=1

;

�z=� EA
2�zE0I0y

Z 1

0
L2 @2�z

@x2 �zdx:
�
@�z
@x

�2
�����
x=1 (29)

`.' represents the derivative with respect to t. In this
work �y(x) and �z(x) for a double tapered micro-bridge
are de�ned in the following form [34,35]:

�z or y(�) =��1[C1J2(Z) + C2Y2(Z) + C3I2(Z)

+ C4K2(Z)]; (30)

where Z = 2��1=2, and the values of � for di�erent
tapered ratios are given in Table 1. J and Y are Bessel
functions of the �rst and second kind, respectively, and
I and K are modi�ed Bessel functions of the �rst and
second kind, respectively. Arbitrary constants C1�C4
are calculated through applying the following boundary
conditions in ŷ and ẑ directions, respectively:
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Table 1. Values of parameter � for di�erent tapered ratios.

"0 0.2 0.4 0.6 0.8

� Doubly clamped tapered micro-beam 4.398 6.495 10.524 22.415

�z or y("0) = 0;
�z or y("0)

@�
= 0;

�z or y(1) = 0;
@�z or y(1)

@�
= 0: (31)

It should be noted that by assuming identical mode
shapes for both lateral directions, parameter � becomes
equal to unity. Eqs. (25) and (26) represent the weak
form of the equations, governing the motion of a micro-
beam, which are modeled based on the proposed as-
sumptions and the modi�ed couple stress theory. In the
following sections, analytical and numerical solutions,
reecting the static and dynamic performances of the
FG tapered micro-beam, will be investigated.

3. Static deection analysis

In this section, by neglecting the inertia terms from
Eqs. (25) and (26), the coupled nonlinear static de-
ections of the FG tapered micro-beam under lateral
distributed force are investigated. The simpli�ed
equations for the static analysis are expressed as:

�yqy + �yqv
�
q2
y + �q2

z
�

= Fy;

�zqz + �zqz
�
q2
z=�+ q2

y
�

= Fz: (32)

As can be seen, there are two algebraic coupled nonlin-
ear equations, governing static motions in the transvers
directions. A numeric iterative method is utilized to
solve simultaneously the above mentioned equations.
This iterative procedure is continued until the desired
convergence is met.

4. Free vibration analysis

In the next section, the approximate analytical solution
according to the HAM is employed to arrive at an
analytical solution for the non-linear Eqs. (25) and
(26), reecting the dynamic behavior of the represented
model. HAM is an approximate analytic technique
for solving nonlinear di�erential equations. In the
following section, a brief description of this method is
given.

4.1. Homotopy Analysis Method (HAM)
To demonstrate the main idea of HAM, consider the
general non-linear problem as:

N [q (�)] = 0; (33)

in which N represents a general non-linear di�erential
operator and q is considered as an unknown function,

describing the exact solution to the non-linear equa-
tion. According to Liao, (2004) [37], the Homotopy
function is constructed as:
N [ (�; r); u0(�);H(�); ~r]=(1�r)fL[ (�; r)�u0(�)]

�r~H(�)N [ (�; r)]g; (34)

where  (�; r) is the primary asymptotic solution, ~ an
auxiliary parameter, H (�) 6= 0 an auxiliary function, r
an embedding parameter, r� [0; 1], L an auxiliary linear
operator, and q0 is an initial guess of the exact solution
q. The convergence condition highly depends on ones
choices of initial guess, auxiliary linear operator, the
nonzero auxiliary parameter and the auxiliary function.

The zero order deformation equation (Homotopy
equation) is de�ned when the Homotopy function is set
to zero, which leads to a family of equations, a general
form of the original nonlinear equation.

(1�r) fL[ (�; r)�q0 (�)]g=r~H (�)N [ (�; r)]: (35)

Now, setting r = 0, and r = 1, the zero-order equation
reduces to Eqs. (36) and (37), respectively:
L[ (�; 0)� q0 (�)] = 0 !  (�; 0) = q0 (�) ; (36)

N [ (�; 1)] = 0 !  (�; 1) = q (�) : (37)

It is obvious that by varying the embedding parameter
from 0 to 1, the primary solution approaches from
the initial guess to the exact solution, q. Thus, the
following form can be considered for the mth order
derivative of q:

qm (�) =
1X
m=1

1
m!

@m (�; r)
@rm

����
r=0

: (38)

Employing Taylor's series, the expanded forms of
� (�; r) and ! (r) could be written as:

 (�; r) =  (�; 0) +
1X
m=1

1
m!

@m (�; r)
@rm

����
r=0

;

rm =  (�; 0) +
1X
m=1

qm (�) rm; (39)

!(r) = !0 +
1X
m=1

1
m!

@m!(r)
@rm

����
r=0

;

rm = !0 +
1X
m=1

!mrm: (40)

With qm (0) = 0 and _qm (0) = 0. In light of Eqs. (37)
and (39), one has:
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q (�) = q0 (�) +
1X
m=1

qm (�): (41)

Now, in order to estimate qm (�), one must identify the
higher order deformation equation. To do so, Eq. (35)
is di�erentiated with respect to r and the setting r = 0.
By dividing the whole term by m!, the higher order
deformation equation for q is structured in the form:

L[qm(�)] = YmL[qm�1 (�)] + ~H (�)

Rm[q1; :::; qm�1; !0; :::; !m�1];

Ym =

(
0 m � 1
1 m > 1

(42)

where:
Rm[q1; :::; qm�1; !0; :::; !m�1]

=
1

(m� 1)!
@m�1N [ (�; r) ; ! (r)]

@rm�1

����
r=0

: (43)

Since the right hand side of Eq. (41) is only dependent
on fq1 (�) ; q2 (�) ; :::; qm�1 (�)g, the mth-order approx-
imation of q(�) can be represented by:

q (�) �
mX
i=0

qi (�): (44)

The corresponding [m; s] pade-approximate about the
embedding parameter r, for the series of Eq. (39)
was proposed by Liao (2004) [37] as a technique to
accelerate the convergence of a solution series. Thus,
the series of Eq. (39) can be expressed as:

 (�; r) =  (�; 0) +
1X
m=1

qm (�) rm

=

mP
k=0

Am;k (�) rk

nP
k=0

Bs;k (�) rk
; (45)

in which, Am;k and Bs;k are computed by the following
set of approximations:

fq0 (�) ; q1 (�) ; q2 (�) ; :::; qm+s (�)g: (46)

Now, if r = 1, the [m; s] Homotopy pade approximant
is constructed as:

� (�; 1) =

mP
k=0

Am;k (�)

nP
k=0

Bs;k (�)
: (47)

4.2. Application of homotopy Pad�e method to
the problem

According to Eqs. (25) and (26), eliminating the
external forces, one has:

Ny = !2
y
@2qy
@�2
y

+ �yqy + �yqy
�
q2
y + �q2

z
�
; (48)

Nz = !2
z
@2qz
@�2
z

+ �zqz + �zqz
�
q2
z=�+ q2

y
�
; (49)

Ly[q (�y; r)] = !2
y0

�
@2qy (�y; r)

@�2
y

+ qy (�y; r)
�
; (50)

Lz[q (�z; r)] = !2
z0

�
@2qz (�z; r)

@�2
z

+ qz (�z; r)
�
; (51)

in which �y = !yt, and �z = !zt. By considering:

uy;0 = ay: cos (�y) ;

uz;0 = az: cos (�z) ; (52)

where ay and az are vibration amplitude in y and z
directions, respectively, According to Eq. (43), with
H(�) = 1; ~ = �1 and for m = 1, one may write:

Ry;m = Ry;1 =
�
� !2

y;(m�1) ay + �yay +
3
4
�ya3

y

+
1
2
��yaya2

z

�
cos (�y) +

1
4
�ya3

y cos (3�y)

+
1
4
�y�aya2

z cos (�y � 2�z)

+
1
4
�yka2

zay cos (�y + 2�z) ; (53)

Rz;m = Rz;1 =�
�!2

z;(m�1) az + �zaz +
3
4
�za3

z=�+
1
2
az�za2

y

�
cos (�z) +

1
4
�za3

z=� cos (3�z)

+
1
4
�zaza2

y cos (2�y � �z)

+
1
4
�za2

yaz cos (2�y + �z) : (54)

To avoid secular terms in the �nal solution, the sum
of the coe�cients of cos (�) are taken as equal to zero.
In the case of � = 1, it is a close approximation to
consider �y = �z = � , so one has:

!y;(m�1) = !y;0

=
r
�y +

3
4
�ya2

y +
3
4
�ya2

z;

!z;(m�1) = !z;0 =
r
�z +

3
4
�za2

y +
3
4
�za2

z: (55)

Solving Eq. (42) for m = 1, qy;1 and qz;1:
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qy;m = qy;1 =��
�ya3

y+�ya2
zay
�

cos (3�)���ya3
y+�ya2

zay
�

cos (�)
�

24�ya2
y+24�ya2

z+32�y
;

(56)

qz;m = qz;1 =��
�za3

z+�za2
yaz
�

cos (3�)���za3
z+�za2

yaz
�

cos (�)
�

24�za2
z+24�za2

y+32�z
:
(57)

Subsequently, for m = 2 and calculating the ex-
pressions for Ry;2 and Rz;2, one arrives at results
for !y;2 and !z;2. This procedure is continued to a
higher order level for m = 5, by which an appro-
priate approximation consistent with numerical data
for the natural frequencies of the micro-bridge will
be achieved. According to [37] , the [1; 1] and [2; 2]
Homotopy-pade approximations for !v=w and qv=w are
found as:

!y=z;[1;1] =
!y=z;0

�
!y=z;1 � !y=z;2�+ !2

y=z;1

!y=z;1 � !y=z;2 ; (58)

Eq. (59) is shown in Box I.

qy=z;[1;1] =
qy=z;0

�
qy=z;1 � qy=z;2�+ q2

y=z;1

qy=z;1 � qy=z;2 : (60)

Eq. (61) is shown in Box II.

5. Numerical results

In this section, numerical and analytical results are
provided in order to investigate the e�ects of various
material and geometrical properties on the static and
dynamic responses of a doubly clamped FG tapered
micro-beam. The obtained results are compared with
the corresponding results calculated by the classical

beam theory to clarify the distinctions that have been
made in utilizing the length scale parameter. The
micro-beam is composed of aluminum (AL) and silicon-
carbide (SiC). The material properties of aluminum
are E1 = 70 GPa, v1 = 0:3, and �1 = 2702 kg/m3,
and those of silicon carbide are E0 = 427 GPa, v0 =
0:17 and �0 = 3100 kg/m3 [38]. Since each of the
participating constituent materials has a speci�c value
of length scale parameter, it is concluded that the
material length scale parameter of the micro-bridge
varies along the beam axis. In the present work, the
material length scale parameters of silicon-carbide are,
respectively, assumed as l1 = 10 �m and l0 = 5 �m.
According to Eq. (19), the e�ective material length
scale parameter can be estimated.

The dimensionless static deections in the ẑ direc-
tion for Nonlinear and linear micro-bridges are depicted
in Figure 3. It is clear that adding the distributed force
in the y direction reduces the nonlinear static deection
of the micro-bridge in the z direction. Further-

Figure 3. Static deection along the x axis. FG double
tapered micro-bridge, "0 = 0:04, L=h = 20, h=l = 3, h = b,
n = 2.

!y=z;[2;2] =

264 !y=z;0
�
!y=z;2

�
!y=z;3 + !y=z;4

�
+ !y=z;1

�
!y=z;3 � !y=z;4��

+!y=z;1!y=z;2
�
2!y=z;3 � !y=z;2�+ (!y=z;3 � !y=z;4)!2

y=z;1

�!3
y=z;2 � !y=z;0

�
!2
y=z;3 + !2

y=z;2

�
375

!y=z;4!y=z;2 � !2
y=z;3 � !y=z;4!y=z;1 + !y=z;2!y=z;3 + !y=z;1!y=z;3 � !2

y=z;2
: (59)

Box I

qy=z;[2;2] =

264 qy=z;0
�
qy=z;2

�
qy=z;3 + qy=z;4

�
+ qy=z;1

�
qy=z;3 � qy=z;4��

+qy=z;1qy=z;2
�
2qy=z;3 � qy=z;2�+

�
qy=z;3 � qy=z;4� q2

y=z;1

�q3
y=z;2 � qy=z;0

�
q2
y=z;3 + q2

y=z;2

�
375

qy=z;4qy=z;2 � q2
y=z;3 � !y=z;4!y=z;1 + qy=z;2qy=z;3 + qy=z;1qy=z;3 � q2

y=z;2
: (61)

Box II
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more, considering the nonlinearity will reduce static
deection. This is due to considering the mid-plane
stretching that causes a coupling between equations of
both lateral displacements.

Figure 4 plots the frequency ratio (the ratio of
non-classical FG tapered-micro-beam frequency to the
Non-FG one) for doubly clamped boundary conditions,
for di�erent values of power index parameter.

The key point understood from Figure 4 is that,
by increasing the power index parameter, the sensitiv-
ity to initial deection heightens. Table 2 expresses
the nonlinear natural frequencies in the z direction for
various tapered and slender ratios. Since the coupling
term is independent of the dimensionless parameter
h=b (the ratio of thickness, the edge that is parallel
to the z axis to the width, the edge that is parallel to
the y axis), changing the size of edge b (width), has

Figure 4. Natural frequency ratio versus initial deection
for di�erent power index parameters. FG micro-bridge,
!c = 15:119.

a negligible inuence on the natural frequency in the
z direction. Thus, the e�ect of this parameter is not
reported in these tables. On the other hand, in Table 3,
the corresponding values for natural frequencies in the
y direction and the e�ects of changing the size of edge b
(changing the h=b parameter) on vibrations along the y
axis, can be observed. Numerical results are provided
in order to evaluate the accuracy of the analytical HAM
method. It should be noted that for a square cross
section, the nonlinear natural frequencies are identical
for vibrations in both directions, regardless of the given
amplitude.

Figure 5 plots the natural frequency ratio (the
ratio of a non-classical FG tapered-micro-bridge fre-
quency to the classical one), versus the initial deection
for di�erent values of h=l. It is realized that considering

Figure 5. Natural frequency ratio versus initial deection
for di�erent ratios of h=l. FG micro-bridge, !cl = 13:199,
"0 = 0:04, L=h = 20, h=b = 1, n = 2 and !cl is the
classical natural frequency.

Table 2. Nonlinear natural frequency (!z �p�0A0L4=E0Ioy) for a FG micro-bridge and comparison between the present
research and numerical Fast Fourier Transform (FFT) results. Relative di�erences are concluded for di�erent values of L=h
and �0. Here we have n = 2, h=l = 3, and ay = az =0:03.

L=h = 10 L=h = 15 L=h = 20 L=h = 25

�0 HAM FFT HAM FFT HAM FFT HAM FFT

Relative error % Relative error % Relative error % Relative error %

0.2 16.139 16.297 17.266 17.396 18.720 18.868 20.427 20.647

0.971 0.749 0.783 1.068

0.4 16.897 16.886 17.856 17.945 19.111 19.262 20.604 20.919

0.064 0.496 0.786 1.507

0.6 18.348 18.358 19.250 19.323* 20.439 20.556 21.865 21.970

0.057 0.380 0.573 0.480

0.8 19.929 19.831 20.798 20.859* 23.340 23.561 23.344 23.422

0.493 0.294 0.942 0.336
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Table 3. Nonlinear natural frequency (!y �p�0A0L4=E0Ioz) for a FG micro-bridge and comparison between the present
research and numerical Fast Fourier Transform (FFT) results. Relative di�erences are concluded for di�erent values of
L=h, h=b, and �0. Here we have n = 2 and h=l = 3.

L=h = 10 L=h = 15 L=h = 20 L=h = 25

�0 h=b HAM FFT HAM FFT HAM FFT HAM FFT

Relative error % Relative error % Relative error % Relative error %

0.2

2 13.060 12.956 14.427 14.269 16.135 16.219 18.085 18.221

0.803 1.106 0.520 0.747

3 12.406 12.133 13.837 13.750 15.609 15.785 17.617 17.625

2.251 0.631 1.112 0.048

5 12.057 11.804 13.525 13.505 15.333 15.462 17.372 17.342

2.141 0.005 0.836 0.175

0.4

2 12.468 12.224 13.738 13.689 15.329 15.395 17.149 16.422

1.996 0.357 0.429 4.423

3 11.461 11.213 12.830 12.668 14.520 14.597 16.428 17.285

2.206 1.277 0.528 4.958

5 10.909 10.703 12.339 12.144 14.087 14.101 16.047 16.292

1.922 1.599 0.101 1.505

0.6

2 12.783 12.625 14.044 13.905 15.629 15.739 17.447 16.695

1.248 0.997 0.701 4.499

3 11.459 11.270 12.850 12.536 14.564 14.545 16.498 15.697

1.675 2.503 0.127 5.104

5 9.534 9.308 11.164 10.824 13.098 13.006 15.217 14.823

2.422 3.134 0.705 2.658

0.8

2 13.332 13.169 14.597 14.334 16.192 16.192 18.028 17.261

1.238 1.831 0.0 4.441

3 11.708 11.503 13.129 12.846 14.881 14.774 16.858 16.032

1.774 2.203 0.722 5.148

5 10.783 10.574 12.309 11.999 14.162 14.024 16.226 15.356

1.976 2.578 0.979 5.662

both lateral deections in calculations, the nonlinear
natural frequency has signi�cant e�ects on dynamic
responses.

Due to mid plane stretching, accounting for the
third dimension in the vibration problem increases
the corresponding natural frequencies. The values
obtained for 2D analysis also increase as the initial
deection grows. Furthermore, it is illustrated in
Figure 5 that the natural frequency computed by
the proposed model here is much higher than that
predicted by the classical beam theory. Hence, for
larger values of h=l (the ratio of thickness to the length

scale parameter of the beam), as shown in Figure 5,
the nonlinear responses approach the responses of the
classical beam theory.

Table 4 reects the natural frequency of a micro
bridge for a 3D analysis by the MTS method, which is
provided by Mojahedi and Rahaeifard (2016) [32] The
corresponding results found by the HAM, as well as
the numerical solutions, are reported to validate the
proposed HAM method in comparison with the MTS
3rd order method. As one may observe, for ay > 0:03,
deviation of the Harmonic Balance method results from
the numerical ones increases signi�cantly, while the
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Table 4. Comparison between the present research Homotopy Analysis Method (HAM) and Multiple Time Scale (MTS)
method and numerical Fast Fourier Transform (FFT) results in calculating the nonlinear natural frequency
(!z �p�AL4=EI) corresponding to a 3D analysis. Relative di�erences are concluded for each case. In this calculations we
have: "0 = 1, L=h = 30, n = 0, h=l = 3, � = 61 GPa, E = 150 GPa, � = 2300 kg/m3, v = 0:25, h = b.

ay = az 0.01 0.02 0.03 0.04 0.05 0.06

FFT 29.919 35.620 43.001 51.821 61.312 70.630

HAM 29.897 35.509 42.584 51.519 61.113 70.914

HAM relative error % 0.073% 0.312% 0.970% 0.583% 0.325% 0.402%

MTS 28.658 31.283 35.656 41.779 49.652 59.273

MTS Relative error% 4.215% 12.176% 17.081% 19.378% 19.017% 25.990%

corresponding error associated with HAM results are
negligible. As indicated in Section 1, the results in
Table 4 reveal the higher capability of HAM in dealing
with large parameter strong nonlinearities and higher
vibration amplitude than MTS.

6. Summary and conclusion

A nonlinear model for doubly clamped tapered FG
micro-beams based on modi�ed couple stress, consider-
ing the e�ects of two coupled bending deformations in
lateral directions and also mid-plane stretching, was
considered here. After constructing the Lagrangian
of the motion, applying the Hamilton principle, the
nonlinear 3D equations of motion were derived. In
this method, a uni-modal approach was employed to
discretize the governing equations and the resultant
uni-modal di�erential equations of motion were solved
for static and dynamic responses. The deections
of the single and doubly clamped tapered FG micro-
beams under di�erent loading conditions were numer-
ically calculated. The corresponding results showed
that considering the lateral loading in one direction
reduces the static deection in the other direction.
In the case of dynamic analysis, the nonlinear nat-
ural frequencies for various geometrical and material
compositional properties were calculated using the
analytical Homotopy-pade method. It can be observed
that by increasing the amplitude of the vibration,
the di�erence between linear and nonlinear natural
frequencies increases, and for higher values of h=l, both
values approach those found through the classical beam
theory. Furthermore, it was observed that increasing
the power index parameter resulted in higher natural
frequency values. The advantages of the Homotopy
method in terms of computational cost and accuracy
over a classic analytical method, the MTS method
(recently employed in the literature to investigate the
3D vibration of micro beams), in problems with strong
nonlinearity and high amplitudes are discussed by a
comparison study, which showed the accuracy of the
Homotopy Analysis Method (HAM) technique. The

corresponding non-linear natural frequencies calculated
by FFT as a numerical method were reported to certify
the proposed HAM method.
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