Plant-mediated green synthesis of Ag nanoparticles using *Rauvolfia tetraphylla* (L) flower extracts: Characterization, biological activities, and screening of the catalytic activity in formylation reaction

S.P. Vinay\(^a\), Udayabhanu\(^b\), G. Nagaraju\(^b\), H.S. Lalithamba\(^c\), and N. Chandrasekhar\(^a\)*

\(^a\) Research and Development Center, Department of Chemistry, Shridevi Institute of Engineering and Technology, Tumakuru - 572106, Karnataka, India.
\(^b\) Energy Materials Research Laboratory, Department of Chemistry, Siddaganga Institute of Technology, Tumakuru - 572103, Karnataka, India.
\(^c\) Department of Chemistry, Siddaganga Institute of Technology, Tumakuru - 572103, Karnataka, India.

Received 19 June 2018; received in revised form 13 November 2018; accepted 14 September 2019

KEYWORDS

Rauvolfia tetraphylla; Silver nanoparticles; Formylation; Antibacterial; Antifungal; Antimitotic assay.

Abstract. Various plant extracts have currently been used in the bioproduction of nanoparticles with enormous applications. In this study, *Rauvolfia tetraphylla* flower extracts were employed to obtain silver nanoparticles (Ag NPs) in bioproduction. The biologically produced nanoparticles were characterized by XRD, FTIR, UV-Vis, BET, SEM, EDXA, and TEM analyses. Phytochemical screening of the *Rauvolfia tetraphylla* flower extracts indicated presence of 9 different constituents. Bioreduction of Ag NPs by phytochemicals was revealed by FTIR analysis. The elemental composition of Ag NPs was reported by spectral EDXA. The Ag NPs exhibited anti-bacterial activity against *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Klebsiella aerogens*, and *Escherichia coli*; anti-fungal activity against *Penicillium citrinum* and *Aspergillus flavus*; and antimitotic activity. The response of amines in formic acid in the presence of an Ag NPs catalyst in dissolvable free condition provided high yielded convention for the N-formylation to shape the comparing formamide derivatives. N-formylation had the characteristics of incite recyclability, clean strategy, environmental friendliness under milder response conditions, and straightforward work-up with brilliant yield of the coveted items.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Nanotechnology is a new-found and quickly developing field with myriad applications in science and innovation. Nanotechnology can be used to produce silver nanoparticles with unique optical, electrical, and magnetic properties based on their sizes. Nanoparticles are known for biological activities suitable for incorporation into various applications including biosensors, antimicrobials, cosmetic products, materials for cryogenic superconductors, composite filaments, and electronic components [1]. Ag NPs are endowed with distinctive properties, like chemical stability, conductivity, and catalytic and antibacterial activities [2] in colloid...
state. Silver in different forms finds various applications and as a nanoparticle, it has been used in dental medicine, wound treatment, coating of stainless steel materials, water purification, and sunscreen lotions [3]. Nano catalysis is the fastest growing field which involves the use of nanoparticles as catalysts. Metal ions and noble metals such as Pt, Au, and Ag can catalyze the decomposition of \(\text{H}_2\text{O}_2 \) to oxygen [4]. Exposure of the luminol-\(\text{H}_2\text{O}_2 \) system to colloidal Ag solution causes chemiluminescence emission as an indication of nano catalysis [5]. Silver nanoparticles have extensive applications in integrated circuits [6]. Silver has long been recognized as an antiseptic and anti-biotic due to its inhibitory effect on many microorganisms [7].

The use of plants in the synthesis of nanoparticles has several advantages such as avoiding the complicated processes of maintaining cell cultures, easy scale-up for large-scale synthesis, and cost-effectiveness. The plant extracts may act as both reducing and stabilizing agents during the bioproduction of nanoparticles [8]. The use of plant extracts for the bioproduction of nanoparticles has drawn the attention of researchers, because the method is rapid, economical, and eco-friendly and it provides a single-step technique for such nano syntheses [9]. The chemical and physical methods of producing nanoparticles require high pressure, energy, and temperature as well as toxic chemicals [10]. In recent years, the use of plants and their extracts for bioproduction of nanoparticles has become popular as the method is cost-effective and environmentally friendly [11].

Many researchers used a variety of plants for the biological synthesis of silver nanoparticles. Also, plants and their extracts have been used for bioproduction of nanoparticles. The plant extracts of *Syzygium cumini*, *Solanium tricocatum*, *Citrus sinensis*, and *Centella asiatica* [12]; *Citrus sinensis*, *Solanium tricocatum*, *Syzygium cumini*, and *Ocimum tenuiflorum* [13]; *kedysarum* plant and the *Acanthe phyllum bmcetatum* [14]; *Azadirachta indica* extracts [15]; *Jasminum grandiflorum* and *Cymbopogon citrullus* [16]; *Trianthema decandrum* [17]; *Cressa cretica* [18]; *Jasmin [19]; *Strawberry* [20]; *Euphorbia hirta* (Euphorbiaceae) [21]; *Avocado* [22]; and leaf powder from *C. asiatica*, *C. sinensis*, *S. tricocatum*, and *S. cumini* [23] are some instances.

Rauwolfia tetraphylla (Figure 1), belonging to Apocynaceae family, has many applications in traditional medicine. Its extracts are used to treat snake poisoning and mental illness. *Rauwolfia tetraphylla* powder has also demonstrated antimicrobial properties [24].

In this study, the bioproduction of Ag NPs is attempted with flower extracts of *Rauwolfia tetraphylla*. The silver nanoparticles obtained are characterized and evaluated for their antimicrobial and antimitotic activities. Formamides are critical intermediates in manufactured natural science and in peptide blend, they are utilized as securing bunch for amines [25]. They are likewise utilized for amalgamation of pharmacologically significant isocyanides [26] as well as nitrogen connected heterocycles [27]. Formamides are the impetuses, discover its applications in the hydrolyslation and alliteration responses of carbonyl mixes [28, 29]. Presently, formamides are combined from the accompanying techniques incorporates: acidic formic anhydride, actuated formic esters, imidazole in warm DMF have been utilized [30-32]. Numerous other helpful formylation impetuses, for example, AgO, silver metal and VBI with formic corrosive have been accounted for formic acid has been reported [33-35].

2. Experimental

2.1. Collection and preparation of flower extracts

Rauwolfia tetraphylla plant was collected from the forest of Devarayanadurga in Tumakuru district, Karnataka, India. The plant was authenticated by taxonomist Dr. Y.N. Seetharam, co-ordinator from the Department of Botany at Tumkur University, Tumkur, Karnataka, India. Flowers from the twigs of *Rauwolfia tetraphylla* were collected and washed with tap water for removing the dirt and dust particles followed by double-distilled water. *Rauwolfia tetraphylla* flowers (20 g) were put in 100 mL double-distilled water placed on a heating mantle at 60°C for 30 min with stirring. Afterwards, the mixture was cooled to room temperature (30°C) and filtered by Whatman filter paper no. 1. The resulting pale yellow colored flower extract was used as reducing and capping agent in bioproduction of Ag NPs.

2.2. Phytochemical analysis

The flower extracts of *Rauwolfia tetraphylla* were assessed [37] for the existence of phytochemical con-

![Figure 1. *Rauwolfia tetraphylla* plant material (inset: flower).](image-url)
ponents such as tannin, saponins, phenols, terpenoids, tannins, flavonoids, anthraquinones, amino acids, phlobatannins, oxalates, cardiac glycosides, and alkaloids through the standard procedures. The obtained results are shown in Table 1 [36,38].

2.3. Synthesis of silver nanoparticles
Rawolphia tetraphylla flower extract (10 mL) was added to AgNO₃ (90 mL) solution in a conical flask and mixed thoroughly at 30°C; then, the solution was placed on a magnetic stirrer for 10 min. The mixture was set aside for 24 h to complete bio-reduction to produce nanoparticles [39].

2.4. Characterization of silver nanoparticles
The synthesized Ag nanoparticles were characterized by XRD, UV-Vis, FT-IR, BET, SEM, EDXA, and TEM analyses [40].

2.5. Antimicrobial activity of Ag NPs
The antibacterial activity of biologically synthesized Ag NPs was determined by the disc diffusion technique. The bacterial strains such as *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Klebsiella aerogenes* and *E.coli*, were cultured in NB media for 24 hours at 37°C [41,42]. One mL of each bacterial broth culture was poured over the sterile NA media. Five-mm filter paper discs impregnated with silver nanoparticles suspension (10 µg/mL) were placed on nutrient agar medium. The filter paper discs dipped in double-distilled water served as negative control. The positive control discs contained Taxim (1 µg/mL) [43]. The test discs were also prepared by dipping in flower crude extracts (20%). The filter paper discs were placed over the surface of agar plates inoculated with test organism and incubated for 24 h at 37°C. The zones of inhibitions were measured in a measuring scale [44,45].

2.6. Antifungal activity of silver nanoparticles
Antifungal activity of Ag NPs was evaluated against selected plant pathogenic fungi, viz. *Penicillium citrinum* and *Aspergillus flavus*, by Kirby-Bauer disc diffusion method [46,47]. Ag NPs with the concentration of 20 µg/disc was impregnated on paper discs. Norfloxacin was maintained as a positive control at the concentration of 20 µg/disc and double-distilled water was used as negative control [48]. Fungal spore suspension was poured on Potato Dextrose Agar (PDA) plates and paper discs were placed on the medium. The plates, containing paper discs, were incubated at 28°C for 48-72 h. The inhibition zone was measured in the measuring scale.

2.7. Antimiotic assay
Antimiotic activity was determined using *Allium cepa* (onion) bulbs. *Allium cepa* was used to assess the disturbances in the mitotic cycle and chromosomal aberrations. *Allium cepa* has advantages over other short-term tests. Among the endpoints of *A. cepa* root chromosomal aberrations, detection of chromosomal aberration has been the most commonly applied technique to detect genotoxicity/antigenotoxicity for years. The mitotic index and chromosomal abnormalities were used to evaluate genotoxicity and micro nucleus analysis was used to verify mutagenicity of different chemicals. The effect of the Ag NPs synthesized by *Rawolphia tetraphylla* flower extracts on cells showing different stages of mitosis, i.e., interphase, metaphase, telophase, and anaphase, was considered. The antimiotic index was calculated by the following formula [49]:

\[
\text{Mitotic index} = \frac{\text{Number of dividing cells}}{\text{Total number of cells}} \times 100
\]

2.8. Synthesis of formamide derivatives of aromatic amines
Adopting the follow-up procedure, amine (1 mmol) was added to 98% formic acid (3 mmol) and Ag NPs (2 mol%) mixture. This reaction mixture was heated to 70°C with constant stirring. The reaction progress was observed by TLC. After the end of the reaction, EtOAc was added to the reaction mixture and the Ag NPs catalyst was removed through filtration process. The obtained organic solvent was clearly washed with deionised water and saturated brine solution. Then, it was dried over anhydrous Na₂SO₄. After the removal of the solvent, a pure product was obtained and no further purification process was needed.

3. Results and Discussion

3.1. Biosynthesis of Ag NPs using *Rawolphia tetraphylla* flower extracts
About 10 mL *Rawolphia tetraphylla* flower extract was added to 90 mL AgNO₃ solution at room temperature.
The mixture was stirred continuously for 10 min. The pale yellow color of the mixture changed to dark brown after 24 h, which indicated the biosynthesis of silver nanoparticles (Figure 2). Silver nanoparticles were purified by repeated centrifugation at 8,000 rpm for 15 minutes using cooling centrifuge (Remi C-24). The Ag NPs obtained was dried and stored.

3.2. X-ray diffraction studies
The XRD peaks at 2θ = 38°, 44°, 64°, and 77° were indexed with the planes (111), (200), (220), and (311) for the face centred cubic lattice of the attained Ag (silver) as per the JCPDS (Joint Committee on Powder Diffraction Standards). Card no. 04-0783 matched the database for Ag NPs synthesized by *Rauwolfia tetraphylla* flower extracts [50]. The calculated D (average size) value of synthesized silver nanoparticles was found to be 29.2 nm as calculated by the Debye-Scherer formula (Figure 3) [51].

3.3. FT-IR analysis
Strong infrared bands were observed at 3289, 2916, 1597, 1387, 1062, and 536 cm$^{-1}$. The strong broad band, which appeared at 3289 cm$^{-1}$ alcohol O-H stretch; the bands at 2916 cm$^{-1}$ Amine N-H stretch, 1597 cm$^{-1}$ Cyclic allene C=C, 1387 cm$^{-1}$ Alkane C-H, and 1062 cm$^{-1}$ Primary alcohol C-O; and the low band at 536 cm$^{-1}$ corresponded to the halogen compound C-Br stretch (Figure 4).

3.4. BET studies
Pore size distributions of the synthesized Ag NPs were studied by N_2 absorption-desorption isotherms measured using static volumetric adsorption analyzer. The results are presented in Figure 5. Perforated surface area of Ag NPs showed superior surface for catalytic properties as it enabled adsorption/desorption of reactant molecules [52]. The pore size distribution curves and specific surface area of the synthesized Ag NPs were obtained by BET gas sorption instrument. In Figure 5, it is obvious that the Ag NPs has mesoporous

![Figure 2](image1.png)

Figure 2. Bioproduction of Ag NPs from *Rauwolfia tetraphylla* flower extracts.

![Figure 3](image2.png)

Figure 3. XRD pattern of Ag NPs from *Rauwolfia tetraphylla* flower extracts.

![Figure 4](image3.png)

Figure 4. FT-IR spectrum of Ag NPs from *Rauwolfia tetraphylla* flower extracts.

![Figure 5](image4.png)

Figure 5. N_2 adsorption/desorption isotherms (inset: pore size distribution curves of Ag NPs).
nature at low pressure regions \((P/P_0 < 0.7)\) with the typical IV adsorption type of H3 hysteresis loop [53]. After increase in the pressure beyond 0.7 \((P/P_0)\), the isotherm rises suddenly and forms a large loop. Figure 5 shows the pore size distribution curves of the Ag NPs, in which it can be seen that the pore size probability for Ag NPs is about 20 nm with the surface area of 26.31 m²/g. With reduction in the size of Ag, surface area increases, which enhances the catalytic properties of Ag NPs.

3.5. UV-Vis-spectroscopy analysis

UV-vis spectrum of silver nanoparticles biosynthesized by *Rauvolfia tetraphylla* flower extracts was 460 nm, which was peak broadening with an increase in absorbance due to increase in the number of Ag NPs formed as a result of reduction in Ag⁺ ions present in the aqueous AgNO₃ solution (Figure 6) [54].

3.6. Scanning electron microscopy analysis

Scanning Electron Microscope (SEM) images of Ag NPs biosynthesized by the flower extracts *Rauvolfia tetraphylla* (Figure 7) showed separate as well as agglomerate silver nanoparticles [44]. The shape of the particles was spherical in morphology and particles were distributed uniformly.

3.7. Energy-dispersive spectroscopy analysis

Energy-Dispersive X-ray Analysis (EDXA) describes the elemental analysis of the mentioned silver nanoparticles. The spectrum of Ag NPs was measured at the energy of 3 keV for silver and some weaker peaks belonging to carbon, sodium, nitrogen, and oxygen were found (Figure 8) [55].

![Figure 6](image)

Figure 6. UV-vis spectrum of Ag NPs from *Rauvolfia tetraphylla* flower extracts.

![Figure 7](image)

Figure 7. SEM micrograph of Ag NPs from *Rauvolfia tetraphylla* flower extracts.

![Figure 8](image)

Figure 8. EDXA analysis of Ag NPs from *Rauvolfia tetraphylla* flower extracts.

3.8. Transmission electron microscopy analysis

Figure 9(a) shows the Transmission Electron Microscopy (TEM) image of the synthesized Ag NPs. It is clear that the synthesized materials are in the nano range with the spherical shaped structures. These particles have high surface area and prepare the site for the reaction on the surface of the catalyst. Figure 9(b) shows the particle size distribution of Ag NPs. It clearly reveals that the synthesized materials are maximum in the range of 20 to 25 nm size. This nano-size Ag NPs is proper to give good yield in lower time [55,56].

3.9. Antibacterial assay

The synthesized Ag NPs from flower extracts of *Rauvolfia tetraphylla* had significant antibacterial activity against *E.* coli, *Pseudomonas aeruginosa*, *Staphylococ-*
Figure 9. (a) TEM image and (b) graph of particle size distribution of Ag NPs.

Table 2. Antibacterial zone formation.

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Strain</th>
<th>Control</th>
<th>Ag NPs</th>
<th>Standard</th>
<th>Flower extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E.coli</td>
<td>—</td>
<td>6.1</td>
<td>8.3</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Pseudomonas aeruginosa</td>
<td>—</td>
<td>6.3</td>
<td>8.2</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Klebsiella aerogenes</td>
<td>—</td>
<td>5.6</td>
<td>7.9</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Staphylococcus aureus</td>
<td>—</td>
<td>5.4</td>
<td>7.6</td>
<td>—</td>
</tr>
</tbody>
</table>

*a Control: Double-distilled water; *b Ag NPs: Silver nanoparticles; *c Standard: Taxim; *d Flower extracts: *Rauwolfia tetraphylla.*

Figure 10. Zone of inhibition against (a) E. coli, (b) P. aeruginosa, (c) K. aerogenes, and (d) S. aureus in the presence of Ag NPs.

3.10. Antifungal activity

Antifungal study indicated that the Ag NPs from

Figure 11. Antifungal activity of (a) A. flavus and (b) P. citrinum in the presence of Ag NPs.

Rauwolfia tetraphylla flower extracts had a broader zone of inhibition than the standard Norfloxacin antibiotic against *Penicillium citrinum* and *Aspergillus flavus* (Figure 11, Table 3) [57].

3.11. Antimitotic activity of Ag NPs at Allium cepa root tips

Antimitotic activity assessment was carried out using *Allium cepa* with control grown in tap water and Quercetin used as standard drug (Table 4, Figures 12(a), 12(b), and 12(c)) [58].

3.12. Formylation of aromatic amines in the presence of Ag NPs catalyst

Ag NPs is a vital nano metal oxide with an extensive variety of uses. A blend of HCO2H and Ag NPs was
Table 3. Antifungal zone formation.

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Pathogenic fungi</th>
<th>Control*</th>
<th>Ag NPsb</th>
<th>Standardc</th>
<th>Flower extractsd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspergillus flavus</td>
<td>—</td>
<td>3.8</td>
<td>5.4</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Penicillium citrinum</td>
<td>—</td>
<td>3.9</td>
<td>5.7</td>
<td>—</td>
</tr>
</tbody>
</table>

*Control: Double-distilled water; Ag NPs: Silver nanoparticles; Standard: Norfloxacin;
Flower extracts: *R*auwolfia *tetraphylla*.

Table 4. Antimitotic activity of Ag NPs.

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Sample</th>
<th>Concentration</th>
<th>Mitotic index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>—</td>
<td>93.7</td>
</tr>
<tr>
<td>2</td>
<td>Ag NPs</td>
<td>10 mg/mL</td>
<td>21.5</td>
</tr>
<tr>
<td>3</td>
<td>Ag NPs</td>
<td>5 mg/mL</td>
<td>28.1</td>
</tr>
<tr>
<td>4</td>
<td>Quercetin (standard)</td>
<td>1mg/mL</td>
<td>14.9</td>
</tr>
</tbody>
</table>

Figure 12a. Graphical representation of antimitotic activity of Ag NPs.

added to an amine and then, the reaction blend was refluxed at 70°C until fruition of the reaction (the advance of the response was judged by TLC). The reaction blend was brought to ambient temperature after culmination. By this system, a few formamidines (6) were set up from the subsidiaries of fragrant amines. Then, the reaction blend was weakened by ethyl acetic acid derivation and Ag NPs was evacuated by filtration. The natural dissolve was then washed with water and soaked arrangement of saline solution and dried over anhydrous Na2SO4. The solvent was evacuated with lower weight and the pure item was obtained (Table 5). It was additionally cleansed by recrystallization utilizing the reasonable solvent, diethyl ether. The integrated mixes were affirmed by 13C NMR and 1H NMR studies [59].

Mechanism of reaction on the surface of catalyst:
The possible mechanism for the activation of formic acid on the surface of Ag NPs catalyst during the formation of N-formamides is depicted in Schemes 1 and 2 [59].

Spectral data of the synthesized compounds
1. N-(3-chlorophenyl) formamide (1): 1H NMR

![Figure 12b](image)

Figure 12b. Normal mitotic phases of *Allium cepa*: (A) interphase, (B) metaphase, (C) anaphase, and (D) telophase.
Figure 12c. Mitotic abnormalities of Allium cepa: (A) mega cells and cell shrinkage, (B) chromosomal clumping and cell shrinkage at metaphase, (C) vagrant chromosome at metaphase, and (D) chromosomal clumping at telophase.

Table 5. N-formylation of amines with formic acid using Ag NPs under solvent-free condition.

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>R-NH₂</th>
<th>R-NHCHO</th>
<th>Yield (%)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-chlorobenzamine</td>
<td>N-(3-chlorophenyl)formamide</td>
<td>89</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Aniline</td>
<td>N-phenylformamide</td>
<td>93</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>4-bromobenzamine</td>
<td>N-(4-bromophenyl)formamide</td>
<td>88</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>3-aminophenol</td>
<td>N-(3-hydroxyphenyl)formamide</td>
<td>85</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>3-nitrobenzamine</td>
<td>N-(3-nitrophenyl)formamide</td>
<td>87</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>4-aminobenzoic acid</td>
<td>N-formimidobenzoic acid</td>
<td>85</td>
<td>55</td>
</tr>
</tbody>
</table>

(250 MHz, CDCl₃) δ 8.95 (br, 1H), 8.57 (d, 1H, J = 11.17 Hz), 8.23 (s, 1H), 8.01 (br, 1H), 7.02-7.55 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃) δ 118.7-132.3, 161.1, 164.1 ppm. HRMS: Calcd for C₁₉H₁₉ClN₂O m/z: 278.10 [M+Na]+, found 278.04.

2. N-phenyl formamide (2): ¹H NMR (250 MHz, CDCl₃) δ 9.32 (brs, 1H), 8.7 (brs, 1H), 8.63 (d, 1H, J = 11.26 Hz), 8.11 (s, 1H), 6.97-7.57 (m, 5H); ¹³C NMR (62.9 MHz, CDCl₃) δ 117.3-131.0, 137.0, 161.8, 164.7 ppm. HRMS: Calcd for C₁₉H₁₉N₂O m/z: 274.12 [M+Na]+, found 274.07.

3. N-(4-bromophenyl) formamide (3): ¹H NMR (250 MHz, CDCl₃) δ 9.23 (brs, 1H, trans), 8.44 (d, 1H, J=11.33 Hz), 8.23 (s, 1H), 8.13 (brs, 1H), 7.37-7.43 (m, 2H), 6.91-6.95 (m, 2H); ¹³C NMR (62.9 MHz, CDCl₃) δ 115.3, 115.7, 116.1, 116.4, 120.7, 121.0, 132.5, 158.2, 163.1 ppm. HRMS: Calcd for C₁₉H₁₅BrN₂O m/z: 330.05 [M+Na]+, found 330.02.

4. N-(3-hydroxyphenyl) formamide (4): ¹H NMR (250 MHz, DMSO) δ 10.01 (brs, 1H, trans), 9.95 (s,

Scheme 1. Plausible mechanism for the N-formylation of amines on Ag NPs surface.

Scheme 2. Graphical representation of the formation of formamide bond.

Cahled for C₁₇H₁₉BrN₂NaO m/z: 221.95 [M+Na]+, found 221.98.
1H), 9.47 (s, 1H), 8.65 (d, 1H, J = 12.0 Hz), 8.15 (s, 1H), 6.01-7.14 (m, 4H); 13C NMR (62.9 MHz, CDCl3) δ 104.6, 108.2, 110.7, 129.4, 138.5, 159.5, 162.3 ppm. HRMS: Caled for C13H12N2NaO2 m/z: 160.04 [M+Na]+, found 160.08.

5. N-(3-nitropheryl) formamide (5): 1H NMR (250 MHz, DMSO) δ 10.65 (s, 2H), 8.91 (d, 1H, J = 8.5 Hz), 8.55 (s, 1H), 8.33 (s, 1H), 7.55-7.91 (m, 3H); 13C NMR (62.7 MHz, DMSO) δ 111.5, 113.5, 122.0, 124.7, 130.2, 136.1, 147.6, 160.0, 162.4 ppm. HRMS: Caled for C15H14N2NaO2 m/z: 189.03 [M+Na]+, found 189.06.

6. 1-formamidobenzoic acid (6): 1H NMR (250 MHz, DMSO) δ 12.75 (brs, 1H), 10.63 (s, 1H), 8.32 (s, 1H), 7.83 (d, 2H, J = 6.21 Hz), 7.68 (d, 2H, J = 8.63 Hz); 13C NMR (62.5 MHz, CDCl3) δ 116.5, 118.92, 126.06, 130.08, 142.52, 160.50, 167.22 ppm. HRMS: Caled for C7H5N2NaO2 m/z: 188.03 [M+Na]+, found 188.08.

3.13. Hot filtration method
Hot filtration is generally used for the recovery of catalyst in hot conditions. In this method, the catalyst is heated and washed with solvent to remove the impurities. In a final set of experiments, we further assessed the stability and reusability of the Ag NPs catalyst in the formylation reaction. It was crucial to confirm activity of the catalyst for recycling of Ag NPs. Figure 13 shows that there is no considerably lower yield in each cycle by reusing the catalyst. We observed nearly 10% loss of yield in 5 cycles of reaction [60].

3.14. Recyclability of the catalyst
The reusability of Ag NPs used as a catalyst was tested under identical reaction circumstances. The Ag NPs catalyst was effectively recovered from the reaction mixture by hot filtration. The obtained product was carefully washed by deionized water followed by ethyl acetate. Then, it was dried for 2 to 3 h under the vacuum condition. During each reaction, the Ag NPs catalyst was recovered from the reaction mixture, indicating a loss of around 13% after 5 times being reused. This loss seemed reasonable, as a result of washing and filtering of the heterogeneous catalyst, and was in coordination with the obtained yield after 5 cycles. On the other hand, the loss of catalyst is itself a reason for getting lower yield after 5 cycles (Figure 14) [61].

Catalytic properties of Ag derivatives synthesized by the green method were compared with those by the chemical methods. Only a finite number of publications are available on the Ag NPs catalyzed by organic reactions. To the best of our knowledge and based on the literature survey, this is the first manuscript reporting green synthesized Ag NPs as a catalyst for the formamide reaction. However, some other NPs like MgO and ZnO have been used for the formamide reactions. Therefore, we compared our results with different organic reactions catalyzed by Ag derivatives.

Javid Safari et al. synthesized AgI NPs with spherical shape and the size of around 10 to 20 nm by precipitation method. The NPs were used as catalyst for the A3 coupling of benzofuran reactions. The time required for completion of the reaction was 4.5 h with the yield of around 52%, which seems very low efficiency in comparison with the present method [62]. Yuqing Zhou et al. synthesized Ag2O NPs with spherical shape and the size of 18-20 nm by reflux method. The method was employed for the A3 coupling reactions with the expense of 12 h and the yield of 29% [63].

Kushal D Bhatte et al. synthesized Ag NPs with the obtained size of 40 nm and spherical shape by chemical reduction method. Enamioncs and enaminoesters were synthesized with 70% yield in 12 hours [64]. In the same way, Bharat A Makwana et al. synthesized

![Figure 13. Recyclability of the Ag NPs catalyst by hot filtration method.](image-url)

![Figure 14. Recovery of Ag NPs catalyst after each reaction.](image-url)
Table 6. Comparison of catalytic properties of Ag derivatives synthesized by different methods for different organic reactions.

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Method of synthesis for Ag derivatives</th>
<th>Size and shape of Ag NPs</th>
<th>Name of the reaction carried out</th>
<th>Time for completion of reaction</th>
<th>Obtained yield (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Precipitation method (SDS surfactant)</td>
<td>Spherical shape,</td>
<td>$\text{Ag}^3\text{+}$-coupling reaction</td>
<td>4.5 h</td>
<td>52%</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>particle size of 10-20 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reflux method</td>
<td>Spherical shape,</td>
<td>$\text{Ag}^3\text{+}$-coupling reaction</td>
<td>12 h</td>
<td>29%</td>
<td>[62]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>particle size of 18-20 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Chemical reduction method</td>
<td>Spherical shape,</td>
<td>Synthesis of enamino acids and</td>
<td>6 h</td>
<td>70%</td>
<td>[63]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>particle size of 40 nm</td>
<td>enaminomino esters and using silver nanoparticles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chemical reduction method</td>
<td>Spherical shape,</td>
<td>Synthetic route of octamethoxy</td>
<td>16 h</td>
<td>92%</td>
<td>[64]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>particle size of 3-7 nm</td>
<td>resorcinarene tetrahydrazide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Green synthesis method using</td>
<td>Spherical shape,</td>
<td>Formylation reaction</td>
<td>13 min</td>
<td>93%</td>
<td>[Present work]</td>
</tr>
<tr>
<td></td>
<td>Rauvolfia tetraphylla</td>
<td>particle size of 20-25 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ag NPs with spherical shape and the size of 3 to 7 nm by chemical reduction method. They used Ag NPs as a catalyst in the octamethoxy resorcin arone tetrahydrazide reaction and obtained a yield of around 92% in 16 h [65]. In comparison with all the above-mentioned reactions, the present method dominates their time and yield, as tabulated in Table 6.

4. Conclusion

Silver nanoparticles were synthesized by the *Rauvolfia tetraphylla* flower extracts at room temperature. The Ag NPs have good antimicrobial activity against *Klebsiella aerogenes*, *Staphylococcus aureus*, E-coli, and *Pseudomonas aeruginosa* and antifungal activity against *Penicillium citrinum* and *Aspergillus flavus*. Also, the synthesized particles had consistent results in antimicrobial assays. In the presence of Ag nano catalyst, incredible yield of formamide derivatives was achieved. It can be concluded that Ag NPs may find large applications to catalytic activity; drug delivery process; and anticancer, antibacterial, and antifungal practices in the medical field.

Acknowledgment

The authors thank Shridevi Institute of Engineering and Technology and Siddaganga Institute of Technology for providing the lab facilities. Dr. Nagaraju thanks DST nanomission (SR/NM/NS-1262/2013) for the financial support. Udayabham thanks CSIR, New Delhi, for the senior research fellowship. Dr. Vinay SP thanks to Raghavendra M and Uma K (SIT, Tumakuru) for their encouragement and guidance.

References

2. Frattini, A., Pellegrini, N., Nicastro, D., and De Sanctis, O. “Effect of amine groups in the synthesis of Ag

Biographies

Sadashivappa Panchalaksharappa Vinay was born in India in 1992. He received his BSc in Chemistry, Zoology, Microbiology followed by an MSc in Analytical Chemistry from Davangere University, Davangere, India, in 2012 and 2014, respectively. Then, he joined the Shridevi Institute of Engineering and Technology affiliated to Visvesvaraya Technological University as a research scholar. His current research is in the fields of green synthesis and characterization of pure and doped metals, metal oxides, and metal sulphides with reduced graphene oxide hybrid nanomaterials for photocatalytic dye degradation; photoluminescence; anticancer studies; and biological applications. Vinay has published 25 research papers in reputed international journals.

Udayabhanu was born in India in 1990. He received his BSc in Chemistry, Botany, Zoology followed by an MSc in Chemistry from Tumkur University, Tumakuru, India, in 2012 and 2014, respectively. Then, he joined the Siddagangha Institute of Technology affiliated to Visvesvaraya Technological University as a junior research fellow. Presently, he is a CSIR-SRF (Council of Scientific & Industrial Research-Junior Research Fellow) of Government of India, New Delhi. His current research interests are green synthesis and characterization of pure and doped metals, metal oxides, and metal sulphides with reduced graphene oxide hybrid nanomaterials for lithium ion batteries; photocatalytic hydrogen generation; photocatalytic dye degradation; and biological applications. Udayabhanu has published 22 research papers in reputed international journals including American Chemical Society (ACS), Royal Society of Chemistry (RSC), Elsevier, Springer, etc.

Ganganagappa Nagaraju was born in India in 1977. He received his BSc and MSc degrees in Chemistry, Physics, Maths, and Physical Chemistry from the Bangalore University, Bangalore, India, in 1998 and 2000, respectively. His PhD project was on “Synthesis and characterization of hydrothermally derived nano/micromaterials” at Bangalore University, which was completed in 2008. Then, he joined the Indian Institute of Science (IISc), Bangalore, India, as a postdoc researcher and received the second postdoc from UFRGS, Porto Alegre, Brazil. He is currently working as an Assistant Professor in the Department
of Chemistry, Siddaganga Institute of Technology, Tumakuru, India. His research interests include green synthesis and characterization of pure and doped metals, metal oxides, and metal sulphides with reduced graphene oxide hybrid nanomaterials for lithium ion batteries; photocatalytic hydrogen generation; photocatalytic dye degradation; and biological applications. He has successfully run 5 projects with the cost of Rs. 21.6 crores sanctioned from various funding agencies including DST, ISRO, BARC, and VGST. He has published more than 90 research papers in reputed international journals including American Chemical Society (ACS), Royal Society of Chemistry (RSC), Elsevier, Springer, etc.

Haraluru Shankaraiah Lalithamba was born in India in 1973. She received her BSc and MSc degrees in Chemistry and Organic Chemistry from Bangalore University, Bangalore, India, in 1994 and 1996, respectively, and her PhD in peptides and peptidomimetics from the same university in 2012. She is currently Associate Professor in the Department of Chemistry, Tumakuru, India. Her research interests include synthesis of biologically active peptides and peptidomimetics, biological activity, molecular docking, and nano metal oxides. She actively participates in research projects on the synthesis of bioactive peptides and peptidomimetics funded by VGST, Government of Karnataka. She has published more than 33 scientific research papers in reputed journals.

Narayanappa Chandrasekhar was born in India in 1972. He received his BSc and MSc degrees in Chemistry and General Chemistry from Bangalore University, Bangalore, India, in 1996 and 1998, respectively. He received his PhD on “Bioremediation of Polycyclic Aromatic Hydrocarbons” from Bangalore University in 2010. He is currently working as a Professor in the Department of Chemistry, Shridevi Institute of Engineering and Technology, Tumakuru, India. His research interests include green synthesis and characterization of pure metals and metal oxides, photocatalytic dye degradation, and biological applications. He has published more than 50 scientific research papers in reputed journals.