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Abstract. This paper proposes a new cooperative scheduling framework for Demand
Response Aggregators (DRAs) and Electric Vehicle Aggregators (EVAs) in a day-ahead
market. The proposed model implements the Information-Gap Decision Theory (IGDT)
to optimize the scheduling problem of the aggregators, which guarantees to obtain the
predetermined pro�t by the aggregators. In the proposed model, the driving pattern of
electric vehicle owners and the uncertainty of day-ahead prices are simulated via scenario-
based and bi-level IGDT-based methods, respectively. The DRA provides DR from two
demand-side management programs including Time-Of-Use (TOU) and reward-based DR.
Then, the obtained DR is o�ered in day-ahead markets. Furthermore, the EVAs not only
meet the EV owners' demand economically, but also participate in the day-ahead market
while are willing to set DR contracts with the DRA. The objective function is to maximize
the total pro�t of DR and EV aggregators by pursuing two di�erent strategies to deal with
price uncertainty, i.e., risk-seeking strategy and risk-averse strategy. The proposed plan
is formulated in a risk-based approach and its validity is evaluated with respect to a case
study with realistic data of electricity markets.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Motivation
Demand Response (DR) has been introduced as a
promising strategy to deal with the growing demand
of energy in the world. Various DR programs have
been employed by di�erent players in the electricity
market. Market operators, for example, implement DR
programs to satisfy both the demand of the electricity
market and power system security issues. The necessity
of expanding the generation and transmission facili-
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ties could be postponed [1] by implementing proper
demand-side programs. DR programs are also ben-
e�cial for transmission network providers to operate
their network in a more reliable and secure condition.
In addition, retailers employ DR programs to mitigate
the risk of uctuations in electricity prices in energy
markets. To obtain these advantages, DR programs
should be designed such that the pro�ts of wholesalers,
retailers, and customers in electricity markets would
be guaranteed to make su�cient motivation for partic-
ipating in these programs [2].

New DR actions are developed by Indepen-
dent System Operators (ISOs) to increase the role
of demand-side resources in electricity markets. In
this regard, Demand Response Aggregators (DRAs)
have been introduced as an e�ective interface agency
between end-users and wholesalers to enhance the
positive results of implementing DR programs. For
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example, the Australian Energy Market Commission
(AEMC) has highlighted the role of active DRAs as
one of the main solutions in ourishing DR outcomes.
Moreover, with the breakthrough of technology and
communications industry, new consumers of electricity,
such as Electrical Vehicles (EVs), have been introduced
in recent decades. Since vehicles are driven only about
5% of time and remain stationary quite often [3], there
can be a new target market for DRAs as exible loads.

In recent years, the penetration of EVs has
increased to respond to the concerns of fossil fuel
reduction and environmental issues [4,5]. On the other
hand, if the electrical load imposed by EVs could not be
controlled correctly, it would bring about problems for
power systems in both security and economic operation
areas [6-8]. EVs owners, however, can even facilitate
the operation of power systems by managing their con-
sumption and participating in energy markets actively
as an energy storage system and exible load. It is
obvious that taking part in energy markets individually
could not be bene�cial for EV owners in terms of
time and economy due to the uncertainty of electricity
prices [9]. Therefore, an interface agency, called EV
Aggregator (EVA), must be introduced to enhance the
advantages of charging and discharging of thousands
of EVs in comparison with individual EVs [10]. As
a matter of fact, EVA can play a signi�cant role in
mediating between power system networks and EV
owners and participate as a representative of vehicle
owners in energy markets [10]. As a result, the optimal
scheduling of EVAs can bring about pro�t for EV
owners, power system operators, and EVAs.

Both DRAs and EVAs as intermediate agencies
have faced two key challenges including the uncertainty
of customers' behavior and electricity prices in the
market. To optimize their scheduling problem, risk-
based programing has been advised for DRAs [11] and
EVAs [12] to deal with the uncertainties.

1.2. Literature review
1.2.1. Demand response aggregators
Various DR programs have been modeled by a large
number of studies. Some of the most popular DR pro-
grams, which have been implemented on the demand
side, include building energy management [13], control-
ling cooling and heating demands [14], implementing
new tari� designs [15], and designing an Incentive-
Based Program (IBP) [16]. Recently, some researchers
have focused on the e�ects of DRAs as an active player
in modern power systems to apply DR programs in
a lumped volume [17,18]. These studies have not
considered the way how aggregators calculate their DR
from customers. In [19], both sides of supply and
demand were considered. In this paper, the interaction
among the ISO, DRAs, and households was modeled
based on a hierarchical market. Fang et al. [20]

proposed a coupon-based DR program. This study
considered the uctuation of wind power generation
and the uncertainty of real-time market prices. Wei et
al. [21] proposed a two-stage bi-level framework in the
presence of DR programs for the optimal scheduling
of retailers by assuming the uncertainties associated
with market prices and the consumption patterns of
end-users. Jiang and Qian [22] used a multi-agent
model to investigate the consumption behaviors of
customers due to the implementation of TOU programs
and level of electricity prices in the market. The
risk-based scheduling was proposed in some papers
including the referenced study [23] that employed the
Conditional Value-at-Risk (CVaR) strategy. Scenario-
based scheduling was utilized to model uncertainty in
this paper. Vahid-Ghavidel et al. [24] applied IGDT to
model the optimal framework for the self-scheduling of
DRAs in the risk-averse environment. The uncertainty
of electricity prices in the day-ahead and balancing
markets was modeled by IGDT method. Moreover,
the uncertainty of customer participation factors in DR
programs was also simulated by IGDT strategy. Majidi
et al. [25] presented a comprehensive review paper
about the application of IGDT optimization method
in power systems.

1.2.2. Eclectic Vehicles Aggregator (EVA)
In recent years, many studies in the area of EVs have
focused on the scheduling problem of EVs' aggregation
from di�erent points of view including the impacts
of EVs' high penetration in the market [26-28], in-
vestigation of uncertainty-based models to simulate
EV owners' behavior and market prices [29,30], and
risk-based approach [31,32]. Carpinelli et al. [33]
proposed a multi-objective function to optimize the
operation of micro grids in the presence of a large
number of EVs and renewable resources. A dynamic
scheduling framework was introduced [34] to �nd the
optimal operation point of EVAs. The batteries could
be charged with various electricity prices from the
local distributed generators and grid. Jannati and
Nazarpour [35] proposed a bi-objective function to
solve the optimal scheduling problem of a parking lot
equipped with solar panels. Furthermore, to respond
to the environmental problems and economic issues,
demand response programs were utilized. A coordi-
nated charging framework was suggested by Xu and
Wong [36] to decrease charging cost and power losses
for various electricity loads. Alipour et al. [32] proposed
the stochastic optimal scheduling of EVAs in day
ahead and ancillary service markets. In this work, the
uncertain nature of market prices and EVs' availability
to respond to the reserve market were taken into
account. Moreover, a risk-based method, Conditional
Value at Risk (CVaR), was used to guarantee the upper
level of the pro�t. Zhao et al. [37] applied the IGDT
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approach developed by Ben-Haim [38] to consider the
uncertainty of market prices through the ellipsoid-
bound uncertainty model. However, the current study
proposes a hybrid stochastic and IGDT method to
consider the uncertainties. The scenario-based model is
used to represent the uncertainty of the driving pattern
of EV owners.

1.3. Contribution
One of the most important challenges to optimally
schedule both DRAs and EVAs is to deal with the
e�ective uncertainties associated with customers' be-
haviors and the electricity market prices. Scenario-
based strategies have been widely employed in di�erent
papers to model elements of uncertain nature in the
problem. The overt disadvantage of scenario-based
strategies is the heavy computational burden to �nd
a global optimal solution to the problem by increasing
the number of scenario-based parameters. To the best
of the authors' knowledge, no similar framework for the
cooperative scheduling problem of EVAs and DRAs has
been proposed in the previous literature. The main
contribution of this study is to propose a risk-based
framework for the cooperative scheduling problem of
EVs and DR aggregators. The objective function of the
problem is to maximize their pro�t in the day-ahead
market in the uncertain decision environment. The
proposed IGDT optimization approach is considered as
a promising approach in not only achieving the high-
quality solutions but also reducing the computational
burden of optimization problems. The main contribu-
tions of this work can be summarized as follows:

1. Cooperation framework of EVAs and DRAs is
proposed with a risk-based strategy;

2. In the proposed framework, the uncertainty of
electricity prices in the market is modeled by the
IGDT method;

3. Both TOU and reward-based DR programs are
applied to the associated load of three di�erent
customers who have a DR contract;

4. EVs are operated in the V2G mode and TOU
program is applied to EVs;

5. The opportunity and robustness functions are de-
rived based on the market price uncertainty to
provide risk-seeking and risk-averse strategies.

1.4. Paper organization
The rest of the paper is organized as follows. Section 2
presents the mathematical modeling of the scheduling
problem of DRAs and EVAs based on IGDT method.
Section 3 presents the results of an application case. Fi-
nally, the conclusion drawn from this paper is provided
in Section 4.

2. Mathematical formulation

In this section, the mathematical formulation of the
proposed framework is presented. In the �rst stage, the
deterministic formulation of the problem is assumed
without considering uncertainty of market prices.
Then, the uncertain nature of the electricity prices
in the day-ahead market is taken into account by the
IGDT model.

2.1. Deterministic optimal scheduling of DRA
The objective of the DRA is to specify the optimal
amount of DR to trade in the day-ahead market, while
the DRA acts as a price taker player. First, the
formulations are extracted with the assumption that
the forecasted values for the electricity prices in the
market are completely accurate. The pro�t function
can be calculated through Eq. (1) and is subject to the
following constraints:

Pro�tDRA0 = Max
TX
t=1

~�DAt : PDRt �
TX
t=1

CostDRt ; (1)

S.t.:

PDRt =
X
c2Nc

P rwt;c + PTOUt;c ; 8t; (2)

P rwt;c =
NsX
s=1

PFt: �P rw;st;c :urw;st;c ; 8t;8c;8s; (3)

Rrwt;c =
NsX
s=1

Rrw;st;c ; 8t; 8c; 8s; (4)

�Rrw;s�1
t;c :urw;st;c � Rrw;st;c � �Rrw;st;c :urw;st;c ; (5)

NsX
s=1

urw;st;c � 1; 8t;8c; 8s; (6)

CostDRt =
NcX
c=1

NsX
s=1

Rrw;st;c : PFt;c: P rw;st;c ; (7)

PTOUt;c =

�Load0
t;c:

TX
h=1

�
ec (t; h) :

(�TOU (t; h)��fix (t; h))
�fix (t; h)

�
;

(8)

Pmin � PDRt � Pmax; 8t: (9)

Eq. (1) presents the deterministic model of the
DRA's pro�t maximization problem, which is equal
to the revenue coming from trading DR minus the
imposed cost due to the implementation of the reward-
based DR program. Terms ~�DAt and PDRt depict the
forecasted day-ahead price and the volume of DR,
respectively. The total DR power, PDRt , is derived
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Figure 1. Reward-based DR curve.

from the application of the reward-based and TOU pro-
grams, as indicated in Eq. (2). The reward-based DR
power P rwt;c of each customer c at hour t is calculated
by Eq. (3) at the power level of each step s, where P rwt;c
and �P rw;st;c refer to the total load reduction and the
steps of reduced load through enforcing the reward-
based DR program for consumer c at hour t. Term
PFt is the participation factor of consumers, which is
considered constant in this study. Furthermore, the
binary variables �rw;st;c determine that DRA can only
choose one level of the o�ered load reduction s, as
presented in Eq. (6). Eq. (4) explains the summation
of reward for each customer at hour t, Rrwt;c , and
Eq. (5) limits the amount of reward for each step
between the amount of the reward for the current
step, �Rrw;st;c , and that for pervious step, �Rrw;s�1

t;c . In
Figure 1, the amount of load reduction, �P rw;st;c , and the
related reward, �Rrw;st;c , are portrayed by the vertical
and horizontal axes of the �gure. Finally, the cost of
reward-based DR program, CostDRt , at hour t can be
calculated due to Eq. (7).

The acquired power by applying TOU program
can be calculated by Eq. (8). Unlike the reward-
based program, the TOU program does not impose
any cost on the DRA and just suggests distinct tari�s
instead of incentives paid to consumers. According
to Eq. (4), consumers receive di�erent price tari�s
related to the consumption time like o�-peak and
peak tari�s. In Eq. (8), �fix(h; t) depicts the initial
price associated with consumer c at interval h while
�TOU (t; h) represents the o�ered TOU price. Term
ec(t; h) shows the price elasticity of consumer c at hour
t compared to period h.

2.1.1. Deterministic optimal scheduling of EVA
As presented in Eq. (10), the objective function of the
EVA is to maximize its pro�t in the day-ahead market.
In deterministic scheduling, only one driving pattern

is considered so that the daily consumption energy is
equal to the expected value. According to Eq. (10), it
is assumed that EVA can perform EVs in the Vehicle
to Grid (V2G) state, i.e., it can not only buy power
from the market to charge EVs' batteries, but also sell
the saved power in the batteries due to the EV owners'
driving patterns.

Pro�t0
EV A = Max

TX
t=1

NvX
v=1

NEV :~�DAt :
�
P dischv;t � P chv;t�

+
TX
t=1

NvX
v=1

NEV ; P 0
v;t: �

EV
fixed; (10)

s.t.:

SOCv;t =SOCv;t�1 + �ch
�
P chv;t=P chv

�� 1=�disch

:
�
P dischv;t =P dischv

�� P 0
v;t; (11)

SOCv � SOCv;t � SOCv; (12)

P chv : uchv;t � P cv;t � P chv : uchv;t; (13)

P dischv : udischv;t � P dischv;t � P dischv : udischv;t ; (14)

uchv;t + udischv;t � 1: (15)

In Eq. (10), the terms P dischv;t and P chv;t stand for
discharging and charging power rates of a vehicle with
driving pattern v at time t, respectively. The amount
of power consumed by each EV at time is depicted by
P 0
v;t. EVAs attempt to provide power with economical

prices to encourage EV owners to sign a contract with
them. In this regard, the value of �EVfixed is considered
lower than retailer price of power sale to customers.
Eq. (11) is used to calculate SOCv;t, showing the state
of charge vehicle in an hourly format. In order to
force the minimum and maximum levels of SOCv;t,
Relation (12) must be ful�lled. In Relations (13) and
(14), the binary variables uchv;t and udischv;t denote the
states of charge and discharge, respectively. Constraint
(15) enforces a restriction so that each EV can only be
charged or discharged. It is worth mentioning that the
presented equations are formulated for the stochastic
scheduling. To avoid rewriting the equations, they can
also be used for the deterministic scheduling, while the
number of driving pattern V is equal to 1.

2.1.2. Cooperation of DRA and EVA
In this section, the proposed framework for DR trading
is presented in Figure 2. The case study is a load with
di�erent electricity consumers including residential,
commercial, and industrial sectors, as well as the
demand of EVs provided by an EVA. For each sector,
the amount of TOU tari� and reward-based DR is
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Figure 2. Cooperative scheduling framework between
DRA and EVA.

o�ered individually. As shown in Figure 2, through
the double-sided arrows, the energy can ow from
consumers to DR purchasers, and vice versa.

It is implied that while the DRA obtains DR to
sell to buyers at peak times, customers are encour-
aged to consume more electricity energy during o�-
peak times. Furthermore, the DRA and EVA have
a cooperation contract for TOU program. In other
words, EVA can receive a portion of the pro�t that
DRA earns by trading the TOU load. As a result, in
this case, the EV time of use load and total DR power
can be found by Eqs. (16) and (17), respectively.

PTOU
v;t

=

�P 0
v;t
:
TX
h=1

0@eEV (t; h) :

�
�TOUEV (t; h)��EVfix (t; h)

�
�EVfix(t; h)

1A;
(16)

PDRt =
X
c2Nc

P rwt;c + PTOUt;c +
NvX
v=1

NEV :PTOUv;t
; 8t:

(17)

3. Information-Gap Decision Theory (IGDT)

In this study, IGDT scheduling framework is proposed
and formulated to model the error between the real
and forecasted values of the uncertain parameters,
while the objective function is to maximize the ex-
pected pro�t. Second, by applying the proposed
framework, aggregators can face price oscillation with
two di�erent approaches: risk-seeking and risk-averse
approaches.

The parameters modeled by the IGDT method are
the day-ahead prices, which are of uncertain nature. In
the current work, the DRA takes part in the day-ahead
market, and forecasted electricity prices, stranded by
~� =

h
~�1; ~�2; : : : ; ~�T

i
, are assumed to be accessible.

Envelope bound of the IGDT model will be used to
simulate the uncertainty as follows:

U
�

~�t; �
�

=

8<:� :

����t � ~�t
���

~�t
� �

9=; ; � � 0; (18)

where � denotes the horizon of the uncertain parame-
ters. Moreover, �t and ~� depict the real and forecasted
electricity prices at hour t, respectively. In this
model, the forecasted day-head prices are input, while
the horizon of the uncertain parameters is computed
through the decision-making procedure. Note that the
lower and upper limits of variable � will be determined
in the solution process.

In the proposed model, the DRAs gain power from
the DR customers to do their commitment in the day-
ahead market. The aggregator encourages customers
to sell power during pick hours and shift their energy
consumption to o�-pick hours by o�ering TOU tari�s
and appropriate incentives. As a result, the expected
pro�t of DRA depends on electricity prices in the
market.

3.1. Robust scheduling
The risk-averse approach aims to schedule the oper-
ation of DRA so that the pro�t is guaranteed to be
higher than or equal to a critical pro�t due to the
undesirable uctuation of price from the forecasted
value. It is then formulated as follows:

_� (P; Br) = Max
P

�
�r : Min

�t
B (P; �t) � Br

�
; (19)

where P and Br stand for decision variables vector and
the target pro�t, respectively. In the current work,
the amount of trading DR at each hour is the decision
variable. The intention of the robustness function,
_� (P; Br), is to �nd the maximum uncertainty horizon
such that the critical pro�t is obtained in the worst
case and all constraints are ful�lled. This means that
the IGDT model aims to maximize the pro�t in the
region of the uncertainty while the expected total pro�t
of DRA is achieved. Note that the critical pro�t
is a proportion of the risk-neutral pro�t. Due to
Eq. (19) and presented statement, a greater amount
of �r is more desirable. Hence, the robust scheduling
formulation for the cooperative scheduling problem of
DRA and EVA can be formulated as follows:

Max
P

�r (20)

s.t.:

Pro�t�total � Br = Pro�t0
total (1� d) ; (21)

(2)-(9)
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Pro�t�total = Min
��t

� TX
t=1

�
~�t + ��t

�
: PDRt

�
TX
t=1

CostDRt +
TX
t=1

NvX
v=1

�
~�DAt + ��t

�
:
�
P dischv;t � P chv;t�+

TX
t=1

NvX
v=1

PTOUv;t

:�EVTOU

�
; (22)

s.t.:

��~�t � ��t � �~�t: (23)

Note that the proposed IGDT method is generally
known as bi-level, which can be solved through the
common bi-level models as explained [39]. In addition,
in certain circumstances, the IGDT-based models can
be divided into two single level problems [27]. In
the proposed scheduling problem, decreasing electricity
price has a negative impact on the scheduling pro�t.
In other words, if the market price drops, then the
scheduling pro�t will increase as well, or vice versa; if
the electricity price decreases, the pro�t will certainly
decrease. Thus, the proposed IGDT model can be
converted into the single-level problem. Since the sale
of energy is higher than the purchased energy in this
problem, increasing market price has a positive e�ect
on the scheduling pro�t. Therefore, the proposed bi-
level scheduling problem can be converted to a single-
level problem.

3.2. Opportunistic scheduling
When the presented problem follows a risk-seeking
approach, the variable decisions are speci�ed with an
optimistic attitude in order to have a positive e�ect on
the pro�t. Due to the opportunity function, the lower
favorable price deviation is found desirable, whereas
the earned pro�t is higher than the risk-neutral state.
This can be represented as follows:

_
� (P; Bop)= Min

P

�
�op : Max

�t
B (P; �t) � Bop

�
:
(24)

Term Bop shows the pre-determined pro�t for the
opportunity approach. The objective function of the
opportunity strategy,

_
� (P; Bop), attempts to calculate

the minimum price deviation to obtain higher pro�t
than Bop and ful�lls the constraints, too. As a result,
the opportunity function for cooperation of DRA and
EVA can be follows:

Min
P

�op: (25)

s.t.:

Pro�t�total � Bop = Pro�t0
total (1 + d) ; (26)

(2)-(9)

Pro�t�total = Max
��t

� TX
t=1

�
~�t + ��t

�
: PDRt

�
TX
t=1

CostDRt +
TX
t=1

NvX
v=1

�
~�DAt + ��t

�
:

�
P dischv;t �P chv;t�+ TX

t=1

NvX
v=1

PTOUv;t

:�EVfixed

�
(27)

s.t.:

��~�t � ��t � �~�t: (28)

As explained similarly for the robustness function,
the opportunity optimization function is also solved
as a bi-level problem. Therefore, the value of the
uncertainty horizon variable, �op, is minimized at the
upper level, while the amount of decision variables is
determined at the lower level in order to guarantee
the expected pro�t higher than pre-determined pro�t
Bop. In this strategy, the decision-maker acts riskily.
As mentioned in Subsection 3.1, the amount of the
purchased power is lower than that of sale power, i.e.,
the maximum pro�t in Eq. (27) is readily seen to occur
at the highest price.

4. Results and discussions

4.1. Data
The proposed programing model is coded in Mixed
Integer Non-Linear Programming (MINLP) under the
General Algebraic Modeling System (GAMS). It is
worth mentioning that the proposed bi-level opti-
mization is converted to a single-level problem, as
mentioned in Section 3. The adopted load information
of DRA's customers includes residential, commercial,
and industrial sectors, and forecasted day-ahead prices
are depicted in Figure 3. The elasticity of the di�erent
lodes and retailer TOU prices are reported in Tables 1
and 2, respectively. To model the uncertainty of the
driving pattern, 1000 scenarios are generated via Mont
Carlo simulation. Then, SCENRED tool under GAMS
environment is employed to decrease the number of
the scenarios with respect to their probability into 10
driving patterns [40].

According to Figure 1, only 5 steps for the reward-
based DR program are considered. Since EVA can
perform EVs in the V2G state, there is no economic
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Figure 3. Adapted forecast day-ahead price and load
curve.

Table 1. The retailer TOU prices.

�fix(t; h) �TOU(t; h)

Residential Peak 294 346
O�-peak 294 213

Commercial Peak 255 281
O�-peak 255 205

Industrial Peak 331 424
O�-peak 331 135

Table 2. Elasticity matrices of di�erent customers [24,40].

Peak O�-peak

Residential Peak {0.15 {0.05
O�-peak 0.02 {0.03

Commercial Peak {0.16 0.06
O�-peak 0.03 {0.09

Industrial Peak {0.2 0.1
O�-peak 0.07 {0.08

Electric vehicle Peak {0.15 0.05
O�-peak 0.02 {0.03

incentive for it to have a contract with DRA to par-
ticipate in the reward-based DR program. Therefore,
EVA participates only in the TOU program.

4.2. Case study
4.2.1. Deterministic scheduling
In this subsection, the numerical results of the schedul-
ing problem are provided without considering the
uncertainty of the day-ahead prices for di�erent cases
including 1) individual DRA and EVA scheduling, and
2) cooperative scheduling of DRA and EVA. Note that

if the EVA cooperates with DRA, it can receive a
fraction of the pro�t that the DRA gains due to the
application of the TOU-based DR program to EVs.
In this study, it is assumed that this pro�t is equally
divided between the two aggregators. The pro�t of
each case is reported in Table 3. In this case, only one
driving pattern is considered.

According to Table 3, when EVA and DRA have a
cooperative contract about TOU load of EVs, they can
increase their pro�t without imposing any additional
cost. The pro�t of EVA can increase by about 13%
compared with individually scheduling state. Addi-
tionally, DRA's pro�t has risen by $388.31 through the
given period, which is 24 hours, and this rise in the
pro�t can be a considerable amount of money during
a year. Of note, for solving the scheduling problem
through the IGDT method, the cooperative scheduling
of DRA and EVA is considered.

4.2.2. IGDT-based scheduling
In this case, the IGDT-based model is used to show
the e�ects of market price uncertainty on the pro�t.
According to the IGDT model, there are two di�erent
attitudes: risk-averse and risk-seeking attitudes. First,
the scheduling problem is solved for the risk-averse
attitude with di�erent pro�t deviation factors that
increased from d = 0:05 to d = 0:3. The robustness
function values are depicted for both DRA and EVA in
Figures 4 and 5, respectively. Note that, in this case,
di�erent driving pattern scenarios are produced.

As expected, the value of the robustness function
for both aggregators raises by increasing the deviation
factor while the pro�t decreases. In other words,
if the aggregators would like to make a more risk-
averse decision, less pro�t can be guaranteed. For
example, when the deviation factor is 0.3 (the worst

Figure 4. Robustness function of � versus d for DRA.

Table 3. Pro�t for individual and cooperative scheduling.

Individually scheduling Cooperative scheduling
DRA EVA DRA EVA

Pro�t ($) 1012307.313 3596.000 1012695.622 4081.386
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Table 4. Optimal opportunity function for DRAs and EVAs.

Deviation Pro�t�total ($) Pro�tDRA ($) Pro�tEV A ($) �Opp

0.0 1015949.984 1011821.869 5110.291 0.0

0.05 1063942.110 1058596.069 5346.041 0.038

0.1 1114606.020 1109157.571 5448.449 0.079

0.15 1165269.930 1159722.839 5547.091 0.118

0.2 1215933.840 1210289.262 5644.578 0.156

0.25 1266597.750 1260856.566 5741.184 0.195

0.3 1317261.660 1311424.372 5837.288 0.233

Figure 5. Robustness function of � versus d for EVA.

case), the critical total pro�t is equal to $709294.740.
The pro�ts of DR and EV aggregators are equal to
$704716.762 and $4577.978, respectively. Based on the
IGDT scheduling, this amount of the pro�ts is achieved
only when the error of electricity price in the market is
no more than �r = 0:266 or 26:6%.

The optimum opportunity function values are
optimized for pursuing risk-seeking attitudes by DRAs
and EVAs. The results illustrated in Table 4 indicate
that higher desired market price errors from the fore-
cast values are essential to achieving a higher target
pro�t. For instance, to reach a total pro�t 25% higher
than Pro�t0

total, there must be at least 14.8% error
between the forecasted prices and observed values. For
example, for d = 0:3, to achieve a total pro�t higher
than Pro�t�total = $1317261:660, hourly errors must be
higher than 23.3%.

5. Conclusion

This study evaluated the cooperation of DRA and EVA
with respect to the uncertainty of electricity price and
EV owners' driving behavior in the day ahead-market.
To simulate the uncertainties, IGDT, risk-based ap-
proach, and scenario-based method were applied to
the proposed cooperative framework. The DRA trades
DR, which is supplied through the implementation of
two di�erent DR programs on its customers including
reward-based DR and TOU programs. On the other

hand, EVA could increase its pro�t by trading V2G
and setting a TOU contract with DRA. To evaluate
the proposed method, a case study was analyzed.
The scheduling problem was solved for both of the
controversial strategies called risk-averse strategy and
risk-seeking strategy. The pro�t of both aggregators
increased while in cooperation. Generally, the results
showed the e�ectiveness of the proposed framework.

Nomenclature

Sets and indices

t Index of time, t = f1; 2; 3; :::; Tg
DR Index of DR program including

DRt = frwt; TOUtg at hour t
c Index of consumer including

c = fRes;Com; Indg
Res Residential consumer
Com Commercial consumer
Ind Industrial consumer

Parameters and constants

P dv =P
d
v Maximum/minimum discharge rate of

EV v
~�Dt Forecasted electricity price in day-

ahead market at hour t
�P rw;st;c Reduced load steps in the reward-based

DR program at hour t
Pmin=Pmax Maximum/minimum capacities of

DRA
Load0

t;c Initial demand of consumer c at hour t

ec(h; t) Elasticity of consumer c at hour t
related to price at hour h

�fix(h; t) Fixed rate price
�TOU (h; t) TOU price
PFt Participation factors of consumers in

the reward-based DR program at hour
t
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�Rrw;st;c Determined reward for consumer c
at hour t in the reward-based DR
program

P chv =P chc Maximum/minimum charge rate of
PEV v

SOCv=SOCv Maximum/minimum level of SOC of
EV v

�c=�dis Charging/discharging rate of PEV

Function

U(~�t; �) Uncertainty model in the IGDT
approach

�̂(P;Br) Robustness function in the IGDT
approach

�̂(P;Bop) Opportunity function in the IGDT
approach

Variables

� Horizon of the uncertain parameter

�Dt Electricity price in day- ahead market
at hour t

PDt O�ered power in the day-ahead market
at hour t

PDRt Total power reduction in the result of
the DR programs at hour t

P rwt;c Power reduction of consumer c in the
result of the reward-based DR program
at hour t

PTOUt;c Power reduction of consumer c in the
result of the TOU program at hour t

CostDRt Cost of the aggregator due to the DR
programs at hour t

Pro�tDRA0 Pro�t of the DRA in deterministic
scheduling

Pro�t0
EV A Pro�t of the EVA in deterministic

scheduling
Rrw;st;c The reward paid to consumer c in the

reward-based DR program
�r Optimal robustness function value
�op Optimal opportunity function value
P Decision variables of the IGDT model
SOCv;t SOC of EV v at time t

P chv;t Charge power of EV v at time t

Binary variables

urw;st;c Binary variable of the reduced load for
step s in the reward-based DR at hour
t

uchv;t=u
disch
v;t Binary variable of charge/discharge

state
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