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Abstract. This paper deals with a Flexible Flow Shop (FFS) scheduling problem with
unrelated parallel machines and a renewable resource shared among the stages. The FFS
scheduling problem is one of the most common manufacturing environments, in which there
is more than a machine in at least one production stage. In such a system, to decrease
the processing times, additional renewable resources are assigned to the jobs or machines,
which can lead to a decrease in the total completion time. For this purpose, a Mixed Integer
Linear Programming (MILP) model is proposed to minimize the maximum completion time
(makespan) in an FFS environment. The proposed model is computationally intractable.
Therefore, a Particle Swarm Optimization (PSO) algorithm, as well as a hybrid PSO
and Simulated Annealing (SA) algorithm named SA-PSO, are developed to solve the
model. Through numerical experiments on randomly generated test problems, the authors
demonstrate that the hybrid SA-PSO algorithm outperforms the PSO, especially for large
size test problems.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Scheduling is a resource allocation process used in
activities by considering operational limitations to
optimize one or more objective functions. The e�ec-
tive allocation of resources to the activities leads to
enhancement of the performance of the manufacturing
and service systems, and is considered a necessity for
survival in today's competitive market. In the current
competitive market, organizations are faced with new
changes every day. Therefore, they must utilize an
appropriate scheduling program. It can lead to e�ective
use of resources, decreasing costs, increasing e�ciency
in the production of goods and services, and to satisfy
customer expectation [1].
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The Flexible Flow Shop (FFS) scheduling prob-
lem is a developed form of the general ow shop
problem where one or more unrelated parallel machines
exist at di�erent stages [2]. Since the FFS scheduling
problem must also determine job allocation to the
machines, it is more complex than the ow shop
scheduling problem. In the FFS scheduling problem
with unrelated parallel machines, the processing time
of the jobs at each stage is di�erent, and dependent
on the type of machine. It is considered a di�cult
production environment due to its high complexity [3].

In the lean production philosophy, it is very im-
portant to break the processing bottleneck to enhance
productivity [1]. One of the important issues for
achieving this goal is to consider renewable resources
to reduce processing time, especially in the bottleneck
stages. It means that the processing time of a job on
a particular machine is dependent on the number of
allocated renewable resources. It can lead to reduction
in processing time and to, �nally, decrease job com-
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pletion time. In the context of renewable resources,
jobs require these resources to process besides the
machines. After �nishing its processing, the job returns
the allocated resources and they can be used by other
jobs on other machines. By allocating renewable
resources, job processing time is reduced with respect
to the number of allocated renewable resources.

In many real-world manufacturing systems, rather
than a machine, renewable resources such as human
resources and molds are available and shop-oor man-
agers can assign them to the jobs/machines. Due
to the complexity of the scheduling problems with
renewable resources, most scheduling approaches ne-
glect this concept or solve the scheduling problem and
renewable resources assignment, separately. Assigning
the renewable resource leads to speed-up the processing
operations. It is a critical issue and can enhance
the e�ciency of the scheduling problems, and �nally,
the overall performance of the production line. As a
result, this issue is considered of great importance in
the classical shop scheduling problem. In other words,
considering renewable resources and job scheduling,
jointly, can lead to generating better solutions. In
the simultaneous job scheduling and renewable resource
assignment problems, job completion times are a�ected
by two main decisions: job sequencing and scheduling
and the optimal assignment of renewable resources to
each machine at each stage.

There are many applications of the FFS schedul-
ing problem with renewable resources in the real world,
but little research has been undertaken regarding
this problem. In this research, the FFS scheduling
problem, with unrelated parallel machines and renew-
able resources, is conducted and an Mixed Integer
Linear Programming (MILP) model is developed to
minimize maximum completion time (makespan). The
research problem is computationally intractable and
strongly NP-hard, therefore, two metaheuristic algo-
rithms, including Particle Swarm Optimization (PSO)
and hybrid SA-PSO, are developed to solve the research
problem.

The outline of the paper is organized as fol-
lows: The next section briey reviews the literature.
The proposed mathematical model is illustrated in
Section 3. Section 4 represents the metaheuristic
algorithms that are proposed to solve the problem.
Section 5 gives the obtained results and, �nally, in
Section 6, discussion and some suggestions for future
research are o�ered.

2. Literature reviews

2.1. Metaheuristic algorithms for FFS
scheduling problems

Due to the NP-hardness of the FFS scheduling prob-
lem [4], many researchers have proposed di�erent

metaheuristic approaches for this problem. Zabihzadeh
and Rezaeian [5] considered an FFS scheduling problem
with release time and robotic transportation. They
presented a Genetic Algorithm (GA) and Ant Colony
Optimization (ACO) for this problem. Karimi et
al. [6] suggested a GA to solve a multi-objective
FFS scheduling problem. Shahvari and Logendran [7]
considered a bi-objective FFS batch scheduling prob-
lem with machine-dependent and sequence-dependent
family setup times with various assumptions such as
machine availability constraints, ready time, and learn-
ing e�ect. They presented two stage-based metaheuris-
tic algorithms based on local search and population-
based structures. Almeder and Hartl [8] considered
a stochastic FFS scheduling problem with limited
bu�ers. They proposed a solution approach based
on a variable neighborhood search. Besbes et al. [9]
focused on the FFS scheduling problem by considering
availability constraints for machines. They proposed
a GA-based approximation algorithm to minimize
makespan.

Sangsawang et al. [10] dealt with a two-stage
reentrant FFS scheduling problem with blocking con-
straint and makespan minimization. They developed
two hybrid metaheuristic algorithms based on PSO and
GA. The obtained results demonstrate that the hybrid
PSO algorithm generates superior results. Jolai et
al. [11] dealt with a bi-objective no-wait two-stage FFS
scheduling problem to minimize maximum tardiness
and makespan. They proposed three bi-objective meta-
heuristic algorithms based on the Simulated Annealing
(SA) algorithm. Akrami et al. [12] proposed GA and
Tabu Search (TS) for joint economic lot sizing and
scheduling problems in the FFS environment, with
respect to limited intermediate bu�ers.

Marichelvam, Prabaharan et al. [13] focused on a
FFS scheduling problem with makespan minimization.
They proposed an improved cuckoo search algorithm
for this problem. Choong et al. [14] proposed two
hybrid algorithms based on PSO, SA, and TS for
the FFS scheduling problem. Chung and Liao [15]
considered an FFS scheduling problem. They proposed
an immunoglobulin-based arti�cial immune system al-
gorithm to minimize makespan, and Dios et al. [16]
proposed some heuristic algorithms in the FFS envi-
ronment to minimize makespan.

2.2. Scheduling problems with renewable
resources

During recent years, various research has examined re-
newable resources in scheduling problems. Behnamian
and Fatemi Ghomi [17] considered FFS scheduling
problem with resource-dependent processing times.
The selected objective function minimizes the total
resource allocation costs and makespan. They pro-
posed a hybrid metaheuristic algorithm based on GA
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and a Variable Neighborhood Search (VNS). They
compared the proposed algorithm with random initial
population SA [18]. The obtained results demon-
strated that the hybrid approach is very e�cient for
di�erent test problems. Edis and Oguz [19] studied
a parallel machine scheduling problem with additional
exible resources to speed-up the production process.
They presented an Integer Programming (IP) model
and IP-based constraint programming for this prob-
lem.

Yin et al. [20] focused on unrelated paral-
lel machine scheduling problems, in which resource-
dependent processing time and deteriorating jobs are
considered, simultaneously. They proposed a poly-
nomial approach to minimize a cost-related objective
function. Su and Lien [1] dealt with a parallel machine
scheduling problem with resource-dependent process-
ing time. The selected objective function aims to min-
imize makespan. They �rstly proposed a heuristic to
minimize the makespan, and two procedures, RA1 and
RA2, to optimally allocate the renewable resources.
Finally, they combined CL with RA1 and RA2 to solve
the problem.

Figielska [21] considered a two-stage ow shop
scheduling problem with a parallel machine and renew-
able resources at the �rst stage and a single machine at
the second stage. A novel heuristic algorithm was, thus,
developed to minimize makespan. In Figielska [22],
the previous research was extended and dealt with a
two-stage ow shop scheduling problem with parallel
machines at both stages. Four heuristic algorithms
using linear programming were proposed to minimize
makespan. Figielska [23] also provided three meta-
heuristic approaches, TS, SA, and GA, to solve the
research problem, considered in Figielska [22].

Li et al. [24] considered the scheduling problem
in a parallel machine environment with the identical
machine and resource-dependent processing time, so
that processing time is a linearly decreasing function
of the number of allocated resources. They proposed
a SA algorithm to achieve near-optimal solutions. The
results showed that the proposed algorithm has good
performance in solution quality and CPU time. Liu
and Feng [25] focused on a two-stage no-wait ow
shop scheduling problem with a cost-related objec-
tive function. They considered position-based and
resource-dependent processing time, and decomposed
the research problem into two subproblems; opti-
mal resource allocation, and an optimal sequencing
problem. Kellerer [26] presented an approximation
algorithm for an identical parallel machine scheduling
problem. Resource-dependent processing time was
considered with the objective of makespan minimiza-
tion.

Jun et al. [27] dealt with a single machine
scheduling problem with di�erent assumptions, such

as resource-dependent processing time, learning e�ect,
and serial batch production. A limited number of
total resources were imposed into the model and the
makespan was minimized. Thus, a hybrid algorithm
based on a GS algorithm and TS was developed to
achieve high-quality solutions. Wang and Wang [28]
considered the single machine scheduling problem with
deteriorating jobs and convex resource-dependent pro-
cessing times. It was also shown that the research
problem is polynomially solvable with the cost-related
objective function.

Wei and Ji [29] focused on a single machine prob-
lem with time-dependent and resource-dependent pro-
cessing time. Di�erent cost-based objective functions
were considered for the research problem. Wang et
al. [30] dealt with resource-dependent processing time
and learning e�ect in a single machine environment.
Two di�erent processing time functions were consid-
ered and a polynomial time algorithm was developed
to achieve optimal solutions.

Wang and Cheng [31] considered a single machine
environment with respect to resource-dependent release
time and processing time, each of which is a linearly
decreasing function of the allocated resources. The se-
lected objective function is to minimize makespan and
the total consumed resource cost. A heuristic approach
was also proposed based on some optimal properties.
Nguyen et al. [32] studied a parallel machine scheduling
problem with non-renewable resources. A hybrid
approach, based on a di�erential evolution algorithm,
an iterated greedy search, a MILP model, and parallel
computing, was proposed for this problem.

To facilitate those papers considered in the lit-
erature review, some of them with a background of
renewable resources are categorized in Table 1, with
respect to some aspects. They are categorized based
on type of production environment, objective function,
resources (renewable, non-renewable), and the solution
method.

Regarding Table 1, most of the research is studied
in simple environments such as single machine and
parallel machine environments. Furthermore, only
one piece of research considered the multi-stage FFS
problem with non-renewable resources. The other
research in this environment focuses on the two-stage
FFS. However, none of the reviewed articles address
renewable resources in the multi-stage FFS environ-
ment and, to the best of our knowledge, consideration
of renewable resources is not undertaken in the multi-
stage FFS scheduling problem. Moreover, metaheuris-
tic approaches in the context of renewable resources are
rarely studied. As a result, the main contributions of
the present research are:

� Considering renewable resources in the FFS schedul-
ing problem;
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Table 1. Di�erent aspects of the related researches.

Author Year Environment Objective
function (s)

Resources Solution
method

Renewable Non-
renewable

Wang and Cheng [31] 2005 Single machine
Makespan and total
number of consumed
resource cost

{ * Heuristic

Wang et al. [30] 2010 Single machine Costs { * Polynomial time
algorithm

Wei and Ji [29] 2012 Single machine Costs { * Polynomial time
algorithm

Wang and Wang [28] 2013 Single machine Costs { * Polynomial time algorithm

Jun et al. [27] 2018 Single machine Makespan { *
Hybrid Gravitational
Search algorithm
& TS

Kellerer [26] 2008 Parallel machine Makespan { * Approximation
algorithm

Li et al. [24] 2011 Parallel machine Makespan { * SA

Edis and Oguz [19] 2009 Parallel machine Makespan * IP-based
constraint programming

Yin et al. [20] 2014 Parallel machine Costs { * Polynomial time
algorithm

Nguyen et al. [32] 2019 Parallel machine Total weight
tardiness

{ * Hybrid approach

Liu and Feng [25] 2014 Flow shop Costs { * Decomposition
approach

Figielska [21] 2008 Two-stage exible
ow shop

Makespan * { Heuristic algorithm

Figielska [22] 2010 Two-stage exible
ow shop

Makespan * { LP-based heuristic
algorithm

Figielska [23] 2011 Two-stage exible
ow shop

Makespan * { TS, SA, and GA

Behnamian and
Fatemi Ghomi [17]

2011 Flexible ow shop
Makespan and
total resource
allocation costs

{ * Hybrid GA&VNS

Present research 2019 Flexible ow shop Makespan * { PSO, Hybrid SA&PSO

� Developing an MILP model for the FFS problem
with renewable resources;

� Proposing two metaheuristic approaches for this
problem;

� Developing a heuristic approach to assign the renew-
able resources.

3. Mathematical model of the research
problem

This section is devoted to describing the studied prob-
lems more formally and introduces the assumptions,
notations, and mathematical model.

3.1. Problem description
As mentioned above, an FFS scheduling problem is
studied, in which a group of parallel machines is
arranged into a number of stages in series. Assume
that n di�erent jobs require to be processed at di�erent
stages and all the jobs must be processed through all
the stages. There are mt unrelated parallel machines
at stage t. Also, a number of renewable resources are
considered in this research, which must be allocated
to the machines at each stage. It is assumed that
job processing times are dependent on the number of
resources allocated to the jobs at each stage, which
can lead to speeding up the processing of the jobs.
The allocation can lead to decreasing the processing
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times and, �nally, the makespan. Regarding Gupta et
al. [33], the normal processing times of the jobs decrease
with respect to the number of allocated resources and
reduction coe�cient (see Eq. (8)).

3.2. Problem assumptions
The following assumptions are made in this research:

� There is no set-up time for the jobs and travel time
between stages;

� Entire jobs and machines are available at zero time;

� There is no prerequisite constraint between the jobs,
and they are independent of each other;

� There is no possibility of machine failure;

� There is an unlimited capacity for intermediate
bu�ers;

� The machines are not the same at the stages (unre-
lated parallel machines);

� All programming parameters are deterministic;

� Each machine at each stage can handle only one job
each time, and any job must be allocated to only
one machine at each stage;

� The resources are renewable. This means that they
can be used for di�erent jobs and stages during the
planning horizon.

3.3. Notation
The following notations are used to formulate the
research problem.

Indices
t Index of stages
i Index of machines
j; j0 Index of jobs

Parameters
g Number of stages
mt Number of unrelated parallel machines

at stage t
n Number of jobs
Nptij Normal processing time of job j at

stage t on machine i
Rt Number of renewable resources at

stage t
at Processing time reduction coe�cient

at stage t due to assigning renewable
resources

U tij Maximum renewable resources that
can be assigned to job j at stage t on
machine i

M A large positive number

Decision variables
ptij Modi�ed processing time of job j on

machine i at stage t after renewable
resource allocation

rtij The number of renewable resources
allocated to job j at stage t on machine
i

xtij 1 if job j is processed on machine i at
stage t; 0 otherwise

ytijj0 1 if job j0 precedes job j on machine i
at stage t; 0 otherwise

�tjj0 1 if completion time of job j is greater
than or equal to the start time of job
j0 at stage t; 0 otherwise

Ctj Completion of job j at stage t
Cmax Makespan

3.4. Mathematical model

minZ = Cmax; (1)

s.t.:

mtX
i=1

xtij = 1; j = 1; 2; ::; n; t = 1; 2; :::; g; (2)

c1j �
m1X
i=1

p1
ijx

1
ij j = 1; 2; ::; n; t = 1; 2; :::; g; (3)

ctj � ct�1
j +

mtX
i=1

ptijx
t
ij ; j = 1; 2; ::; n t = 2; :::; g;

(4)

ctj0 +M
�
3� ytijj0 � xtij � xtij0� � ctj + ptij0x

t
ij0

i = 1; 2; ::;mt; t = 1; 2; :::; g;

j; j0 = 1; 2; ::; n; j 6= j0; (5)

ctj +M
�
2 + ytijj0 � xtij � xtij0� � ctj0 + ptijx

t
ij ;

i = 1; 2; ::;mt; t = 1; 2; :::; g;

j; j0 = 1; 2; ::; n j 6= j0; (6)

cgj � Cmax j = 1; 2; ::; n; (7)

ptij = Nptij � atrtij ;
i = 1; 2; ::;mt; j = 1; 2; ::; n; t = 1; 2; :::; g; (8)

rtij � U tij ;
i = 1; 2; ::;mt j = 1; 2; ::; n t = 1; 2; :::; g (9)
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M � �tjj0 � Ctj �
 
Ctj0 �

mrX
i=1

ptij0x
t
ij0

!
t = 1; 2; :::; g; j; j0 = 1; 2; ::; n; j 6= j0; (10)

mtX
i=1

rtij +
mtX
i=1

nX
j0=1

rtij0
�
�tjj0 + �tj0j � 1

� � Rt
t = 1; 2; :::; g; j; j0 = 1; 2; ::; n; j 6= j0; (11)

xtij ; y
t
ijj0 ; �

t
jj0 2 f0; 1g

i = 1; 2; ::;mt; t = 1; 2; :::; g;

j; j0 = 1; 2; ::; n; j 6= j0; (12)

rtij 2 f0; 1; 2; :::g
i = 1; 2; ::;mt; j = 1; 2; ::; n; t = 1; 2; :::; g; (13)

Ctj ; p
t
ij ; Cmax � 0

i = 1; 2; ::;mt; j = 1; 2; ::; n; t = 1; 2; :::; g: (14)

Expression (1) de�nes the maximum of completion
time as the objective function. Constraint set (2)
states that each machine must process only one job
at every time. Constraint sets (3) and (4) determine
the completion time of each job at the �rst and other
stages, respectively. Constraint sets (5) and (6) are
disjunctive constraints. They calculate the relation
between the completion times of two jobs, which are
processed on one machine at each stage. In one
moment, at most, one of these two constraints is
activated. If jobs j and j0 are processed on machine
i at stage t (xtij = xtij0 = 1) and j is processed
before j0 (ytijj0 = 1), Constraint set (5) is activated.
Conversely, if job j0 is processed before job j (ytijj0 = 0),
Constraint set (6) will be activated. Finally, if jobs j
and j0 are processed on di�erent machines (xtij +xtij0 �
1), both constraint sets are redundant. Constraint
set (7) determines the makespan with respect to the
completion times at the last stage. Constraint set
(8) is incorporated into the model to calculate the
modi�ed processing time of each job after the resources
allocation. Constraint set (9) represents the maximum
renewable resources which can be allocated to each job
at each stage. Constraint set (10) speci�es the jobs
that have overlap. If completion time of job j at stage
t is greater than the start time of job j0 (�tjj0 = 1),
and simultaneously, the competition time of job j0 is
greater than the start time of job j (�tj0j = 1), these
jobs have overlap. Constraint set (11) shows that the
total used resources for these jobs, which are processed
simultaneously (�tjj0 + �tj0j = 2), cannot exceed the

maximum renewable resources at stage t. Finally,
Constraint sets (12){(14) show the range of the decision
variables.

It is clear that the proposed mathematical model
is nonlinear (with respect to Constraint sets (3){(6),
(10) and (11)). It is obvious that the nonlinear models
are very time-consuming to achieve optimal solutions.
Hence, an e�ort is made to change nonlinear terms into
a linear form by substituting variable Stij with xtijptij in
Constraint sets (3){(6) and (10), as well as Dt

ijj0 with
rtij0(�kjj0 + �kj0j � 1) in Constraint set (11). As a result,
the linear formulation of these constraint sets are as
follows:

Stij +M(1� xtij) � ptij
i=1; 2; ::;mt; j=1; 2; ::; n; t=1; 2; :::; g; (15)

stij �Mxtij

i=1; 2; ::;mt; j=1; 2; ::; n; t=1; 2; :::; g; (16)

stij � ptij
i = 1; 2; ::;mt; j = 1; 2; ::; n; t = 1; 2; :::; g; (17)

Dt
ijj0 +M(2� �tjj0 � �tj0j) � rtij0
i = 1; 2; ::;mt; t = 1; 2; :::; g;

j; j0 = 1; 2; ::; n; j 6= j0; (18)

Dt
ijj0 �M(�tjj0 + �tj0j � 1)

i = 1; 2; ::;mt; t = 1; 2; :::; g;

j; j0 = 1; 2; ::; n; j 6= j0; (19)

Dt
ijj0 � rtij0
i = 1; 2; ::;mt; t = 1; 2; :::; g;

j; j0 = 1; 2; ::; n j 6= j0: (20)

4. Methodology

Since the FFS scheduling problem with unrelated
parallel machines is NP-hard, the research problem
is also NP-hard in the strong sense; thus, achieving
optimal solutions for medium to large-size problems is
very time-consuming. As a result, two metaheuristic
approaches based on PSO and SA are developed to
minimize the makespan for the FFS scheduling problem
with renewable resources. First, two proposed meta-
heuristic approaches are briey described, and then, in
order to calculate the objective function, a heuristic
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approach is proposed to assign the jobs to machines,
the sequence of jobs on each machine, and assign the
renewable resources to the jobs at each stage.

Details of the proposed algorithms are described
as follows.

4.1. PSO algorithm
The PSO algorithm is a population-based optimization
technique which was introduced for the �rst time
by Kennedy and Eberhart [34]. The main idea of
this algorithm is based on simulation of animal social
behavior, such as birds and �sh which are living in a
group [35]. It is assumed that a number of animals
is seeking food in a random space. None of these
animals have information regarding the location of the
food and only instinctively feel their distance from
it. Due to the relatively good performance in some
scheduling problems, as well as the simple structure of
the algorithm and the e�ciency of its implementation,
this algorithm is an e�ective approach to solve large-
scale scheduling problems.

In the PSO algorithm, each particle moves around
the solution space to obtain optimal/near-optimal so-
lutions by updating its velocity and position based on
two parts: cognitive and social. The following formulae
are applied for updating the velocity and position of the
particles at every iteration:

veli(k + 1) =W�veli(k) + C1�r1�(pbesti�Xi(k))

+ C2 � r2 � (gbest�Xi(k)); (21)

Xi(k + 1) = Xi(k) + veli(k + 1); (22)

where, W is called inertial weight and shows the impact
of the previous velocity of the particle on its velocity in
the next iteration. veli(k) shows the velocity of particle
i in iteration k, and Xi(k) represents the position of
particle i in the kth iteration. pbesti and gbest are the
best-known position vectors of particle i and the best
location vector in the population for all the particles,
respectively. Parameters C1 and C2 are acceleration
coe�cients with di�erent constant values and which
determine the inuence of pbesti and gbest on velocity,
respectively. Two random numbers, r1 and r2, are
incorporated in the structure of the PSO algorithm to
add uncertainty.

4.2. Implementation of the PSO algorithm
4.2.1. Solution representation and jobs sequence
Solution representation in the form of a string of
numbers, letters, or a combination of both is the
�rst and perhaps one of the most important steps in
applying and implementing metaheuristic algorithms.
In the present research, the solution representation in
the form of a string of numbers is a permutation of
numbers in the interval of [1,n], so that, n indicates
the number of jobs.

Figure 1. Random key method.

By considering the continuous space for the parti-
cles in the PSO algorithm, it needs to apply a heuristic
approach to convert a particle in the continuous space
to the one in the discrete space [36]. As a result,
in this study, the Random Key (RK) method [37]
is used to transform a particle in continuous space.
In the RK method, the position of any particle in
the RK virtual space (continuous space) is turned
into a position in the problem space (discrete space).
Consider 5 jobs, the initial sequence vector of jobs in
the continuous space is (0.26, 0.53, 0.12, 0.64, 0.85), as
represented in Figure 1, in a given iteration. Based on
the RK method, the numbers in the sequence vector
are arranged in descending order with an index related
to each of these numbers. Figure 1 indicates how to
achieve the jobs sequence in discrete space based on
the vector in the continuous space. As can be seen, the
corresponding sequence of the jobs is as (1, 2, 4, 5, 3).

4.2.2. Updating the particles
A multiplier � was applied into the structure of
Eq. (21). It leads to acceleration of the convergence
process and enhances the overall performance of the
PSO algorithm [38]. The desired value for � is
determined as follows:

C = C1 + C2 > 4; (23)

� =
2

C � 2 +
p
C2 � 4C

: (24)

According to the above equation, the position and
velocity of the particles will be updated based on the
following formulae:

veli(k + 1) =��
�
W � veli(k) + C1 � r1 � (pbesti

�Xi(k))+C1�r1�(gbest�Xi(k))
�
; (25)

Xi(k + 1) = Xi(k) + veli(k + 1): (26)

Similar to Tadayon and Salmasi [39], Eq. (27) was
applied to determine the value of W in each iteration.
If W is set to a high value at the beginning of the
procedure and is gradually reduced to a lower value,
a better performance of the PSO algorithm can be
obtained.
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Figure 2. The pseudo-code of the proposed Particle Swarm Optimization (PSO) algorithm.

W = Wmax � (Wmax �Wmin)� iter
MaxIt

; (27)

in which, Wmax and Wmin are the upper and lower
bounds for W , respectively, and MaxIt is the total
number of iterations that are accomplished in the PSO
algorithm.

The pseudo-code of the PSO approach that is
applied in this research is presented in Figure 2.

4.3. SA algorithm
The SA algorithm, or, in other words, the fu-
sion/cooling algorithm was presented in the early 1980s
by Kirkpatrick et al. [40]. During the SA process,
a material is heated to a temperature higher than
its melting temperature and then, its temperature is
gradually lowered. The temperature reduction process
is so slow that the material is, to some extent, in
thermodynamic equilibrium. In other words, at any
created temperature, the atoms can be replaced only
to the extent of creating the greatest stability. This
means that if the material is cooled even more slowly,
the atoms will be able to release greater energy and
locate in the direction of the greatest stability.

The SA algorithm is one of the �rst metaheuristic
methods for searching neighborhood solutions that has
an explicit strategy to avoid being trapped in local
optimum solutions. In this approach, if the current
solution has a better objective value than the last one,
the current solution is accepted for the next iteration.
Otherwise, it will be accepted as the current solution,
with respect to the Boltzmann function, if:

exp
�
f(Xk(t))� f(Xk(t� 1))

T

�
� P; (28)

where, P is a random number in the interval [0; 1],
f(Xk(t)) is the objective value of the solutions in the
current iteration (t), f(Xk(t�1)) is the objective value
of the current in the previous iteration and T is named
as the temperature at which the current solution is
evaluated. Note that T is a function of two input
parameters: initial temperature and cooling rate [41].

4.4. Hybrid SA-PSO algorithm
Although the PSO algorithm has a relatively good
performance in optimization problems, especially in
scheduling problems, one of the major drawbacks of
this algorithm is that it is easy to trap in the local
optimum. Therefore, a combination of the PSO with
other algorithms, such as SA, can solve this di�culty.
As mentioned above, the SA algorithm is a well-
known metaheuristic algorithms used to search for
neighborhood solutions, such that it applies a high-
performance strategy to prevent trapping in local
optimum solutions. For this reason, in this research,
a hybrid algorithm based on the PSO and SA, namely
the SA-PSO algorithm, is proposed.

In the proposed procedure, if the gbest (pbest) of
a particle has better performance (objective function),
the new particle will be accepted, but if the gbest
(pbest) is inferior, it may still be accepted with a
positive probability, based on the Boltzmann function
(Eq. (28)).

The pseudo-code of the hybrid SA-PSO algorithm
is presented in Figure 3.

4.5. Calculation of the objective function
One of the most important aspects of metaheuristic
approaches is to calculate the objective function based
on the proposed solution representation. For this pur-
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Figure 3. The pseudo-code of the SA-PSO algorithm.

pose, a heuristic approach is proposed, here. Due to the
FFS environment with unrelated parallel machines and
renewable resources in this research, three decisions
must be made to calculate the objective function:

1. Assign the jobs to each machine at each stage;
2. Determine the job sequence on each machine;
3. Allocate renewable resources to the machines.

The details of the proposed approach are discussed as
below:

Step 1: Scheduling of the jobs in the �rst stage.
By considering the obtained job sequences based on
the RK method, the jobs are allocated to all the
machines (available or unavailable) at the �rst stage,
and completion times of the jobs are calculated. In
this research, each job is virtually allocated to all
the machines at the �rst stage, the machine with
minimum completion time is selected and the job is
really assigned to this machine.

Step 2: Scheduling of the jobs in other stages.
For the second stage until the end, the jobs are sorted
in an ascending order of the completion time at the
previous stage. Afterwards, the jobs are allocated to
all the machines (available or unavailable) and the

machine with minimum completion time is selected to
assign the job. By considering this procedure for entire
stages, the completion time of the last job is calculated
and considered as Cmax.

Step 3: Allocation of the renewable resources.
As mentioned before, by allocating a �xed number of
renewable resources to the machines, job processing
time is reduced regarding the normal processing time
and coe�cient of processing time reduction. In this
issue, resource allocation to the machines is conducted
after the job assignment to the machines and job
sequencing on the machines at each stage. First,
scheduling of the jobs is performed by the normal
processing time without considering any renewable
resources. After that, the critical path on the Gantt
chart, which determines Cmax, is identi�ed and one
renewable resource (if available) is assigned to the jobs
on the critical path at each stage. Then, the new Cmax
is determined based on the new processing time. The
above procedure is continued until entire renewable
resources are assigned to the jobs.

A simple example: In order to illustrate how job
scheduling is generated based on the proposed heuristic
approach in the FFS problem with renewable resources,
a simple example is considered, here. Suppose that
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Table 2. The normal processing time of each job.

Job 1 Job 2 Job 3 Job 4 Job 5

Stage 1
Machine 1 7 8 9 9 9

Machine 2 6 4 7 3 7

Stage 2
Machine 1 10 7 2 2 2

Machine 2 4 3 3 3 3

Stage 3
Machine 1 2 7 5 6 3

Machine 2 8 4 9 4 4

there is a scheduling problem with �ve jobs; two, two,
and one renewable resources in stages 1, 2, and 3,
respectively, two machines at each stage, and at =
1; t = 1; 2; 3. The processing times of the jobs are
produced randomly in the interval [2,10]. Table 2 shows
the normal processing time of any job on di�erent
machines at any stage.

It is assumed that the proposed metaheuristic
approach generates a vector for the jobs sequence
as J = (0:5; 0:2; 0:3; 0:8; 0:9) in a given iteration.
The equivalent sequence vector generated by the RK
method should be: Seq = (5; 4; 1; 3; 2).

As mentioned above, in order to assign the jobs to
each machine at any stage, a job in the sequence is as-
signed to all the available and unavailable machines at
each stage and a machine with the earliest completion
time is selected. As a result, the Gantt chart of the
generated solution based on the proposed procedure
(Steps 1 and 2 in the heuristic approach) is shown in
Figure 4.

With regard to Figure 4, the initial makespan
(without renewable resources assignment) equals 25.

In Step 3 of the heuristic approach, the renewable
resources must be assigned to the jobs to reduce the
processing times and as a result, reduce the makespan.
As can be seen in Figure 3, the critical path on the Cmax
is jobs 4 and 3 on machine 1 at the �rst stage, job 3
on machine 1 at the second stage, and �nally, job 3
on machine 1 at the last stage. Regarding the number
of renewable resources at each stage and Constraint
set (10), the processing time of the jobs on the critical
path is reduced by one unit. As a result, the Gantt
chart of the new sequence is changed as follows.

As a result, the new Cmax with one renewable
resource is 24.

In iteration 2, there is one renewable resource
for the �rst and second stages; therefore, only jobs
on the critical path are considered at theses stages.
Therefore, regarding Figure 5, the critical path is jobs
5, 1, and 2 on machine 2 at the �rst stage, and job 2 on
machine 2 at the second stage. By reducing one unit
of the processing time of the jobs on the critical path
at the �rst and second stages, the new Gantt chart is
shown in Figure 6.

Figure 4. The Gantt chart with the normal processing time.

Figure 5. The Gantt chart in iteration 1.
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Figure 6. The Gantt chart in iteration 2.

Figure 6 shows that �nal Cmax with two, two, and
one renewable resource for the �rst, second, and last
stages is equal to 22.

4.6. Improvement of the proposed algorithms
In order to improve the performance of the proposed
algorithms, a local search scheme is incorporated into
the metaheuristic algorithms. The local search �nds
entire neighborhoods of each particle by substituting
every two jobs in the sequence vector. After that, the
objective function of each particle is calculated. It
is substituted by the best neighbor and the position
vector is changed by the best neighbor. The proposed
local search scheme is done on the gbest in each
iteration.

5. Computational results

In this section, some numerical experiments are de-
signed to investigate validation of the mathematical
model. Furthermore, the performance of the pro-
posed algorithms is investigated by comparing them
with the optimal solutions and with each other. In
this section, two di�erent experiments are conducted
for this purpose. At �rst, the performance of the
proposed metaheuristic approaches is evaluated by
comparison with optimal solutions through the small-
size test problems. Afterward, the performances of the
proposed metaheuristic approaches are compared with
each other based on medium to large-size test problems.
Optimal solutions of the test problems obtained by
Lingo 9.0 software and the proposed metaheuristic
algorithms, were implemented in MATLAB and tested
on a computer with 2.4 GHz CPU and 3 GB of RAM.

5.1. Comparison of the proposed metaheuristic
algorithms with the optimal solutions

This section is dedicated to evaluating the performance
of the proposed metaheuristic algorithms by comparing
them with optimal solutions, which are obtained by the
proposed MILP model. Regarding the NP-hardness of
the FFS scheduling problem with renewable resources,
test problems are limited to a small size. For this
purpose, 15 test problems were designed of small size
to compare the mathematical model with the meta-

heuristic algorithms. In order to generate small-size
test problems, �ve characteristics are used to typify the
test problems. They are; the number of jobs, normal
processing time, number of stages, number of machines
at each stage, and number of renewable resources. Test
problem characteristics are summarized in Table 3.

Based on the test problems characteristics, 15 test
problems with di�erent size are generated and each of
them is solved by Lingo 9.0 software with a time limit of
3600 seconds. Their performance is evaluated in terms
of CPU time and Optimal GAP, which is determined
as follows:

Optimal Gap=
Cmax�Optimal solution

Optimal solution
� 100; (29)

in which, Cmax and Optimal solution show the maxi-
mum completion time, generated by the metaheuristic
algorithms and MILP model, respectively. It is nec-
essary to mention that the local search scheme has a
signi�cant inuence on the performance of the original
PSO and improves its performance.

By considering Table 4, the PSO and SA-SPO
algorithms have solved 9 and 11 out of 15 problems,
optimally. Furthermore, the average optimal gap
for both metaheuristic approaches is 3.0% and 1.2%,
respectively. Moreover, the average CPU time to
achieve the optimal solution in di�erent test problems
by the MILP model, PSO, and SA-PSO algorithms
is equal to 379.1, 2.77, and 7.93, respectively. Thus,
it can be concluded that both proposed metaheuristic
algorithms are able to generate optimal/near-optimal
solutions in a reasonable time. By considering the
optimal gap column in Table 4, it is observed that the

Table 3. Test problems characteristics of the small size
test problems.

Characteristic Level

Number of jobs U [3; 5]

Normal processing time U [5; 10]

Number of stages U [2; 3]

Number of machines in each stage U [2; 3]

Number of renewable resources U [2; 3]
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Table 4. Comparison of the metaheuristic algorithms with optimal solutions.

Test
problem

Optimal
solution

CPU
time

PSO SA-PSO

Cmax
CPU
time

Optimal
gap (%)

Cmax
CPU
time

Optimal
gap (%)

1 12.0 12 12.0 2.10 0.0 12.0 2.19 0.0

2 11.4 10 11.4 2.24 0.0 11.4 2.34 0.0

3 12.0 5 12.0 2.36 0.0 12.0 2.66 0.0

4 11.1 2 11.1 2.49 0.0 11.1 2.88 0.0

5 16.3 5 17.5 3.03 7.4 17.1 8.30 4.9

6 15.3 9 15.5 3.19 1.3 15.5 8.48 1.3

7 12.8 20 12.8 2.50 0.0 12.8 6.64 0.0

8 12.3 89 12.3 2.58 0.0 12.3 5.78 0.0

9 12.8 52 12.8 2.62 0.0 12.8 6.92 0.0

10 12.3 181 12.3 2.76 0.0 12.3 8.06 0.0

11 18.4 813 19.3 3.46 4.9 18.4 8.73 0.0

12 16.5 125 16.5 3.55 0.0 16.5 8.90 0.0

13 16.2 1024 17.9 2.86 10.5 16.4 12.97 1.2

14 15.6 2464 16.9 2.97 8.3 15.6 16.03 0.0

15 16.2 875 17.5 2.93 8.0 16.7 18.19 1.3

Table 5. Information related to the medium to large-size test problems.

Characteristic Level

Number of jobs 10� 20� 30� 50� 70� 100

Normal processing time U [5; 20]

Number of stages 3� 5� 7� 10

Number of machines in each stage 3� 5� 7

Number of renewable resources U [10; 50]

solutions which are presented by the SA-PSO algorithm
have better quality.

5.2. Comparison of the metaheuristic
algorithms for medium to large-size test
problems

This section is devoted to comparing the performance
of the proposed metaheuristic algorithms based on
some test problems. Regarding the NP-hardness of the
FFS scheduling problem with renewable resources, the
proposed MILP model cannot achieve optimal solutions
in a reasonable time for medium to large-size test
problems. Therefore, only metaheuristic algorithms
are compared with each other. In order to generate
the test problems, di�erent levels of the test problem
characteristics are summarized in Table 5.

For evaluation purposes, 72 test problems are
randomly generated based on Table 5. Two criteria,
CPU time (sec) and Relative Percentage Deviation

(RPD), are used to compare the proposed algorithms.
The RPD is determined as follows:

RPD =
Cmax � best(Cmax)

best(Cmax)
� 100; (30)

where Cmax is the objective value that is obtained by
a given algorithm and best(Cmax) is the best solution
that is obtained from both algorithms. The obtained
results are presented in Table 6.

The average CPU time and RPD in each group of
test problems that are obtained by the PSO and SA-
PSO algorithms in Table 6 are presented in Table 7.

As can be seen in Table 7, the hybrid SA-PSO
provides better results than the PSO algorithm based
on the average RPD. Furthermore, the average CPU
time of both algorithms in each group of test problems
is approximately similar.

For more scrutiny and as a formal comparison, the
performance of the proposed algorithms is compared,
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Table 6. Computational results of Particle Swarm Optimization (PSO) and SA-PSO algorithms on medium and large size
test problems.

Test
problem

Number of
jobs

Number of
stages

Number of
machines in
each stage

PSO SA-PSO

Cmax
CPU
time

RPD Cmax
CPU
time

RPD

1 10 3 3 64 112 0.00% 64 118 0.00%

2 10 3 5 73 115 0.00% 74 113 1.37%

3 10 3 7 78 124 4.00% 75 120 0.00%

4 10 3 10 85 178 0.00% 85 189 0.00%

5 10 5 3 102 182 0.00% 104 190 1.96%

6 10 5 5 103 185 0.00% 103 182 0.00%

7 10 5 7 100 188 1.01% 99 193 0.00%

8 10 5 10 86 190 0.00% 86 189 0.00%

9 10 7 3 123 165 0.82% 122 166 0.00%

10 10 7 5 122 159 0.00% 124 167 1.64%

11 10 7 7 110 163 0.92% 109 160 0.00%

12 10 7 10 103 166 0.00% 103 158 0.00%

13 20 3 3 121 420 0.83% 120 412 0.00%

14 20 3 5 110 427 0.00% 112 417 1.82%

15 20 3 7 102 417 0.00% 103 424 0.98%

16 20 3 10 99 433 1.02% 98 427 0.00%

17 20 5 3 138 419 0.73% 137 423 0.00%

18 20 5 5 122 469 2.52% 119 477 0.00%

19 20 5 7 116 478 1.75% 114 472 0.00%

20 20 5 10 104 487 0.97% 103 478 0.00%

21 20 7 3 137 466 0.74% 136 478 0.00%

22 20 7 5 134 480 1.52% 132 476 0.00%

23 20 7 7 116 550 0.87% 115 558 0.00%

24 20 7 10 114 556 1.79% 112 551 0.00%

25 30 3 3 159 567 1.92% 156 559 0.00%

26 30 3 5 144 569 0.70% 143 564 0.00%

27 30 3 7 134 573 2.29% 131 577 0.00%

28 30 3 10 166 570 0.00% 167 574 0.60%

29 30 5 3 163 571 1.24% 161 578 0.00%

30 30 5 5 148 578 0.00% 150 580 1.35%

31 30 5 7 136 582 3.03% 132 587 0.00%

32 30 5 10 133 575 3.10% 129 573 0.00%

33 30 7 3 185 677 1.65% 182 689 0.00%

34 30 7 5 166 679 1.84% 163 681 0.00%

35 30 7 7 148 670 0.00% 148 682 0.00%

36 30 7 10 145 682 2.84% 141 671 0.00%

37 50 3 3 204 666 0.00% 204 679 0.00%

38 50 3 5 197 833 1.03% 195 840 0.00%

39 50 3 7 185 827 3.35% 179 817 0.00%

40 50 3 10 166 816 1.84% 163 826 0.00%

41 50 5 3 225 820 6.13% 212 833 0.00%
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Table 6. Computational results of Particle Swarm Optimization (PSO) and SA-PSO algorithms on medium and large size
test problems (continued).

Test
problem

Number of
jobs

Number of
stages

Number of
machines in
each stage

PSO SA-PSO

Cmax
CPU
time

RPD Cmax
CPU
time

RPD

42 50 5 5 217 828 1.88% 213 829 0.00%

43 50 5 7 210 1276 0.96% 208 1288 0.00%

44 50 5 10 201 1288 2.03% 197 1279 0.00%

45 50 7 3 240 1293 1.69% 236 1279 0.00%

46 50 7 5 231 1289 1.76% 227 1297 0.00%

47 50 7 7 222 1279 3.26% 215 1288 0.00%

48 50 7 10 215 1567 2.38% 210 1571 0.00%

49 70 3 3 299 1563 2.05% 293 1567 0.00%

50 70 3 5 290 1566 2.47% 283 1574 0.00%

51 70 3 7 281 1579 2.93% 273 1561 0.00%

52 70 3 10 260 1917 1.96% 255 1922 0.00%

53 70 5 3 305 1912 2.35% 298 1925 0.00%

54 70 5 5 294 1921 2.08% 288 1908 0.00%

55 70 5 7 289 1915 1.05% 286 1925 0.00%

56 70 5 10 275 1923 2.23% 269 1917 0.00%

57 70 7 3 315 1920 1.61% 310 1900 0.00%

58 70 7 5 309 1934 2.66% 301 1923 0.00%

59 70 7 7 311 3168 2.30% 304 3175 0.00%

60 70 7 10 300 3178 1.69% 295 3169 0.00%

61 100 3 3 367 3173 1.94% 360 3166 0.00%

62 100 3 5 360 3184 2.27% 352 3165 0.00%

63 100 3 7 341 3176 2.10% 334 3183 0.00%

64 100 3 10 336 3178 2.44% 328 3189 0.00%

65 100 5 3 392 3186 2.08% 384 3191 0.00%

66 100 5 5 374 3189 2.19% 366 3169 0.00%

67 100 5 7 353 3178 2.62% 344 3168 0.00%

68 100 5 10 340 3183 3.34% 329 3175 0.00%

69 100 7 3 423 3174 3.17% 410 3169 0.00%

70 100 7 5 386 3191 2.12% 378 3178 0.00%

71 100 7 7 381 3175 2.14% 373 3165 0.00%

72 100 7 10 339 3190 2.42% 331 3155 0.00%

statistically. Figure 7 shows the means plot and
Least Signi�cant Di�erence (LSD) intervals (at the 95%
con�dence level) for the algorithms.

The results demonstrate that the SA-PSO algo-
rithm statistically outperforms the PSO algorithm with
a 95% con�dence level.

In order to evaluate the e�ects of di�erent con-
trollable parameters of the test problems, an average
RPD plot for the controllable parameters is depicted,

here. As a result, the number of jobs, the number of
stages, and the number of machines at each stage are
considered controllable parameters.

5.2.1. The number of jobs
The interaction between the type of algorithm and the
number of jobs is depicted in Figure 8 based on the
average RPD.

It can be seen that, in small size problems, both
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Table 7. The average CPU time and Relative Percentage Deviation (RPD) in each group of test problems in medium and
large size problems.

Problem size
(job�stage)

PSO SA-PSO
Average

CPU time
Average

RPD
Average

CPU time
Average

RPD
10�3 132 1.00% 135 0.34%
10�5 186 0.25% 189 0.49%
10�7 163 0.43% 163 0.41%
20�3 424 0.46% 420 0.70%
20�5 463 1.49% 463 0.00%
20�7 513 1.23% 516 0.00%
30�3 570 1.23% 569 0.15%
30�5 577 1.84% 580 0.34%
30�7 677 1.58% 681 0.00%
50�3 786 1.55% 791 0.00%
50�5 1053 2.75% 1057 0.00%
50�7 1357 2.27% 1359 0.00%
70�3 1656 2.35% 1656 0.00%
70�5 1918 1.93% 1919 0.00%
70�7 2550 2.07% 2542 0.00%
100�3 3178 2.19% 3176 0.00%
100�5 3184 2.56% 3176 0.00%
100�7 3183 2.46% 3167 0.00%

Total average 1254 1.65% 1253 0.14%

Figure 7. The means plot and Least Signi�cant
Di�erence (LSD) intervals.

Figure 8. The interaction between the type of algorithms
and the number of jobs.

algorithms have similar performance, but for the larger
size test problems, there is a signi�cant di�erence
between the proposed algorithms.

5.2.2. The number of stages
The average RPD plot to consider the e�ect of the

Figure 9. The interaction between the type of algorithms
and the number of stages.

Figure 10. The interaction between the type of
algorithms and the number of machines in each stage.

number of stages on the quality of the proposed
algorithms is depicted in Figure 9.

Figure 10 shows that the SA-PSO algorithm
works better than the PSO algorithm in all the cases.

5.2.3. The number of machines at each stage
Another average RPD plot is used to see the e�ect of
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the number of machines at each stage on the perfor-
mance of the proposed algorithms (see Figure 10).

Regarding Figure 10, it can also be concluded that
the SA-PSO algorithm shows the best performance in
all cases.

6. Conclusions and future research

In this study, the e�ect of renewable resources on
Flexible Flow Shop (FFS) scheduling problems with
unrelated parallel machines is studied. Assignment of
renewable resources to machines can lead to decreasing
the makespan. For this purpose, a mixed integer
linear programming model is proposed to minimize the
makespan in an FFS environment with renewable re-
sources. The proposed model was computationally NP-
hard, therefore, a Particle Swarm Optimization (PSO)
algorithm, as well as a hybrid SA-PSO algorithm, are
proposed to solve the model. The obtained results from
the randomly generated test problems show that the
SA-PSO algorithm outperforms the PSO in both small
and large size problems.

Suggestions for future studies include considera-
tion of other objective functions such as cost-related
and due date-related objective functions. Other ideas
for future research are the consideration of release
time and machine availability constraints, and batch
processing. Also, other production environments, such
as job shops and exible job shops can be considered
in future studies. Hybridization of other well-known
metaheuristic approaches, such as Genetic Algorithms
(GA), Variable Neighborhood Searches (VNS), and the
Tabu Search (TS) can also be considered for future
research.
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