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Abstract. The present study proposed a new model to describe possible variations of
interpretation and perception of a simple sentence by di�erent people. To illustrate the
role of understandability of a simple sentence in predicting future situations, the meaning
of a sentence was modeled as a fuzzy if-then rule, and the fuzzy model was investigated in
an iterative process. The main objective of the paper was to model a linguistic rule using
an if-then rule and its variation through one person to another. The model could predict
that the interpretation reaching the �nal person in the following years could be chaotic and
thus unpredictable.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction and background

People communicate with others through human lan-
guages. This ability helps people express their ideas
and needs and enhance their skills. Advances in science
are made based on transformation of information and
experiments [1{3]. A sentence processor has a complex
architecture. Every person views each sentence and
attempts to interpret and comprehend it so as to make
a new sentence with his or her individual concept.
Rumor is a tale of explanations of events that circulates
from one person to another, and it pertains to an
object, event, or issue of public concern [4,5].

An interesting tool in the modeling of expert
information is the fuzzy rule which is based on fuzzy
logic [6]. Fuzzy rules de�ne the grades of membership
to describe linguistic states [7,8]. These rules are de-
picted in the form of if-then rules. Fuzzy logic provides
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a method for representing fuzzy predictive modi�ers
including \median", \small", and \large" [9,10]. A
typical fuzzy logic system consists of a knowledge base,
an inference engine, and a defuzzi�er [11,12]. Each
fuzzy rule is in the form of if-then statements such
as:

IF x is A;

THEN y is B, (1)

where x and y are linguistic variables and A and
B are fuzzy membership functions. Figure 1 shows
the mechanism of if-then rules in a simple example
form.

Fuzzy logic is widely applicable to di�erent �elds
such as nonlinear dynamics and chaos [11,13]. Chaos
is a complex behavior with sensitive dependence on
initial conditions; in other words, two initial conditions,
no matter how close together, give trajectories that
widely separate during the course of time [14]. Combi-
nations of fuzzy systems and chaos have drawn much
attention among researchers [15]. The generation of
chaotic dynamics using fuzzy rules was studied in [16].
Modeling of chaotic dynamics using fuzzy systems and
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Figure 1. Mechanism of if-then rules.

linguistic description was discussed in [17,18]. In [19],
modeling of chaotic dynamics using a small number
of fuzzy rules and assigned characteristics such as
Lyapunov exponents was studied. This method raises
the robustness against parameter changes. Fuzzy
logic is a helpful method for predicting a chaotic
time series [20,21]. In [22], an adaptive fuzzy system
was used to regenerate the dynamics of continuous
oscillator and chaotic systems. The rules have been
imposed on regions based on stretches and branches.
Many studies have investigated the chaotic behavior of
biological systems [23{26]. A complex Lorenz system
was studied in [27]. The chaotic dynamic of visual
perception was investigated in [28]. The combination
of fuzzy logic and chaos seems very interesting due
to its applications in the study of biological sys-
tems.

In previous studies [16{18,29], some membership
functions were employed to produce a special map.
However, in this paper, a linguistic rule was investi-
gated, and iterations were added to this rule to generate
interpretation of a unique sentence in the following
years or its variations from one person to another. In
other words, the main objective of this paper was not
generating a chaotic map using fuzzy rules; instead, it
aimed to model a linguistic rule. To this end, an if-then
rule and its variation through one person to another
were employed. Through this modeling, it was found
that the interpretation results reaching the �nal person
in the following years would be chaotic and, hence,
unpredictable. In the next section, the variation of
interpretation and conception of a sentence by di�erent
people is described. The fuzzy rule models this complex
system in Section 3, and its di�erent behaviors in the
prediction of future situations are investigated. Finally,
Section 4 concludes the study.

2. Problem de�nition

A sentence is characterized by a linear sequence of
words in the language. Each natural language is
a primary mode of human communications [30,31].
Functions of language include exchanging information,

establishing or reinforcing social relations, and control-
ling the behavior of other people [32,33]. A sentence
is interpreted by each person in the processing steps.
The �rst step in the process of comprehending language
is recognizing it from the perceptual input (spoken
or written). The second step is determining how to
arrange these words into sentences and then, a series
of chunks of these words are analyzed [34,35].

The population of a species in biology is con-
sidered here. It is supposed that an expert says
this sentence about the population: \If the popu-
lation of a species in this year is normal, then its
population in the next year will be large". This
sentence is a simple concept that can have di�er-
ent meanings for di�erent people. Qualities like
\normal" and \high" can be modeled using fuzzy
concepts which can imply di�erent quantities to dif-
ferent people. In the next section, an individual
fuzzy model of language comprehension is proposed
and di�erent predictions using this model are dis-
cussed.

3. Fuzzy model for interpreting a language rule

Consider the sentence \If the population of a species in
this year is normal, then its population in a later year
will be large". Using this sentence, each person has a
forecast for the population of the next year. Di�erent
people have di�erent interpretations of the sentence,
and a fuzzy rule is an e�cient method for describing
the information process by these people. If we de�ne
the normalized population in one year by a variable x
and the normalized population in the later year by a
variabley, the prediction of the population by di�erent
people during the next year can be modeled as a fuzzy
if-then rule. The membership function of prediction is
personal and depends on a person's social and cultural
situation.

For example, imagine that the membership func-
tions of the input and output are a bell curve (Eq. (2))
and a sigmoid function (Eq. (3)), respectively. Then,
the proposed model can depict di�erent interpretations
by a person in di�erent situations using a singleton
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Figure 2. Input and output membership functions for
one person with parameters ax = 0:36, bx = 3:2, cx = 0:5,
ay = 9, cy = 0:5.

fuzzi�er and a singleton defuzzi�er.

f(x; ax; bx; cx) =
1

1 +
���x�cxax

���2bx ; (2)

f(y; ay; cy) =
1

1 + e�ay(y�cy) : (3)

A singleton fuzzi�er transforms crisp values of input
into a fuzzy set with the membership function which
is one for the input value and zero for other values,
and a singleton defuzzi�er transforms linguistic terms
to crisp values [36]. Figure 2 shows an example of
input and output membership functions for one person.
Through such membership functions, the fuzzy model
can demonstrate the process of prediction for each
person one year later. Then, the person can predict the
population of the following years by applying the fuzzy
if-then rule (general sentence) iteratively. Figure 3
illustrates an iterative process employed in predicting

Figure 3. Prediction of the population in each year based
on the population number in the previous year.

the population number each year based on the previous
ones using the fuzzy model. On the contrary, the
model can show di�erent predictions of future years
by di�erent people since they have a di�erent sentence
processor and a di�erent interpretation (as shown by
di�erent membership functions for each person in the
model).

A bifurcation diagram of the model used for
modifying the parameter bx is shown in Figure 4. The
number of iterations required to build a bifurcation
diagram is 1150, and we have removed 1000 iterations
of transient time in plotting the diagram. The bifur-
cation parameter bx is a parameter of the linguistic
rule representing di�erent people's interpretations of a
fuzzy modi�er based on a person's social and cultural
perspective. In this paper, in the assumed rule \If

Figure 4. (a) Bifurcation diagram and (b) Lyapunov
exponent of the proposed model with respect to changing
personality parameter bx with the other parameters kept
constant: ax = 0:36, cx = 0:5, ay = 9, cy = 0:5.
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the population of a species in this year is normal,
then its population in a later year will be large", the
normal modi�er is represented by a bell function. The
parameter bx in this function can change the decreasing
or increasing slope. To display the modi�ers \normal"
and \high", di�erent membership functions can be
chosen. A sample of those membership functions was
selected to describe the prediction of the population of
future years by various people. Di�erent people develop
a di�erent understanding of a sentence (di�erent if-
then rules) and, hence, di�erent interpretations. As an
example, consider the discussed rule. Di�erent people
ascribe di�erent meanings to this sentence depending
on their personality. Changes in the personality
parameter a�ect the prediction of the population in the
later year. One person with personality parameter bx =
1:5 has a complex chaotic forecast for the following
years, while the prediction of another person with
personality parameter bx = 2 shows a less complex
behavior, indicating that di�erent people can have
di�erent forecasts of the population of future years
using the same rule. A positive Lyapunov exponent in
part (b) of Figure 4 con�rms the chaotic predictions.
In addition, Wolf's Jacobian method was employed to
calculate the Lyapunov exponent in Figure 4(b) with
10000 iterations.

Here is the result of the fuzzy-related procedure
in simpler algebraic words.

First, by assigning the input to a bell function,

fuzzi�cation of this value (the \if" part) can be
calculated. Then, this value is fed to the sigmoid
function and the output is computed (the \then" part).
Then, this process continues iteratively (Eq. (4)). In
other words, this sentence can be considered as a one-
dimensional map (Eq. (5)).

xk+1 = f2(f1(xk; ax; bx; cx); ay; cy); (4)

xk+1 =
1

1 + e
�ay

0@ 1

1+j xk�cxax j2bx �cy
1A : (5)

Map plots and cobweb plots are two useful tools for
investigating the dynamical properties of a system. To
study the dynamics of System (5), a cobweb plot was
used, as shown in Figure 5. The map plot of a discrete
system such as xk+1 = f(xk) displays the function f
in its domain. The cobweb plot shows the transition
of the time series (black color) within the map plot
(blue) [37,38]. The red plot shows the identity line.
Its intersection point with the map plot determines
the equilibrium points. According to the map plot,
System (5) has a single locally quadratic maximum.
Figure 5(a) shows the cobweb plot for bx = 0:5 which
has a period-4 cycle. Figure 5(b){(d) show the cobweb
plot in the chaotic, period-6, and chaotic regions,
respectively. The equilibrium point of the system is

Figure 5. Cobweb plot of System (5) for (a) bx = 0:5 and initial value x0 = 0:36, (b) bx = 1:2 and initial value x0 = 0:93,
(c) bx = 2:25 and initial value x0 = 0:97, and (d) bx = 4:25 and initial value x0 = 0:05.
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unstable in these cases since the absolute value of its
derivative is larger than one. The equilibrium point
of the system is only stable in [0:0; 0:147] and [4.277,
5.0] of the studied interval, which can be seen in the
bifurcation diagram of Figure 4. The dynamics of the
system always remains in the domain [0, 1] in the
steady state. The system is characterized by a period-
doubling route to chaos at di�erent intervals of the
parameter. Moreover, there are some periodic windows
in the bifurcation diagram.

This model can help linguists follow variations of
interpretation of a sentence in transition between peo-
ple. To establish a more precise model, its membership
functions should vary for di�erent people (iteration).

In a one-dimensional discrete dynamical system
with a single locally quadratic maximum, the Feigen-
baum constant has a universal value of approximately
4.66. In such a case, the Schwarzian derivative is nega-
tive [39]. The Schwarzian derivative was calculated at
the studied interval of parameter bx which was negative
according to the results. Figure 6 shows this derivative
in bx = 2:6 and bx = 4:5.

Further, in a period-doubling bifurcation into

Figure 6. The Schwarzian derivative of System (5) in the
range of the x variable with (a) bx = 2:6 and (b) bx = 4:5.

chaos, the Feigenbaum number was constant [40]. A
zoomed view of the bifurcation diagram of System (5)
in bx 2 [0:88; 1] is shown in Figure 7. According to this
�gure, the bifurcation of period-4 to period-8 occurs at
bx = 0:900274, the bifurcation of period-8 to period-
16 at bx = 0:960422, the bifurcation of period-16 to
period-32 at bx = 0:971971, the bifurcation of period-
32 to period-64 at bx = 0:974364, and the bifurcation
of period-64 to period-128 at bx = 0:974870.

The Feigenbaum constant can be calculated as
follows:

� = lim
n!1

an�1 � an�2

an � an�1
;

where an is the parameter for which the nth period-
doubling occurs. This constant at the studied interval
is as follows:

�1 =
a2 � a1

a3 � a2
= 5:208069962767323;

�2 =
a3 � a2

a4 � a3
= 4:826159632260817;

�3 =
a4 � a3

a5 � a4
= 4:729249011857605:

The Feigenbaum constant approaches its limit of
4:669202.

The proposed model can be investigated from
two angles, as shown in Figure 8. First, imagine
that a person uses the constant rule every year with
constant parameters. Moreover, one can consider a
case where people residing in a society hold the same
interpretation of a sentence. In such a case, based
on the bifurcation diagram of Figure 4(a), there are
many parameter values for the assumed memberships
(bx) that give chaotic dynamics. In the second point
of view, by transforming the sentence from one person
to another, the parameter of the membership function
which determines the interpretation of one person
from the sentence varies. When a person hears a
sentence, he tries to understand and interpret it; then,
he/she conveys his understanding of the sentence to
the next person with a di�erent membership parameter
bx. According to Figure 4(a), there are many cases
in which a person's understanding of one sentence is
unpredictable and chaotic.

4. Conclusion

The present study proposed a fuzzy model to describe
variations in the prediction of future situations using
a simple sentence. Application of this sentence (\If
the population of a species in this year is normal, then
its population in a later year will be large") to the
prediction of the species population of the following
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Figure 7. A zoomed view of the bifurcation diagram of System (5) for bx 2 [0:88; 1].

Figure 8. The two aspects of bifurcations in System (5):
(a) The �rst aspect and (b) the second aspect.

years was investigated using a fuzzy model. Bifurcation
analysis of the model showed that forecasts using the
sentence could have di�erent dynamics such as periodic
and chaotic behaviors. Of note, the application of
this rule did not lead to the actual population number
and, yet, resulted only in the person's perception of
what it might be in later years. The real population
dynamics might be either complex or simple. This
study also modeled the sentence interpretation and
showed that the model can give chaotic dynamics. In
other words, this study aimed to model a linguistic
rule using an if-then rule and its variation through one
person to another. Using this modeling, we found that
the interpretation that passed on to the �nal person
in the following years could be chaotic and, hence,
unpredictable. This model can help linguists follow the
variations of interpretation of a sentence in transition
among di�erent people. To have a more precise model,
its membership functions should be altered for di�erent
people (iteration).
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