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Abstract 

Statistical process control techniques are commonly used to monitor process performance. 

Control charting technique is the most sophisticated tool of SPC and is categorized as memory-

less and memory-type control charts. Shewhart-type control charts have low efficiency in 

detecting the small changes in the process parameters and named as memory-less control charts, 

and memory-type control charts (for example cumulative sum (CUSUM) and exponentially 

weighted moving average (EWMA) charts) are very sensitive to small persistent shifts. In 

connection with enhancing the performance of CUSUM and EWMA charts, an efficient variant 

of memory-type charts for the location parameter is developed based on mixing the double 

exponentially weighted moving average (DEWMA) chart and CUSUM chart by performing 

exponential smoothing twice. Performance of the proposed efficient variant is compared with 

existing counterparts under normal and non-normal (heavy tails and skewed) environments. The 

study also provides an industrial application related to the monitoring of weights of quarters 

made by mint machine placed into service at U.S. Mint. From theoretical and numerical studies, 

it is revealed that proposed variant of memory-type charts outperforms the counterparts in 

detecting shifts of small and moderate magnitude. 

Keywords: Average run length; Control charts; CUSUM; Double EWMA; Location parameter; 

Memory-type charts. 
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1.   Introduction 

Control charts, one of the key tools of statistical process control (SPC), are categorized 

into two main types named as memory-less and memory control charts. Shewhart charts are 

named as memory-less control charts are quite efficient in detecting the larger shifts in the 

process location or dispersion. However, their efficiencies are under consideration in detecting 

the small and moderate shifts in the process parameters. On the other hand, the memory control 

charts such as cumulative sum (CUSUM) control charts introduced by Page [1] and 

exponentially weighted moving average (EWMA) control charts suggested by Roberts [2] are 

more effective in detecting the small process shift because they make use of the current as well 

as past sample information.  

The most significant and commonly used measure to assess the performance of control 

charts is the average run length (𝐴𝑅𝐿) which is simply mean of the random variable run length 

(𝑅𝐿). The 𝑅𝐿 is the number of samples after that first out-of-control signal revealed. Some 

researchers have discouraged the only use of 𝐴𝑅𝐿 due to the skewed behavior of its RL 

distribution (cf. Nasir [3], Zaman et al. [4] and Abid et al. [5-7]). Therefore, in order to further 

explain the run length distribution, it is better to report different important characteristics of the 

run length such as the standard deviation (𝑆𝐷𝑅𝐿) and some percentile points.  When the process 
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is in-control, the 𝐴𝑅𝐿 is indicated by 𝐴𝑅𝐿0  and is expected to be large and if the process is out-

of-control, the 𝐴𝑅𝐿 is represented by 𝐴𝑅𝐿1 and is anticipated as small as possible. 

To enhance the performance of CUSUM and EWMA charts, several amendments have been 

made (cf. Lucas [8], Lucas and Saccucci [9], Abid et al. [10], Raza et al. [11], Abujiya et al. [12], 

Riaz et al. [13], Mehmood et al. [14]). Shamma and Shamma [15] proposed a control chart for 

evaluating the smaller and moderate shifts in the process mean, using the method of double 

exponentially weighted moving average (DEWMA) by performing exponential smoothing twice. 

Riaz et al. [16] improved the performance of CUSUM scheme in detecting the small to large 

shifts by utilizing the concept of runs rules scheme. Abbas et al. [17] proposed the 

implementation of different runs rules for EWMA schemes. Abbas et al. [18] improved the 

design structure of EWMA and CUSUM control chart in such a way that EWMA statistic is 

served  as  the  input  for the CUSUM structure and named as mixed EWMA-CUSUM (MEC) 

chart.  Zaman et al. [19] proposed a reverse version of the said MEC chart in such a way that the 

CUSUM statistic will use the input for the EWMA structure and hereafter, named as mixed 

CUSUM-EWMA (MCE) chart. On the further developments of the control charts using different 

approaches the interested reader can see the work of  Nazir et al. [20], Ahmad et al. [21], Riaz 

and Ali [22], Abujiya et al. [23], Abbasi et al. [24], Ajadi and Riaz [25] and Hussain et al. [26].  

With quality becoming more and more vital in today’s industry and quality standards  becoming 

higher and higher, a natural question comes to mind is: Is there a method to make the existing 

EWMA and CUSUM charts more sensitive to very small shifts in a process location parameter? 

In this study, following Abbas et al. [18] and Zaman et al. [19], we explore such a possibility by 

combining features of the structures of CUSUM and DEWMA charts and proposed an efficient 

chart by mixing the structures of CUSUM and DEWMA charts for the location parameter of the 
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process. The control charts, designed under the assumption of normality, do not perform well 

under the violation of this assumption. Non-normal processes are more common in practice; 

hence it is indispensable to develop the structure of the control charts under non-normality. So, 

the performance of the proposed control chart is also under consideration in case of non-normal 

environments. The rest of the paper is organized as follows: In Section 2, we give the basic 

design structures of the CUSUM and DEWMA control charts and the proposed efficient variant 

scheme. Section 3, consists of design structure and derivation of the control limits of the 

proposed chart. Performance comparisons of the proposed scheme with its counterparts are 

presented in Section 4. An industrial application of the proposed chart is given in Section 5. At 

the end, Section 6 ends with conclusions. 

2.   Description of CUSUM, DEWMA and the proposed charts 

Quality characteristic of interest, say 𝑋, is an independent sequence of observations {𝑋𝑡} 

(𝑡 = 1, 2, 3, ……,) following the normal distribution with mean 𝜇0 + 𝛿𝜎0 and variance 𝜎0
2, i.e. 

𝑋𝑡~𝑁(𝜇0 + 𝛿𝜎0, 𝜎0
2) , where 𝜇0 and  𝜎0

2 are the mean and variance of the process, respectively. 

The value of 𝛿 = 0, shows that the process is in-control, if not, the process mean has shifted and 

objective of the process monitoring is to detect the mean shift 𝜇0 + 𝛿𝜎0 as early as possible 

following its occurrence. Without loss of generality, we assume that 𝜇0  =  0 and 𝜎0 =  1. Thus, 

we assume the phase II application of control charts with the in-control values of the parameters 

assumed to be known. The following subsection contains details about the memory-type control 

charts. 
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2.1.   Cumulative sum (CUSUM) chart  

Page [1] introduced the CUSUM chart by utilizing the method of accumulating the positive and 

negative deviations from 𝜇0 into two statistics 𝐶𝑖
+ and 𝐶𝑖

−, respectively. These two statistics are 

defined as: 

𝐶𝑡
+ = max[0, (𝑋𝑡 − 𝜇0) − 𝐾 + 𝐶𝑡−1

+ ]

 𝐶𝑡
− = max[0,−(𝑋𝑡 − 𝜇0) − 𝐾 + 𝐶𝑡−1

− ]
}            (1) 

where 𝑡 is the sample number, 𝜇0 is the target value and 𝐾 is the reference or slack value which 

is commonly selected equal to half of the shift (in standard deviation unit) to be detected.  The 

starting values of 𝐶0
+ and 𝐶0

− are generally chosen equal to zero or the process location 𝜇0, that is 

𝐶0
+ = 𝐶0

− = 𝜇0, although it may be specified otherwise for a fast initial response (cf. Lucas and 

Crosier [9]). The statistics 𝐶𝑖
+ and 𝐶𝑖

− are plotted against the decision interval or control limit 𝐻 

and the chart signals if either one of the statistics (𝐶𝑖
+ or 𝐶𝑖

−) exceeds the decision interval 𝐻. 

The 𝐾 and 𝐻 are two parameters of the CUSUM chart and these are defined as: 

𝐾 = 𝑘 × 𝜎0,     𝐻 = ℎ × 𝜎0            (2) 

Here 𝑘 and ℎ are the constants which are selected to fulfill a pre-defined 𝐴𝑅𝐿0 or according to 

the desired design conditions. 

2.2.   Double exponentially weighted moving average (DEWMA) chart 

Shamma and Shamma [15] proposed the DEWMA chart by performing exponential 

smoothing twice. The main disadvantage associated with EWMA statistic is that it always offers 

strictly decreasing weights to historical data, but, this will not happen in case of DEWMA 

statistic (cf. Zhang and Chen [27). The DEWMA statistic 𝑍𝑡 is written as: 

𝑌𝑡 = 𝜆1𝑋𝑡 + (1 − 𝜆2)𝑌𝑡−1
𝑍𝑡 = 𝜆3𝑌𝑡 + (1 − 𝜆4)𝑍𝑡−1

}            (3) 
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where 𝜆1 + 𝜆2 = 1, and 𝜆3 + 𝜆4 = 1, and 𝜆1 and 𝜆3 ∈ (0,1] are the smoothing parameters of the 

DEWMA chart. Also, shown by Zhang and Chen [27], the DEWMA statistic in Equation (3) 

may be expressed as: 

𝑍𝑡 = 𝜆1𝜆3∑ {𝜆2
𝑡−𝑗 ∑ (

𝜆4

𝜆2
)
𝑘

𝑡−𝑗
𝑘=0 } 𝑋𝑡 + 𝜆3∑ 𝜆2

𝑡−𝑗
𝜆4
𝑗
𝑌0 + 𝜆4

𝑡𝑍0
𝑡−1
𝑗=0

𝑡
𝑗=1 , 𝑡 ≥ 1                      (4) 

If 𝜆1 = 𝜆3, then 

𝑍𝑡 =  𝜆1
2∑ (𝑡 − 𝑗 + 1)𝜆2

𝑡−𝑗
𝑋𝑡 + 𝑡𝜆1𝜆2

𝑡𝑌0 +
𝑡
𝑗=1 𝜆2

𝑡𝑍0           (5) 

Equation (4) can be rewritten as following if 𝜆1 ≠ 𝜆3: 

𝑍𝑡 =  𝜆1𝜆3∑
1−(𝜆4 𝜆2⁄ )𝑡−𝑗+1

1−(𝜆4 𝜆2⁄ )
𝜆2
𝑡−𝑗
𝑋𝑡 + 𝜆2𝜆3

𝜆2
𝑡−𝜆4

𝑡

𝜆2−𝜆4

𝑡
𝑗=1 𝑌0 + 𝜆4

𝑡𝑍0         (6) 

The starting values of 𝑌𝑡 and 𝑍𝑡 are generally taken equal to the target values, i.e. 𝑌0 = 𝑍0 = 𝜇0. 

The chart, DEWMA, signals if the statistic 𝑍𝑡 falls beyond the following limits: 

𝐿𝐶𝐿𝑡 = 𝜇0 − 𝐿𝜎𝑍𝑡

𝐶𝐿 = 𝜇0

𝑈𝐶𝐿𝑡 = 𝜇0 + 𝐿𝜎𝑍𝑡}
 
 

 
 

            (7) 

where if 𝜆1 = 𝜆3, then  

𝜎𝑍𝑡 = √𝜎0
2𝜆1
4 1+𝜆2

2−(𝑡2+2𝑡+1)𝜆2
2𝑡+(2𝑡2+2𝑡−1)𝜆2

2𝑡+2−𝑡2𝜆2
2𝑡+4

(1−𝜆2
2)3

         (8) 

and if 𝜆1 ≠ 𝜆3, then 

𝜎𝑍𝑡 = √𝜎0
2 𝜆1

2𝜆3
2

(𝜆4−𝜆2)2
{
𝜆4
2(1−𝜆4

2𝑡)

1−𝜆4
2 +

𝜆2
2(1−𝜆2

2𝑡)

1−𝜆2
2 − 2

𝜆2𝜆4(1−(𝜆2𝜆4)𝑡)

1−𝜆2𝜆4
}        (9) 

The constant 𝐿 in Equation (7), is the control limit coefficient and can carefully be chosen to 

satisfy the pre-specified 𝐴𝑅𝐿0 or according to the design conditions, that, together with 𝜆1 and 

𝜆3, control the performance of DEWMA chart. 
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2.3.   Proposed DEWMA-CUSUM chart 

To improve the design structure of EWMA and CUSUM control charts, Abbas et al. [18] 

and Zaman et al. [19], suggested the mixed versions of EWMA and CUSUM charts.  The 

proposed chart is based on mixing the features of DEWMA and CUSUM charts by using the 

concept of double exponential smoothing which makes the proposed chart sensitive to very small 

shifts in the process location parameter.  The proposed mixed DEWMA-CUSUM chart, 

hereafter, is named as efficient variant (EV) chart.  The charting statistics (𝐸𝑉𝑡
+ and 𝐸𝑉𝑡

−) for 

this proposed EV chart are given as: 

𝐸𝑉𝑡
+ = 𝑚𝑎𝑥[0, (𝑍𝑡 − 𝜇0) − 𝑃𝑡 + 𝐸𝑉𝑡−1

+ ]

𝐸𝑉𝑡
− = 𝑚𝑎𝑥[0,−(𝑍𝑡 − 𝜇0) − 𝑃𝑡 + 𝐸𝑉𝑡−1

− ]
}            (10) 

where 𝑍𝑡 is defined as in Equation (3) and 𝑃𝑡 is the reference value. The initial values for the 

statistics 𝐸𝑉0
+ and 𝐸𝑉0

+ are generally put equal to zero or the target value, 𝜇0, i.e., 𝐸𝑉0
+ =

𝐸𝑉0
− = 𝜇0, although the initial values may be specified according to the desired design 

conditions. The statistics (given in Equation (10)) are plotted alongside the control limit 𝑄𝑡 and if 

either one of these statistics (𝐸𝑉𝑡
+ or 𝐸𝑉𝑡

−) goes outside the control limit 𝑄𝑡, then the process is 

considered to be an out-of-control, otherwise, in-control. . The standardized versions of 𝑃𝑡 and 

𝑄𝑡 are given below: 

if 𝜆1 = 𝜆3, then  

𝑃𝑡 = 𝑝 × √𝜎0
2𝜆1
4 1+𝜆2

2−(𝑡2+2𝑡+1)𝜆2
2𝑡+(2𝑡2+2𝑡−1)𝜆2

2𝑡+2−𝑡2𝜆2
2𝑡+4

(1−𝜆2
2)3

           (11) 

and if 𝜆1 ≠ 𝜆3, then 

𝑃𝑡 = 𝑝 × √𝜎0
2 𝜆1

2𝜆3
2

(𝜆4−𝜆2)2
{
𝜆4
2(1−𝜆4

2𝑡)

1−𝜆4
2 +

𝜆2
2(1−𝜆2

2𝑡)

1−𝜆2
2 − 2

𝜆2𝜆4(1−(𝜆2𝜆4)𝑡)

1−𝜆2𝜆4
}          (12) 
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Unlike the usual CUSUM chart, the EV chart has time-varying reference values 𝑃𝑡 that are due 

to the variance of DEWMA statistic in Equation (8) and Equation (9) and are functions of 𝜆1 and 

𝜆3. The threshold control limit 𝑄𝑡 is as if 𝜆1 = 𝜆3: 

 𝑄𝑡 = 𝑞 × √𝜎0
2𝜆1
4 1+𝜆2

2−(𝑡2+2𝑡+1)𝜆2
2𝑡+(2𝑡2+2𝑡−1)𝜆2

2𝑡+2−𝑡2𝜆2
2𝑡+4

(1−𝜆2
2)3

          (13) 

and when 𝜆1 ≠ 𝜆3, 

 𝑄𝑡 = 𝑞 × √𝜎0
2 𝜆1

2𝜆3
2

(𝜆4−𝜆2)2
{
𝜆4
2(1−𝜆4

2𝑡)

1−𝜆4
2 +

𝜆2
2(1−𝜆2

2𝑡)

1−𝜆2
2 − 2

𝜆2𝜆4(1−(𝜆2𝜆4)𝑡)

1−𝜆2𝜆4
}         (14) 

where 𝑝 and 𝑞 are constants similar to 𝑘 and ℎ in Equation (2), respectively and can carefully be 

chosen to satisfy the pre-specified 𝐴𝑅𝐿0 or according to the design conditions.  The flow chart of 

the proposed chart is provided in Figure 1. 

2.4.   Derivation of the limits of the proposed scheme 

The construction of the Phase II control limits in Equation (13) and Equation (14) of the 

proposed EV chart depends on the choice of the smoothing parameters, 𝜆1 and 𝜆3, the reference 

value, 𝑃𝑡 and the decision interval, 𝑄𝑡. These parameters need to be chosen with care as these 

parameters control the performance of the proposed scheme. The 𝑞 in Equation (13) and 

Equation (14) is determined to obtain the desired 𝐴𝑅𝐿0 by setting 𝑝 = 0.5, as an optimal 

constant to detect a shift of size 𝛿 = 1, with different choices of 𝜆1 and 𝜆3, taking inspiration 

from Lucas [8], Shamma and Shamma [15], Abbas et al. [18] and Zaman et al. [19]. The values 

of 𝑞 to satisfy, 𝐴𝑅𝐿0 = 168, 200, 370 and 500, are evaluated when 𝜆1 = 𝜆3 and are given in 

Table 1 and when 𝜆1 ≠ 𝜆3, values of 𝑞 to satisfy 𝐴𝑅𝐿0 = 168 are provided in Table 2 with their 

in-control 𝑆𝐷𝑅𝐿 values. The in-control 𝑆𝐷𝑅𝐿 are also reported in Table 3, when 𝜆1 = 𝜆3. 

Numerically these values are hard to find, and hence are determined by the use of Monte Carlo 

simulation. 
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For a fixed in-control 𝐴𝑅𝐿 (𝐴𝑅𝐿0), the values of 𝑞 increase as the smoothing parameters 

(𝜆1and 𝜆3) tend to zero, and when 𝜆1 = 𝜆3 approaches to one, this phenomenon is opposite (cf. 

Table 1). However, when a too small value of 𝜆1 = 𝜆3, is used, the in-control 𝑆𝐷𝑅𝐿 is often very 

large (cf. Table 3) and on the contrary, when the value of  𝜆1 and 𝜆3 has tendency to one, the in-

control variability in the run length is small (cf. Table 2). 

3.   Performance of the charts 

To judge the performance of the proposed EV chart, the ARL is used as a performance 

measure. Monte Carlo simulation is conducted to find 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1 of the process. The 

simulation details are: we have generated 105 random observations from the distributions given 

in section 2. The control limits of the EV chart are established using the expressions given in 

Equation (13) and Equation (14) and the values of design parameters given in Tables 1-3. Then, 

we noted the number of sample points at which the plotting statistics (𝐸𝑉𝑡
+ or 𝐸𝑉𝑡

−)  breach the 

control limits. At the end, we repeated this procedure 105 times to get the distribution of the run 

lengths. The structure of proposed scheme can easily be implemented in any statistical software. 

In this study, R language is utilized for the implementation and to evaluate the properties of the 

charts. 

𝐴𝑅𝐿1 and 𝑆𝐷𝑅𝐿 of EV chart  for 𝜆1 = 𝜆3 with fixed 𝐴𝑅𝐿0 = 168, 200, 370, 500, are 

given in Tables 4-7 and when 𝜆1 ≠ 𝜆3, the 𝐴𝑅𝐿1 of the proposed chart with fixed 𝐴𝑅𝐿0 = 168 

are provided in Table 8. The following observations can be made from Tables 4-8: 

i. The detection ability of the proposed chart for small shifts is higher for small 

values of smoothing parameters as compared to the large choices of 𝜆1 and 𝜆3.  

To detect the shift of size 𝛿 = 0.25, the average run length is much lower for  
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𝜆1 = 𝜆3 = 0.01 as compared to any other choices of the smoothing parameter (cf. 

Table 4). 

ii. The performance of the EV chart is substantial with smaller values of 𝜆1 = 𝜆3. 

iii. With the moderate value of 𝜆1 = 𝜆3 = 0.10, the shift of size 𝛿 = 0.50 can be 

identified with smaller variability in the run length distribution. 

iv. When 𝜆1 ≠ 𝜆3, the efficient choices of 𝜆1and 𝜆3 for detecting  𝛿 = 0.50 quickly 

is to use 𝜆1 = 0.05 and 𝜆3 = 0.01 along with the choice 𝜆1 = 0.1 and 𝜆3 = 0.01. 

v. The proposed chart works efficiently in finding undesirable process level with 

𝜆1 = 𝜆3  as compared to chart with 𝜆1 ≠ 𝜆3. 

vi. The recommendation is to use the 0 < 𝜆1 = 𝜆3 < 0.25, for quick detection of 

shifts of magnitude i.e. 𝛿 = 0.50 (cf. Tables 4-7) and in case of 𝜆1 ≠ 𝜆3, better to 

select 0.05 ≤ 𝜆1 ≤ 0.1 and 𝜆3 = 0.01. 

4.   Comparisons with other mixed charts under normal environment 

Since the goal is to provide an efficient chart from the existing mixed charts e.g. mixed 

EWMA-CUSUM (MEC) chart and mixed CUSUM-EWMA (MCE) chart. We compare the 

performance of the EV chart, only, with that of MEC and MCE charts because papers of MEC 

and MCE charts provide detailed comparisons with some other charts. For valid comparisons, we 

let the 𝐸𝑉 chart, MEC chart and MCE chart have the same in-control average run length that is 

𝐴𝑅𝐿0 and then compare their respective out-of-control average run lengths that is 𝐴𝑅𝐿1. For the 

said purpose, we simulate the ARLs of the MEC and MCE charts. Some representative results 

are provided in Table 9.  

It can be seen from Table 4 and Table 9 that EV chart is slightly proficient than the MEC 

chart but outperforms MCE chart in detecting small to moderate changes in the process location 
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parameter when the smoothing parameters of EV chart are equal i.e. 𝜆1 = 𝜆3. The performance 

of the proposal is more obvious and substantial with larger values of 𝜆1 = 𝜆3. 

Comparing the results of Table 8 of EV chart having 𝜆1 ≠ 𝜆3 with Table 9 of the MEC 

and MCE charts, it can be observed the EV chart is even more sensitive to small shift. The above 

discussion is made having 𝐴𝑅𝐿0 ≅ 168 , but this is generally true when other in-control 𝐴𝑅𝐿s 

are considered. 

As we discussed in section 2, the only use of 𝐴𝑅𝐿 is criticized by many researchers due 

to its skewed behavior. So for a better understanding of the 𝑅𝐿 distribution of EV, MEC and 

MCE charts, some other measures such as standard deviation of run length (𝑆𝐷𝑅𝐿) and different 

percentiles (𝑃𝑖 , 𝑖
𝑡ℎ percentile)  along with smallest and largest run lengths of the in-control 

process are reported in Table 10 and as these measures help in  studying the short run and long 

run behavior of the 𝑅𝐿 distribution. For instance, the 5% percentiles of the 𝑅𝐿 distribution of the 

EV, MEC and MCE charts are on average about 17, 4, 18, and 8 observations (cf. Table 10).   

To get more insight into the out-of-control 𝑅𝐿 distribution, Figure 2 presents the run 

length distribution curves of all the charts considering the value of smoothing parameter equal to 

0.10 with 𝛿 = 0.25 under a normal environment. The curves give the cumulative probability of 

detecting an out-of-control situation. A higher curve shows the superiority of a chart in terms of 

its quick detection of shifts in the process parameter.  

It can be observed from Figure 2 that EV chart with has higher probabilities for small run 

lengths to detect the shift than that of other memory charts. For detecting a shift of magnitude 

𝛿 = 0.25 at a run length equal to 30, the practitioner has to wait less with the mixed EV chart as 

compared to the MEC and MCE charts.  
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Overall, we see that the smaller values of smoothing parameters of the proposed EV chart 

offer better performance in spotting smaller changes in the process location parameter. 

4.1.   Evaluation under non-normal environments 

Design and implementation of the proposed EV chart, discussed in the preceding 

subsection is based on the assumptions that: process measurements are independent and 

identically distributed, both the in-control and out-of-control distributions are normal, and the 

process parameters of the in-control distribution are known. But there are many practical 

situations where these assumptions can be invalid. Coming section discusses the effect, on the 

performance of the proposed EV chart, of the case when process measurements collected at 

different time periods are from non-normal environments. For the sake of comparisons, the 

counterpart charts MEC and MCE are also considered. 

 

4.1.1.   Limits based on normality  

In this sub-section, the impact of non-normal observations on EV, MEC and MCE charts 

with control limits based on normality is evaluated. Consider the following scenario: When 

process measurements are from a non-normal distribution i.e. 𝑡 distribution with 4 degrees of 

freedom (𝑡4) having heavy tails and being flatter than that of normal distribution. Looking at the 

results given in Table 11, it can be observed that the proposed EV chart and MEC chart are 

insensitive to change in the environment (i.e. 𝑡4) in Phase II data, keeping the in-control 

properties nearly same as are in normal environment, whereas the MCE chart is effected by the 

change in distribution. The charts EV and MEC are observed to be robust under symmetric non-

normal distribution. The standard deviation of RL of EV is smaller as compared to the SDRL of 

MEC and MCE charts under in-control and out-of-control conditions. 
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4.1.2.   Limits based on non-normality  

The distributions of many quality characteristics (capacitance, insulation resistance and 

surface finish, roundness, mold dimensions and customer waiting times, impurity levels in 

semiconductor process chemicals, in nuclear reactions, the interval between beta particle 

emissions) of different processes follow non-normal distribution. Hence, the performance of the 

proposed EV and its competitors MEC and MCE is evaluated under different non-normal 

environments when the control limits are set from same environment unlike the previous 

paragraph. For this purpose, t, Laplace and Logistic from symmetric family of distributions and 

Gamma and Lognormal from skewed family of distributions are considered. Without loss of 

generality, parameters of the distributions are set to have mean zero and variance one for valid 

comparisons. The results for symmetric distributions are given in Table 12 and Table 13 contains 

ARL for skewed distributions. 

It can be observed from Table 12 that under t distribution the performance of MEC chart 

is similar to EV chart for shifts of small magnitude and EV chart outperforms the MEC chart 

when the value of 𝛿 ≥ 1.5.  For small shifts in the process location, MCE is not good but its 

detection ability is higher as compared to other charts for large shifts as when 𝛿 ≥ 1.5, ARL for 

EV, MEC and MCE charts, respectively, are 12.29, 12.52 and 7.14. Similar kind of behavior is 

observed for other distributions such as Logistic and Laplace (cf. Table 12).  

On the other hand, in case of Lognormal and Gamma distributions the EV chart performs 

more efficiently as compared to the MCE chart when the value of 𝛿 is relatively small that is 

𝛿 ≤ 0.75 and the performance of the EV is also relatively better than the MEC chart when the 

value of 𝛿 is quite large as 𝛿 ≥ 1.5. So, in general, we can say that the EV chart outperforms the 
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MCE chart in detecting shifts of small magnitude and outperforms the MEC chart in detecting 

the shifts of large magnitude.  

5.   An industrial application  

This section demonstrates how to construct the proposed EV chart. The data set is 

supplied by Zhang and Chen [27] and Triola [28], taking the first 16 samples each of size 5 

giving 80 observations to apply the proposed chart. The operation concerns the monitoring of the 

weights of quarters made by a mint machine that was placed into service at U.S. Mint. The run 

chart, histogram and probability plot are provided, respectively, in Figures 3-5 for the behavior 

of the weights of quarters. The run chart depicts that there is more variation in the samples (50
th

 

to 80
th

) as compared to other samples.  Anderson-Darling test is applied for the identification of 

the distribution of the weights of quarters. The test indicates that data do not follow normal 

distribution as p-value is less than 0.005.  For comparisons, MEC and MCE charts are also 

constructed. The smoothing parameter is set equal to 0.10 for all said charts and control limits 

are calculated to guarantee that 𝐴𝑅𝐿0 ≅ 168. The graphical displays of all three charts are 

presented in Figures 6-8. 

The proposed chart indicates that a signal at 50
th

 sample number whereas MEC identifies 

out-of-control point on 52
nd

 sample number and MCE chart observes no point out of the control 

limits. The proposed EV and MEC charts are proficient to detect decrease in the process location 

parameter (cf. Figures 6-7) while the MCE chart shows incapability to spot such change in the 

location parameter for the same data set (cf. Figure 8).  
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6.   Conclusions 

Control charts are widely used in monitoring the process parameters. Memory-less 

control charts (e.g. Shewhart-type charts) have low efficiency in detecting the small changes in 

the process parameters and memory-type control charts (e.g. CUSUM and EWMA charts) are 

very sensitive to small persistent shifts. Enhancing the performance of CUSUM and EWMA 

charts, an efficient variant of memory-type charts is developed based on mixing the double 

exponentially weighted moving average chart and CUSUM chart. Performance of the proposed 

efficient variant is compared with existing counterparts (i.e. mixed EWMA-CUSUM and mixed 

CUSUM-EWMA charts) under normal and non-normal environments. The proposed variant of 

memory-type charts outperforms the counterparts in detecting small and moderate persistent 

shifts.  Some feature of this structure can be useful for monitoring the dispersion parameter of 

the process and may be the topic of next investigation. 
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Figure Captions 

Figure 1: Flowchart of the proposed charts. 

Figure 2: Run length curves of EV, MEC and MCE charts with 𝛿 = 0.25 and 𝐴𝑅𝐿0 ≅ 168. 

Figure 3: Run chart of weights of quarter. 

Figure 4: Histogram of weights of quarter. 

Figure 5: Probability plot of weights of quarter. 

Figure 6: An industrial application of the EV chart.  

Figure 7: An industrial application of the MEC chart.  

Figure 8: An industrial application of the MCE chart. 

 

Table Captions 

Table 1:  𝑞 values of the 𝐸𝑉 chart for given 𝐴𝑅𝐿0, and  𝜆1 = 𝜆3with 𝑝 = 0.5. 

Table 2:  𝑞 values of the 𝐸𝑉 chart for 𝐴𝑅𝐿0 ≅ 168, and  𝜆1 ≠ 𝜆3, with 𝑝 = 0.5. 

Table 3:  𝑆𝐷𝑅𝐿 of the 𝐸𝑉 chart for given 𝐴𝑅𝐿0, and  𝜆1 = 𝜆3with 𝑝 = 0.5. 

Table 4:  𝐴𝑅𝐿1 and 𝑆𝐷𝑅𝐿 of 𝐸𝑉 chart when 𝜆1 = 𝜆3 with 𝐴𝑅𝐿0 ≅ 168. 

Table 5:  𝐴𝑅𝐿1 and 𝑆𝐷𝑅𝐿 of 𝐸𝑉 chart when 𝜆1 = 𝜆3 with 𝐴𝑅𝐿0 ≅ 200. 

Table 6:  𝐴𝑅𝐿1 and 𝑆𝐷𝑅𝐿 of 𝐸𝑉 chart when 𝜆1 = 𝜆3 with 𝐴𝑅𝐿0 ≅ 370. 

Table 7:  𝐴𝑅𝐿1 and 𝑆𝐷𝑅𝐿 of 𝐸𝑉 chart when 𝜆1 = 𝜆3 with 𝐴𝑅𝐿0 ≅ 500. 

Table 8:  𝐴𝑅𝐿1 of 𝐸𝑉 chart when 𝜆1 ≠ 𝜆3 with 𝐴𝑅𝐿0 ≅ 168. 

Table 9:  𝐴𝑅𝐿s of MEC and MCE charts with 𝐴𝑅𝐿0 ≅ 168. 

Table 10: Characteristics of in-control run length for EV, MEC and MCE charts with 𝐴𝑅𝐿0 ≅

168. 

Table 11: Characteristics of run length distribution of mixed charts under uncorrected limits 

with 𝐴𝑅𝐿0 ≅ 168. 

Table 12:  𝐴𝑅𝐿s of mixed charts for symmetric distributions with 𝐴𝑅𝐿0 ≅ 370. 

Table 13:  𝐴𝑅𝐿s of mixed charts for skewed distributions with 𝐴𝑅𝐿0 ≅ 370. 
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Figure 2 
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Figure 4 
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Figure 6 
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Figure 8 
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Table 1 

𝐴𝑅𝐿0 
𝜆1 = 𝜆3 

0.01 0.05 0.1 0.25 0.5 0.75 1 

168 116.04 51.34 39 23.91 13.1 7.4 4 

200 124 58.04 43.99 26 14 7.8 4.18 

370 165 84.6 60 32.8 17 9.24 4.78 

500 193.6 100.4 68.84 36.74 18.6 9.95 5.08 

 

 

 

 
Table 2 

𝜆1 0.01 0.01 0.01 0.05 0.05 0.05 0.1 0.1 0.1 

𝜆3 0.05 0.1 0.25 0.01 0.1 0.25 0.01 0.05 0.25 

𝑞 38.28 30.06 25.89 150.84 38.28 30.3 169.4 55.9 28 

𝐴𝑅𝐿 169.79 168.33 167.09 168.46 168.90 169.70 169.31 169.07 169.04 

𝑆𝐷𝑅𝐿 181.85 161.34 154.45 187.88 146.48 142.79 174.04 145.27 145.53 

𝜆1 0.25 0.25 0.25 0.5 0.5 0.5 0.75 0.75 0.75 

𝜆3 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

𝑞 193 61.26 39.8 209.7 66 40.68 218.6 68 41.5 

𝐴𝑅𝐿 168.61 168.35 169.66 169.31 167.88 169.10 168.55 168.17 168.88 

𝑆𝐷𝑅𝐿 167.59 143.32 146.80 165.11 139.62 145.74 167.70 141.28 146.05 

 

 

 

Table 3 

𝐴𝑅𝐿0 
𝜆1 = 𝜆3 

0.01 0.05 0.1 0.25 0.5 0.75 1 

168 252.46 149.18 143.49 148.73 154.85 159.21 161.73 

200 291.57 176.35 171.60 180.99 185.76 195.13 198.40 

370 417.52 317.56 324.32 336.72 351.91 359.34 371.45 

500 509.96 430.64 437.63 466.81 475.50 491.99 500.54 
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Table 4 

𝛿 

𝜆1 = 0.01

𝜆3 = 0.01
 

𝜆1 = 0.05

𝜆3 = 0.05
 

𝜆1 = 0.1

𝜆3 = 0.1
 

𝜆1 = 0.25

𝜆3 = 0.25
 

𝜆1 = 0.5

𝜆3 = 0.5
 

𝜆1 = 0.75

𝜆3 = 0.75
 

𝜆1 = 1

𝜆3 = 1
 

𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 

0.05 136.1 198 151 129.5 149.5 125.3 154.3 133.8 156.1 143.1 159.2 150.9 162.1 155.9 

0.1 86.4 114.9 112.5 91.38 114.9 91.72 120.5 102.1 125 111.2 131.4 121.5 140.3 138.6 

0.2 43.75 50.19 63.83 44.34 65.86 44.65 68.23 50.67 71.92 59.35 78.74 70.17 92.75 86.43 

0.25 32.98 34.9 50.27 32.39 52.01 32.34 53.44 37.42 55.65 43.88 61.11 52.59 74.97 69.93 

0.5 13.35 11.7 23.61 12.13 25.52 10.84 24.15 11.37 22.77 13.03 23.13 15.83 26.74 21.43 

0.75 7.81 5.44 14.76 6.73 17.04 5.93 15.77 5.49 13.74 6.05 12.75 6.9 13.34 9.02 

1 5.61 3.21 10.53 4.41 12.8 4.02 12.03 3.42 9.97 3.53 8.73 3.87 8.36 4.74 

1.5 3.76 1.51 6.69 2.27 8.6 2.29 8.52 1.84 6.75 1.71 5.51 1.77 4.75 2.01 

2 3.02 0.9 5.01 1.37 6.5 1.49 6.74 1.23 5.29 1.07 4.14 1.05 3.35 1.18 

2.5 2.59 0.65 4.08 0.93 5.24 1.06 5.62 0.93 4.43 0.77 3.39 0.72 2.61 0.78 

3 2.33 0.51 3.53 0.69 4.48 0.81 4.89 0.74 3.88 0.62 2.94 0.58 2.19 0.58 

4 2.07 0.25 2.95 0.44 3.54 0.57 3.94 0.54 3.15 0.41 2.3 0.46 1.71 0.49 

5 2.01 0.07 2.54 0.5 3.06 0.31 3.29 0.46 2.8 0.41 2.02 0.16 1.31 0.46 

 

 

 

 

Table 5 

𝛿 

𝜆1 = 0.01

𝜆3 = 0.01
 

𝜆1 = 0.05

𝜆3 = 0.05
 

𝜆1 = 0.1

𝜆3 = 0.1
 

𝜆1 = 0.25

𝜆3 = 0.25
 

𝜆1 = 0.5

𝜆3 = 0.5
 

𝜆1 = 0.75

𝜆3 = 0.75
 

𝜆1 = 1

𝜆3 = 1
 

𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 

0.05 151.7 209.9 178.4 153.6 180.4 153.4 184.8 162.8 185 170.6 185.9 174.4 189.3 184.2 

0.1 100.6 124.7 130.1 102.6 133.1 105.4 141.5 122.5 145.9 132.7 154.6 147.1 166.5 161.6 

0.2 47.98 50.92 70.8 46.38 72.91 48.37 74.72 55.6 79.3 65.58 87.41 78.2 108 103.9 

0.25 36.99 38.4 56.02 34.62 57.18 34.34 58.14 39.48 61.05 47.08 68.04 59.75 83.71 78.99 

0.5 14.29 12.02 26.59 12.61 27.93 11.23 25.55 11.99 24.07 13.9 24.27 16.72 28.47 23.07 

0.75 8.4 5.88 16.55 7.07 18.75 6.1 16.62 5.63 14.62 6.44 13.23 6.94 13.97 9.41 

1 5.92 3.38 11.88 4.6 14.16 4.13 12.73 3.47 10.46 3.6 9.09 3.96 8.65 4.79 

1.5 3.95 1.55 7.49 2.4 9.55 2.38 9.02 1.88 7.04 1.74 5.7 1.82 4.95 2.04 

2 3.12 0.92 5.56 1.48 7.22 1.57 7.14 1.24 5.51 1.09 4.28 1.09 3.47 1.21 

2.5 2.69 0.68 4.49 1.02 5.81 1.13 5.97 0.93 4.63 0.78 3.51 0.76 2.72 0.81 

3 2.41 0.54 3.84 0.76 4.95 0.86 5.18 0.76 4.03 0.63 3.03 0.58 2.27 0.59 

4 2.09 0.29 3.14 0.44 3.88 0.59 4.16 0.53 3.27 0.46 2.39 0.5 1.77 0.47 

5 2.01 0.1 2.8 0.42 3.25 0.44 3.52 0.51 2.92 0.31 2.04 0.21 1.37 0.48 
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Table 6 

𝛿 

𝜆1 = 0.01

𝜆3 = 0.01
 

𝜆1 = 0.05

𝜆3 = 0.05
 

𝜆1 = 0.1

𝜆3 = 0.1
 

𝜆1 = 0.25

𝜆3 = 0.25
 

𝜆1 = 0.5

𝜆3 = 0.5
 

𝜆1 = 0.75

𝜆3 = 0.75
 

𝜆1 = 1

𝜆3 = 1
 

𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 

0.05 270.7 293.6 296.5 245.4 300.6 258 305.9 276.4 323.3 304.9 332.7 321.2 348.7 346.1 

0.1 157.1 152.4 192 144.2 196.4 156.6 208 177.5 228.9 208.6 252.6 240.9 283.5 276.3 

0.2 73.07 63.57 95.2 55.09 94.57 59.02 97.22 70.77 107.9 89.3 126.7 116.2 164.1 160.1 

0.25 53.93 45.04 74.81 38.36 73.35 40.56 73.08 48.73 78.7 61.37 92.52 81.4 123.2 117.5 

0.5 20.2 15.05 36.64 13.49 35.14 12.4 30.86 13.35 28.64 15.39 28.74 18.86 35.28 28.92 

0.75 11.29 7.13 23.94 7.77 23.86 6.53 19.88 6.31 16.91 6.89 15.65 7.98 16.34 10.66 

1 7.74 4.17 17.4 5.32 18.27 4.38 15.03 3.81 12.11 3.96 10.46 4.3 9.9 5.23 

1.5 4.89 1.92 11.03 2.97 12.53 2.58 10.62 2 8.1 1.91 6.49 1.94 5.52 2.18 

2 3.78 1.09 8.02 1.86 9.53 1.74 8.43 1.32 6.3 1.17 4.83 1.16 3.86 1.26 

2.5 3.18 0.74 6.28 1.29 7.65 1.29 7.04 0.99 5.24 0.83 3.94 0.8 3 0.85 

3 2.83 0.6 5.27 0.97 6.47 1 6.13 0.79 4.59 0.66 3.38 0.6 2.48 0.63 

4 2.35 0.48 4.07 0.62 4.97 0.68 4.91 0.59 3.73 0.52 2.73 0.48 1.96 0.4 

5 2.08 0.27 3.38 0.5 4.12 0.48 4.14 0.42 3.14 0.35 2.2 0.4 1.61 0.49 

 

 

Table 7 

𝛿 

𝜆1 = 0.01

𝜆3 = 0.01
 

𝜆1 = 0.05

𝜆3 = 0.05
 

𝜆1 = 0.1

𝜆3 = 0.1
 

𝜆1 = 0.25

𝜆3 = 0.25
 

𝜆1 = 0.5

𝜆3 = 0.5
 

𝜆1 = 0.75

𝜆3 = 0.75
 

𝜆1 = 1

𝜆3 = 1
 

𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 𝐴𝑅𝐿1 𝑆𝐷𝑅𝐿 

0.05 349.7 335.3 378.4 312 384.2 330.4 405.2 369.5 430.3 410.7 444.3 430 461.3 455.8 

0.1 195.1 165.9 228.6 169.3 233.9 185.4 258.3 223.5 288.1 268.6 315.1 307.2 374 376.3 

0.2 89.08 67.7 109.3 61.59 106.8 65.55 112 82.12 125 104.3 150 136.2 199.2 188.4 

0.25 66.05 48.95 85.54 41.27 82.09 43.82 81.69 52.68 89.02 69.04 105.2 91.68 145.8 137.3 

0.5 24.64 16.64 41.97 13.89 38.87 13 33.57 14.23 31.09 16.37 31.37 20.26 38.91 31.43 

0.75 13.59 8.03 28.16 8.12 26.47 6.75 21.72 6.7 18.22 7.23 16.6 8.28 17.35 11.26 

1 9.16 4.74 20.61 5.53 20.38 4.51 16.31 3.97 13 4.15 11.13 4.47 10.53 5.57 

1.5 5.64 2.16 13.14 3.18 14.1 2.65 11.46 2.07 8.64 1.99 6.9 2.03 5.86 2.27 

2 4.24 1.24 9.52 2.06 10.77 1.81 9.1 1.36 6.7 1.21 5.13 1.21 4.08 1.3 

2.5 3.51 0.8 7.47 1.45 8.66 1.35 7.65 1.02 5.56 0.86 4.14 0.83 3.14 0.88 

3 3.11 0.6 6.16 1.08 7.31 1.05 6.63 0.82 4.86 0.68 3.56 0.64 2.61 0.66 

4 2.6 0.51 4.68 0.69 5.58 0.72 5.31 0.59 3.96 0.47 2.88 0.44 2.03 0.39 

5 2.22 0.41 3.89 0.5 4.58 0.56 4.47 0.52 3.32 0.47 2.35 0.48 1.72 0.45 
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Table 8 

𝛿 
𝜆1 = 0.01 𝜆1 = 0.05 𝜆1 = 0.10 𝜆1 = 0.25 𝜆1 = 0.50 𝜆1 = 0.75 

𝜆3
= 0.05 

𝜆3
= 0.10 

𝜆3
= 0.25 

𝜆3
= 0.01 

𝜆3
= 0.10 

𝜆3
= 0.25 

𝜆3
= 0.01 

𝜆3
= 0.05 

𝜆3
= 0.25 

𝜆3
= 0.01 

𝜆3
= 0.05 

𝜆3
= 0.10 

𝜆3
= 0.01 

𝜆3
= 0.05 

𝜆3
= 0.25 

𝜆3
= 0.01 

𝜆3
= 0.05 

𝜆3
= 0.25 

0.05 143.7 147.1 147.9 144.9 151.2 151.3 146.5 148.7 150.4 145.6 146.9 148.5 149.8 153.9 153.5 148.2 152.2 155 

0.1 103.6 108.9 110.5 100.8 113.9 114.5 105.9 114.6 117.6 107 114.3 117 108.1 118 118.7 106.8 117.4 120 

0.2 57.24 61.29 63.53 53.71 65.64 66.36 56.62 65.1 66.47 58.05 66.27 67.3 58.34 67.63 67.98 57.97 67.54 68.87 

0.25 44.15 48.97 51.39 40.65 52.19 52.82 43.69 51.78 52.9 45.1 52.75 53.34 44.87 53.58 53.72 44.62 53.56 54.29 

0.5 19.37 23.49 26.6 16.7 26.26 27.55 17.9 24.07 25.76 18.55 24.3 24.8 18.67 24.96 24.91 18.52 25.05 25.15 

0.75 11.84 15.34 18.69 9.75 17.59 19.46 10.67 15.39 18 10.9 15.27 16.16 10.89 15.55 15.93 10.77 15.6 16.03 

1 8.2 11.11 14.45 6.86 13.16 15.35 7.39 10.96 14.02 7.68 10.98 12.02 7.64 11.08 11.69 7.51 11.07 11.67 

1.5 5.27 7.25 10.24 4.47 8.75 11.09 4.78 7.01 10.1 5.03 7.12 8.12 4.93 7.05 7.71 4.8 6.96 7.61 

2 4.04 5.44 8.03 3.5 6.58 8.79 3.72 5.24 8.02 3.87 5.33 6.16 3.82 5.25 5.83 3.7 5.12 5.68 

2.5 3.38 4.43 6.65 2.98 5.29 7.29 3.16 4.28 6.71 3.3 4.36 5.04 3.22 4.25 4.73 3.1 4.11 4.56 

3 2.98 3.79 5.7 2.65 4.51 6.31 2.81 3.67 5.79 2.92 3.75 4.31 2.87 3.67 4.08 2.75 3.53 3.91 

4 2.45 3.09 4.5 2.23 3.55 5 2.33 3.04 4.61 2.44 3.09 3.44 2.39 3.04 3.27 2.3 2.93 3.15 

5 2.11 2.7 3.79 2.04 3.06 4.18 2.07 2.68 3.9 2.11 2.75 3.02 2.09 2.69 2.92 2.06 2.52 2.8 
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Table 9 

𝛿 
MEC chart MCE chart 

𝜆 = 0.1 𝜆 = 0.25 𝜆 = 0.5 𝜆 = 0.75 𝜆 = 0.1 𝜆 = 0.25 𝜆 = 0.5 𝜆 = 0.75 

0 168.04 168.07 169.88 171.04 168.30 169.39 168.36 170.28 

0.25 52.64 54.18 59.78 68.15 67.79 70.42 72.90 73.45 

0.5 24.86 22.41 22.55 24.13 25.61 24.94 25.61 25.43 

0.75 17.02 14.02 12.86 12.61 13.52 12.77 12.64 12.43 

1 13.33 10.48 8.96 8.27 9.34 8.39 7.78 7.54 

1.5 9.74 7.33 5.79 5.00 5.87 5.05 4.42 4.09 

2 7.91 5.82 4.43 3.74 4.41 3.73 3.14 2.79 

 
Table 10 

Characteristics EV (𝜆1 = 𝜆3 = 0.1) EV (𝜆1 = 0.1, 𝜆3 = 0.01) MEC (𝜆 = 0.1) MCE (𝜆 = 0.1) 

Min 5 2 9 3 

𝑃1 17 4 18 8 

𝑃5 38 7 36 25 

𝑃10 47 13 45 35 

𝑃25 66 41 64 55 

𝑃50 125 116 125 122 

𝑃75 222 239 229 234 

𝑃90 356 399 368 382 

𝑃95 457 521 470 494 

𝑃99 688 792 699 741 

Max 1746 1879 2282 1796 

ARL 167.67 169.24 170.60 170.40 

SDRL 143.72 174.73 149.58 161.94 
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Table 11 

Chart 
Smoothing  

Parameter 

Reference  

Value 
Limit 𝛿 𝐴𝑅𝐿 𝑆𝐷𝑅𝐿 𝑀𝑖𝑛 𝑃5 𝑃25 𝑃50 𝑃75 𝑃95 𝑀𝑎𝑥 

EV 0.1 0.5 39 

0 173.4 151.33 2 28 68 129 230 470 1542 

0.05 153.55 130.5 2 27 62 115 205 410 1655 

0.1 117.94 94.52 2 25 51 90 155 302 959 

0.2 66.45 44.93 3 19 35 54 85 156 455 

0.25 52.65 32.39 2 18 30 44 67 116 317 

0.5 25.33 10.5 2 12 18 24 31 45 91 

0.75 16.95 5.81 2 9 13 16 20 28 63 

1 12.78 3.92 2 7 10 12 15 20 38 

1.5 8.54 2.22 2 5 7 8 10 12 26 

2 6.45 1.43 2 4 6 6 7 9 15 

2.5 5.26 1.04 2 4 5 5 6 7 12 

3 4.49 0.8 2 3 4 4 5 6 11 

4 3.54 0.59 2 3 3 4 4 4 9 

5 3.05 0.32 2 3 3 3 3 4 7 

MCE 0.1 0.5 5.96 

0 154.49 149.85 1 12 47 109 214 448 1397 

0.05 145.05 137.97 1 13 46 103 199 422 1329 

0.1 131.27 127.7 1 12 42 92 178 382 1391 

0.2 93.43 85.78 1 10 32 67 129 271 829 

0.25 74.17 67.38 1 9 26 54 100 211 751 

0.5 27.18 20.48 1 7 13 21 35 67 226 

0.75 13.7 7.69 1 5 8 12 17 29 78 

1 9.09 4.04 1 4 6 8 11 17 37 

1.5 5.48 1.88 1 3 4 5 6 9 18 

2 3.99 1.17 1 2 3 4 5 6 11 

2.5 3.16 0.86 1 2 3 3 4 5 8 

3 2.6 0.7 1 2 2 3 3 4 6 

4 1.95 0.46 1 1 2 2 2 3 5 

5 1.47 0.52 1 1 1 1 2 2 4 

MEC 0.1 0.5 21.3 

0 176.3 157.46 3 26.95 65 128 239 490 1710 

0.05 156.94 136.55 5 25 59 115 210 430 1209 

0.1 119.03 98.59 3 23 49 90 157 315 931 

0.2 66.77 48.04 3 19 33 53 85 161 470 

0.25 52.63 34.81 5 17 28 43 66 123 335 

0.5 24.75 10.14 4 13 18 22 29 44 107 

0.75 17.06 5.18 3 11 14 16 20 27 55 

1 13.39 3.17 1 9 11 13 15 19 37 

1.5 9.78 1.76 3 7 9 10 11 13 24 

2 7.9 1.19 4 6 7 8 9 10 17 

2.5 6.72 0.88 3 6 6 7 7 8 14 

3 5.92 0.7 3 5 5 6 6 7 11 

4 4.85 0.52 2 4 5 5 5 6 9 

5 4.09 0.35 2 4 4 4 4 5 7 
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Table 12 

𝛿 
𝑡4 Logistic Laplace 

EV MEC MCE EV MEC MCE EV MEC MCE 

0 369.47 371.42 370.31 369.64 367.95 371.58 368.62 367.68 369.8 

0.25 72.32 71.12 140.78 73.04 71.97 116.48 73.11 72.36 130.12 

0.5 34.37 32.06 39.54 34.91 32.16 34.67 34.94 32.22 37.31 

0.75 23.4 21.88 18.02 23.69 22.01 16.85 23.7 22 17.63 

1 17.95 17.14 11.63 18.17 17.29 11.09 18.17 17.32 11.47 

1.5 12.29 12.52 7.14 12.47 12.61 6.83 12.47 12.71 7.04 

2 9.3 10.22 5.21 9.44 10.29 4.97 9.45 10.26 5.13 

3 6.32 7.66 3.44 6.44 7.71 3.27 6.44 7.72 3.38 

4 4.87 6.28 2.56 4.95 6.32 2.4 4.96 6.31 2.5 

5 4.05 5.35 2.04 4.11 5.39 1.96 4.1 5.4 2.02 

 

Table 13 

𝛿 
Lognormal Gamma 

EV MEC MCE EV MEC MCE 

0 374.64 370.71 372.5 370.06 373.08 375.73 

0.25 74.77 74.17 177.84 73.86 73.08 104.55 

0.5 33.83 31.21 65 35.03 32.71 36.52 

0.75 22.79 20.95 25 23.64 22.11 17.81 

1 17.35 16.44 14.6 18.29 17.31 11.43 

1.5 11.9 12.04 8.55 12.45 12.66 6.92 

2 8.96 9.74 6.23 9.46 10.3 5.06 

3 6.1 7.34 4.15 6.42 7.72 3.29 

4 4.71 5.92 3.01 4.94 6.32 2.44 

5 3.89 4.99 2.58 4.09 5.43 1.92 
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