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Abstract. A transactive strategy for purposeful pricing of Distributed Energy Resources
(DERs) in distribution networks is proposed in this paper. This strategy is presented as a
novel heuristic optimization approach. Reduction of both total network loss and released
greenhouse gases (GHGs) emissions can be considered as the intended objective functions.
In addition, Locational Marginal Pricing (LMPs) and power factors associated with DERs
are considered as decision variables. Each DER, which is more involved in the mitigation
of the aforementioned objectives, gives rise to greater bene�ts in the long term. Therefore,
such a contribution to greater generation on a large scale leads to the higher price of
using DER bus than substation market price. Also, the bene�ts earned from loss/emission
mitigation are allocated to DERs directly. The fairness of this pricing process is supervised
by the Independent Distribution System Operator (IDSO). Given that the problem has two
contradictory objective functions, a reliable Multi-objective Group Search Optimization
utilizing Covariance matrix and Chaotic search (MGSOACC) is proposed to solve the
problem. To evaluate the viability of the proposed method, the pricing procedure is applied
to modi�ed IEEE-33 and IEEE-69 bus test networks. Furthermore, to validate the proper
functionality of the proposed optimization method, result-oriented comparisons between
four conventional multi-objective optimization methods and the proposed optimization
method are made.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Reducing emission from the generation of electrical
energy and alleviating its environmental and economic
impacts, especially COX , has become one of the most
important issues in event researches on this subject
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[1,2]. Also, having been considered by a large number
of branches and feeders in distribution networks as well
as the high contribution of these networks to total
loss, loss and emission reduction is considered as one
of the most important challenges in the operation and
planning of these networks [3].

The conventional methods used for reducing
loss and emission in distribution networks generally
require budget extension, add/remove equipment, and
network recon�guration. In the method proposed in
this paper, not only is there no need to add/remove
equipment or change the network con�guration, but
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also no additional charges are imposed on the network.
Therefore, operators prioritize this approach over
other existing options.

From this point of view, use of Distributed Energy
Resources (DERs) can become an e�ective alternative
to provide a good solution to distribution issues. DERs
in Micro Grids (MG) are planned and sized to reduce
the total electrical loss [4], transmission loss [5], and
thermal loss [6]. Many types of research have focused
on the mitigation of emission in distribution networks
[7]. DERs are employed to mitigate the loss incurred
by distribution networks upon changing the ow of the
feeders [8]. Unlike conventional thermal power, DERs
often use renewable energy, natural gas, or other clean
energies, which can be more e�cient in the emission
problem.

Conventional methods carry out the process of
reducing loss by usually removing/adding equipment
[3], or by changing the network con�guration [3].
In addition, in many other studies, the process of
planning to reduce losses takes place before network
implementation or for a long-term period [9]. In a
similar manner, in order to reduce Greenhouse gases
(GHGs) emission, conventional methods are based on
the addition of expensive equipment such as �lters.
However, the proposed method reduces emission and
loss without making any changes to network con-
�guration, adding/removing equipment, or imposing
additional costs on the network.

On the other hand, the proposed method can
also be applied to the network in the operation mode
and does not require long-term research to modify the
network. Conventional pricing methods in the power
markets include uniform [10], zonal [11], marginal loss
[12], and Locational Marginal Pricing (LMP) [13].
Uniform method considers a single price for all nodes
on networks. Therefore, this method cannot be useful
for purposeful pricing approaches. Several prices with
one price for all nodes in any given zone is called the
zonal price [11]. In the zonal approach, the market
is divided by the congested interconnector. There
needs to be either an organized market with a separate
price on each side of the interconnector or two closely
co-operating power exchanges. With marginal loss
pricing, transmission losses are priced according to
marginal loss factors. The marginal loss factor at
a bus is the increase in the percentage of system
losses caused by a small increase in power injection
or withdrawal at the bus. Marginal loss factors are
always twice the average loss factors. However, this
pricing method results in the signi�cant accumulation
of loss revenues. Therefore, the fairness of this method
in the settlement of incentives and bene�ts may not be
guaranteed [12]. Locational marginal pricing is a way
for wholesale electric energy prices to reect the value
of electric energy at di�erent locations, accounting for

the patterns of load, generation, and physical limits of
the transmission system [14]. The revenue settlement
can be performed perfectly.

Locational marginal pricing is one of the most
e�ective methods for energy pricing to demonstrate the
economic impact of each bus on the network. Many of
the world's most reliable electricity markets, including
PJM, MISO, and NYISO, have employed this pricing
method for their transactions [15].

The locational marginal pricing [16] method, in
comparison with other conventional pricing methods
[17], is a well-known strategy in electricity market
transactions, because it can reect the impact of power
ows and contingency problem in branches of the
networks. This method has the ability to absorb
the technical nature of the network in the economic
considerations by making a change in the fair price of
each region depending on technical conditions.

On the other hand, DERs can be bene�cial in
dealing with �nancial operational problems such as en-
ergy pricing. In recent years, some methods have been
developed for solving the electricity pricing problems at
DER buses. The locational marginal pricing problem
is considered in the presence of demand response [18].
A game theoretic method for calculation of locational
marginal pricing in distribution networks was presented
in [19]. The network congestion, loss, and technical
limits such as bus voltage limits were considered to
determine the LMP [20]. The fuzzy-based method was
proposed for the hour-ahead electricity market in [21].
In [22], a new method was presented for optimal DER
placement with the nodal pricing by considering pro�t,
loss reduction, and voltage improvement.

The pricing procedure of these researches is char-
acterized by important features; however, they have
not considered the following important features that
are considered in this paper:

� They do not consider the other technical factors,
including emission, in the LMP calculation;

� The guaranteed non-mandatory method for the in-
volvement of DERs in the realization of network ob-
jectives is not considered, because all these methods
are implemented based on a mandatory approach;

� The ability of decision-makers to deal with the
system priority among the di�erent objectives such
as losses/emission reduction and DER unit's pro�t
is not considered;

� Comprehensive comparisons between the perfor-
mances of conventional optimization methods in-
cluding MOGA, MOPSO, NSGA-II, and MOPSO-
FDR with that of the proposed optimization method
were made in terms of the best and worst solutions,
average solution, and standard deviation.

In this paper, the locational marginal pricing
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problem is presented in conjunction with a Multi-
objective method using Group Search Optimizer
with Adaptive Covariance matrix and Chaotic search
(MGSOACC) [23] with consideration of the above-
mentioned features to reduce the total loss and emission
of the network. In addition, decision variables are
LMPs at DER busses and power factor of DERs.
Since the considered problem refers to the simultaneous
optimization of two interconnected objectives, i.e.,
losses and emission, a multi-objective algorithm is
used to obtain Pareto set solutions during the search
process and store them in a repository. Because the
objective functions are not the same in terms of size
and dimension, the size of the repository is controlled
using a fuzzy clustering technique [24].

The remainder of this paper is divided into 3
sections: the �rst part of Section 2 explains the loss and
emission formulation and calculation. The remainder
of Section 2 shows reduction of loss and emission for the
multi-objective problem and the proposed algorithm.
Section 3 provides simulation results to con�rm the
e�ectiveness of the proposed method. Finally, Section 4
presents the conclusion of the paper. A schematic
diagram of the pricing procedure, simulation, and the
connection between sections, �gures, and tables of the
manuscript is presented in Figure 1.

2. Formulation of the incentivization problem

The formulation of loss and emission in terms of cost

function is expressed in the �rst part of this section.
Then, the constraints of the optimization problem and
multi-objective considerations are presented.

2.1. Cost function
Two main objectives of the distribution network oper-
ation are loss and emission reduction and DERs can
a�ect them drastically. In this paper, LMP for DER-
connected busses is calculated based on the behavior
of the corresponding DER in the mitigation of loss and
emission. The cost functions are measured through
Eqs. (1) and (2):

Ploss(X) =
NbrX
br=1

RbrjIbrj2

x 2 X; (1)8>>>>>><>>>>>>:
E=

NDGP
i=1

EDG;i+EGrid

Egrid=(ENOxGrid +ESO2
Grid

+ECO2
Grid

+ECO
Grid

)�PGrid
EDG;i(X)=(ENOx

DG;i
+ESO2

DG;i
+ECO2

DG;i
+ECO

DG;i
)�PDG;i

(2)

x 2 X

In addition, the vector-valued objective function
and control variables are de�ned as Eqs. (3a) and (3b),
respectively:

f : X ! Rk; f(x) = (f1(x); f2(x)); (3a)

Figure 1. Schematic diagram of the paper.
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X=[�1; �2; :::; �i; :::; �NDG ; pf1; pf2; :::pfi; :::; pfNDG ];
(3b)

where X is the control variable vector in the LMP
calculation problem in DER-connected busses.

Further, since the proposed method is multi-
objective, each objective cannot be weighed in accor-
dance with Eq. (4):

!1f1(x) + !2f2(x): (4)

However, if the operators need to prioritize, they
can prioritize the incentives in the pricing process
instead of prioritizing each objective function.

Furthermore, the values of emission coe�cients
of substation bus and DER units are presented in
Figure 2 [19].

2.2. Constraints
Limitations and constraints associated with the pricing
problem interconnected with the power ow problem
can be classi�ed into two categories: equalities and
inequalities. The constraints on the optimization of
the aforementioned cost functions are categorized, as
can be seen in Table 1. Limitations and constraints in
the case of the load ow problem can be classi�ed into
two categories: equalities and inequalities.

Figure 2. Emission coe�cients of substation bus and Distributed Energy Resource (DER) units.

Table 1. Constraints and limitations of the optimization problem.

Inequality constraints in the form of
H(x; u; y) � 0

Active and reactive
power limitations

Pmin;DG;i � PDG;i � Pmax;DG;i

Qmin;DG;i � QDG;i � Qmax;DG;i (5)

Constraints through operating
limits on ows

jFij j � Fij (6)

Constraints through operating
limits on voltages

Vj � Vj � Vj (7)

Constraints through power
factor consideration

Pfmin;i � Pfi � Pfmax;i (8)

Constraint on Merchandising
Surplus (MS)

MS =

264 �(lossbase � loss) + t !e(emissionbase � emission)�
NDGP
i=1

(�r)i(QDG;i)�
NDGP
i=1

((�a)i � �)(PDG;i)

375 (9)

MS � " (10)
Equality constraints in the form of

G(x; u; y) = 0

Power balance constraint
NDERP
d=1

PDERd + PSub �
NbP
i=1

PDi = 0 (11)
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As the loss/emission reduced by DER units is
minimized, the bene�t of the Distribution Company
(DISCO) increases.

Considering the role of DERs in meeting the
network objectives and in line with the minimiza-
tion of emission and loss, the pro�t of DISCO is
increased. This increase is formulated in Eq. (9) in
Table 1 [25].

The Merchandising Surplus (MS) is greater than
zero and must be minimized in a fair competition gen-
erally. Therefore, the constraints on MS are considered
as Eq. (10), where " is the maximum deviation of
the MS. The details of this constraint were presented
in [26].

2.3. De�nition of the optimization problem
For solving a minimization problem using the interval
approach, C1 (interval number) is considered to be
more proper than interval number C2 if the center
point and radius of C1 are smaller than those of C2,
i.e., c(C1) < c(C2) and r(C1) < r(C2). Thus, the
center point and the radius should be minimized. This
procedure leads to the formulation of the problem into
a standard multi-objective problem.

In this paper, the objective deviation and average
are considered as dual conicting objectives to attain a
trade-o� between them, in which the weighting factor
is not required essentially.

The objective deviation and average are formu-
lated in terms of the radius and center point of the
objective interval in Eq. (12):

c(C(X;Y; Z)) =
1
2

(CL(x) + CR(x));

c(C(X;Y; Z)) =
1
2

(CL(x) + CR(x)); (12)

where c and r are the values of the center point and ra-
dius, respectively; CR(x) and CL(x) are the upper and
lower bounds of the interval corresponding to a speci�c
independent variable X. Then, these parameters can
be obtained by solving the sub-problems in Eq. (13):

CL(x) = min
U

(C(X;Y; Z));

CR(x) = max
U

(C(X;Y; Z)): (13)

Once the upper and lower bounds of objective
intervals are determined, the deviation and average of
the objective interval are calculated using Eq. (9) by
considering its upper and lower bounds. By inserting
Eq. (13) into Eq. (12), the multi-objective optimization
problem is formulated. This formulation is presented
in Eq. (11):

min [m (C(X;Y; Z); r (C(X;Y; Z)) ]

s.t. : c (C(X;Y; Z) =
1
2

( min
Z

C(X;Y; Z)

+ max
Z

C(X;Y; Z) );

r(C(X;Y; Z) ) =
1
2

( min
Z

C(X;Y; Z)

�max
Z

C(X;Y; Z) );

g (X;Y; U) = 0;

h (X;Y; U) � 0;

Z 2 [ZL; ZR]: (14)

Also, Eq. (14) is a two-stage optimization problem
that contains a �rst-stage problem for optimizing c
and r and is also a dual-stage nonlinear problem
for determining the objective interval bounds. This
optimization is presented in the next part of this
section.

2.4. Optimization algorithm
The producers, rangers, and scroungers constitute the
main group members of the MGSOACC, respectively.
The number of the �rst group is equal to that of
the objectives, and each member of this group cor-
responds to the best �tness value of the prede�ned
objective in each search generation. The �rst group
members are scanning the search area employing white
crappie's scanning strategies [27] to search for the
optimal source. The third group is a�liated with the
adaptive covariance matrix [28] to make the search
approach for the third group members be adaptive. It
leads to getting a dependable estimator for the paths.
Therefore, it could improve the local search capability
of the pro�ering method [27].

Furthermore, the chaotic search is used as the
search approach of the second group to save the
diversity of the members. Also, the chaotic sequence is
presented based on the logistic map [28].

u(k+1) = �:u(k):(1� u(k)); (15)

where u(g) 2 [0; 1] ) u(0) =2 f0; 0:25 ; 0:5; 0:75; 1g
and g is the kth iteration.

Then, the position of the ith member of the
second group is updated based on the chaotic search
in Eq. (13).

x(k+1)
i = x(k)

i + u(k):(x(k)
i � }i); (16)

where }i donates the optimal Pareto front which is
derived from Pareto set with random selection. The
pseudo-code of the optimization method is presented
in Table 2.
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Table 2. Constraints and limitations of the optimization problem.

Set k = 1;

Input the DERs characteristics, line impedance, and emission coe�cients;

Initialize parameters of each member of triple groups of MGSOACC;

Determine the bounds of objective intervals by non-linear programming using Eq. (13);

Obtain the lower and upper bounds of the objective interval of each member by non-linear programming using Eq. (13);

Calculate the �tness values of initial members using Eq. (14);

WHILE (the termination conditions are not met)

FOR (each member in the group)

Choose
Select producers from the group. The number of producers is equal to the

number of objectives. The member with the best �tness value of the pth

objective is selected as the producer;

Producers perform

Each producer scans at zero degree and then, scan laterally by randomly

sampling three points in the scanning �eld using Eqs. (5) to (9)

in [27];

producing:

Perform scrounging:
Except the producers, randomly select 70% from the rest

members to perform scrounging:

1) Generate mean vector by exponential weighting [28]

2) Update covariance matrix to determine evolution

path and update step-size using Eq. (30) in Ref. [37]

Perform ranging Except the producers and scroungers, the rest members perform ranging:

1) Generate the chaotic sequence using Eq. (14)

2) Rangers perform chaotic search using Eq. (14)

Update group Select new producers and generate new group members

END FOR

Calculate �tness
1) Obtain the lower and upper bounds of the objective interval of

each current member by non-linear programming using Eq. (13)

2) Calculate the �tness values of current

members using Eq. (14)

Pareto selection
Update the Pareto solutions using fast non-dominated sorting

technology and �x the number of elements in the Pareto solution set as a

constant by the crowded comparison operator [38]

g=g+1

END WHILE
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2.5. Game-theoretic incentivization
The contribution of each Distributed Generation (DG)
to incentives should be guaranteed in a fair approach.
One of the proper methods for fair allocation of
incentives to participants is cooperative game-theoretic
methods, e.g., Shapley value [29,30]. In this paper,
each DG is examined as a player. The objective of this
game is earning much pro�t by players due to their
participation in satisfying the network's objectives
and reducing loss and emission. In this paper, the
Shapley value method is utilized. In the conventional
Shapley value, for n players, the total set of 2n � 1
coalitions should be evaluated and this manner carries
a high computational burden. Therefore, in this paper,
instead of the CSV method, the Aumann-Shapley value
method is employed with lower computational burden
for allocating loss reduction and emission to each DG.
N is considered as all players (DGs) set coalition for
n players. S is considered as a subset of N and jSj is
the number of players in the S coalition. In this case,
Shapley value is presented for the �rst objective, loss,
related to player i in all N 's in Eqs. (17) to (25) [31]:

�i(�) =
X

s�N
i2S

(jSj � 1)!(n� jSj)!
n!

[�(s)� �(s� fig)]: (17)

If NR and NI are considered as the real and
imaginary parts of branch currents, respectively, then
we have:

NR = fI1r + :::+ Iir + :::+ Inrg2;
NI = fI1i + :::+ Iii + :::+ Inig2: (18)

The electrical loss is calculated through Equation (19).

Lossr(Ii) = r:fI1r + :::+ Iir + :::+ Inrg2: (19)

In this case, the unit's Aumann-Shapley partnership
index is presented in Eq. (20):

Lossr(Ii) =
1Z

t=0

@SL(tIi)
@Iir

dt

=
1Z

t=0

2 [(I1r+:::+Iir+:::+Inr)t]: r dt

= r:fI1r + :::+ Iir + :::+ Inrg: (20)

Therefore, the reduced loss can be obtained using
Eq. (21):

�l(s) = LosswithoutDGr � LosswithDGr : (21)

Thus, the allocation of active loss to player i from
the currents of branches is shown in Eq. (22):

ALRi = �Iir : Iir = Iir:fI1r + :::+ Iir + :::+ Inrg:r:
(22)

Nevertheless, in this paper, the main objective is
to allocate loss and emission to players simultaneously.
According to this fact, the W (jSj) for the cooperative
game should be de�ned. The [�r(s) � �r(s � d)]
represents the contribution of each DG to the reduction
of loss; and the [�e(s) � �e(s � d)] represents this
contribution to emission compared to the base status
(without purposeful participation of DGs) [31]:

W (jsj) =
(NDG � jsj)! � (jsj � 1)!

NDG!
: (23)

For the emission index, a process is similar to
Eq. (21). By analogy, the same process is considered
for this objective in Eq. (21):

�l(s) = THDwithoutDG � THD withDG: (24)

Thus, the contribution of each DG from incentives
corresponding to loss and emission reduction in the
form of (ALRd) and (AERd) is determined as follows:

ALRd =
X
d2 s

W (jsj) � [�r(s)� �r(s� d)];

AERd =
X
d2 s

W (jsj) � [�e(s)� �e(s� d)]; (25)

where �r(s) � �r(s � d) expresses the amount of loss
reduced by DG no. d, subtracted from the total loss
reduced by all-player set coalitions and �e(s)��e(s�d)
indicates the value of emission index mitigated by DG
No. d, subtracted from the emission mitigation of all-
player set coalitions.

Upon using this procedure, the fairness of the
pricing method is guaranteed based on the cooperative
game-theoretic method [32]. Further, the owchart of
the pricing procedure based on the proposed algorithm
is presented in Figure 3.

3. Simulation results

3.1. Case studies
The multi-objective LMP calculation in distribution
networks is tested on the IEEE 33 bus distribution
and IEEE 69-bus distribution test system with four
and nine DERs, respectively. The IEEE 33-bus test
system is a 12.66 kV system including a substation, two
feeders, and 33 buses. The IEEE 33-bus test system
data were given in [1], and the single-line diagram of
this system is shown in Figure 2. The initial loss of
the network is 202.47 kW and the initial emission is
3617.365 kg. for the DER units which are placed in
5,11,25,30 buses.
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Figure 3. Flowchart of the pricing procedure based on
the proposed algorithms.

The IEEE 69 bus test system consists of 69
nodes, 5 looping lines, and 7 lateral feeders. The
total demands of the system are 3802.19 kW and
2694.60 kVAr, respectively, with the system voltage of

12.66 kV [2]. The initial and emission losses of the
network are 655.23 kW and 7521.514 kg, respectively
[3]. The single diagram of IEEE 33 bus and IEEE
69 bus networks are presented in Figure 4(a) and (b),
respectively.

Emission coe�cients for these DERs are shown in
Figure 2 and Table 3. In addition, the cost functions
of DER units in terms of coe�cients a, b, and c are
presented in Table 3.

3.2. Algorithm comparisons
First, to evaluate the superiority of the MGSOACC
algorithm to MOPSO [33], MOPSO-FDR, MOGA
[34], and NSGA-II [35] algorithms as well as the loss
and emission were optimized by using these three
aforementioned algorithms separately. The pseudo-
code of this algorithms is described in Table 4 [33{
36]. In this comparison, the market price is equal to
28 $/MW. Figure 5(a) presents the competitive results
of MOPSO, MOGA, and MGSOACC algorithms in
case when loss is considered as the objective function
for the IEEE 34-bus network. Also, in Figure 5(b),
the results of algorithms are presented considering that
emission is the objective function for the IEEE 34
bus network. In addition, the competitive simulation
results of the �ve aforementioned algorithms for IEEE
69 bus network are presented in Figure 6(a) and
(b). As shown in Figures 5 and 6, the results of
MGSOACC algorithm are much more reliable than
other optimization algorithms. This superiority may
result in the greater reduction of loss and emission.

The results of the proposed MGSOACC algo-
rithm derived from LMP calculation are presented
in Tables 5, 6, and Figure 7. In these tables, the
proposed method is compared with the other two con-
ventional LMP calculation methods, namely uniform
price method and marginal losses method [17]. In
Tables 5 and 6, DER units' nodal price and their
generation for di�erent market prices are presented,
and the results of these three methods are compared.
As the market price increases, the generation of DERs
and nodal price increase using all the three methods.

In fact, the generation of DERs is adjustable with
a new nodal price; however, generation and price of
DERs for the proposed method are more than marginal
losses and uniform price methods. In comparison with
other conventional methods, the greater active power of
DERs and the high price of DER connected buses point
to the e�ciency of this method. Given that the higher
generation of DERs causes lower loss and emission, we
can approach our aim, e.g., reducing the mentioned
objectives. For starting the DERs, coe�cient `b' in
Eq. (15) must be lower than market price.

As shown in Table 5, for the market price equal
to 20 ($/MW), all DERs are turned o� and do not
yield any generation. When the DER is turned o� and
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Figure 4. Single line diagram of 33- and 69- bus distribution test systems.

Table 3. Economic characteristics and emission coe�cients of Distributed Energy Resources (DERS).

Economic
Characteristics

of DERs

Emission coe�cients
of DER units

and the upstream bus

No. DER Type Capacity of
DER (kW)

a
($/MW2)

b
($/MW)

c
($)

CO2 SO2 NOx CO

DER1

DER4
CCGT 1000 5:8� 10�6 0.021 0 695 1.25 2.13 2.8

DER2 G-ICE 1000 5:3� 10�6 0.020 0 477 0.024 0.015 0
DER3 D-ICE 1000 5� 10�6 0.020 0 625 0.032 0.29 0.42

does not generate active power, the price of DER buses
becomes equal to the market price at 20 ($/MW). The
results of this problem are shown in the �rst row of
Table 6.

Furthermore, as shown in Table 5, as the market
price increases, the DER's power also increases. For

example, in case of the market price being equal to
28 ($/MW), DER1 generates 753.74 kW; in case of
the market price being equal to 26 ($/MW), 588.595
kW is generated. When the market price is equal to
30 ($/MW), DER2, DER3, and DER4 generate the
active power of 1000 kW. Due to the constraint of DER
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Table 4. The pseudo codes of MOPSO [33], MOPSO-FDR, MOGA [34], and NSGA-II [35].
(a) MOPSO (b) MOPSO-DFR

Initialize
Swarm positions, velocities and
leaders.
Send leader to archive
Crowding (leaders), g = 0

Initialize
swarm positions, velocities and
leaders.
Send leader to archive
Crowding (leaders), g = 0

While g < gmax Set
Initial leaders of the EA
Evaluate leaders according to DF
and CD

For

Each particle
select leader.
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End
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Figure 5. Comparison of MOGA, MOPSO, and MGSOACC Algorithms in terms of optimizing the objectives for IEEE
33-bus network: (a) Loss optimization and (b) emission optimization.

Figure 6. Comparison of MOPSO, MOPSO-FDR, MOGA, NSGA-II, and MGSOACC algorithms in terms of optimizing
the objectives for IEEE 33-bus network: (a) Loss optimization and (b) emission optimization.

Figure 7. Loss and emission of network for various market prices: (a) Loss and (b) emission.
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Table 5. Nodal prices of Distributed Energy Resource (DER) units vs market prices.
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Table 6. Generation of Distributed Energy Resource (DER) units vs market prices.
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capacity, they can produce up to 1000 kW; however,
through Eq. (17), the generation of DERs is calculated
at more than 1000 kW and DERs are forced to generate
the maximum capacity of active power. If the capacity
of DER increases, greater power can be reached in the
intended market price.

Figure 4 shows the optimized value of emission
and loss for various suggested market prices. As shown
in Table 5, as the market price increases, the loss
and emission in all pricing methods increase. Thus,
the proposed method achieves greater reduction than
methods of uniform price and marginal loss.

Reduction of these objectives causes extra bene-
�ts for DISCO. This bene�t is equal to 1 MW power
and 1 kg emission costing 1$ and 5.94$, respectively.
These values are �1 and �2 in simulation, respectively.
Based on the allowance price of emission and market

price, decreasing these objectives follows an identical
cost incurred on DISCO. Also, DISCO allocates the
bene�t of loss and emission reduction to DERs to
generate more active power and aims to reduce loss and
emission of the distribution network. DERs need much
capital to generate extra power and DISCO supplies
the required amount of capital to generate more active
power of DERs.

Moreover, DERs being far away from the substa-
tion have greater impact on their generation than other
DERs due to the overall system loss reduction. This
trend can be seen in DERs located at buses 12 and
9 in the IEEE 32-bus test system. In addition, in a
similar way, in IEEE 69-bus test system, DERs located
at Buses 27, 35, 46, and 64 have a greater impact on
loss reduction than the other ones.

However, such an argument does not hold for
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the impact of each DER on reducing emission. This
amount may vary depending on the generation capacity
and the emission coe�cients of each one.

3.3. The non-inferior solutions
As the generation of DERs active power increases, the
allocated cost to DERs increases consequently.

In the case of the multi-objective problem, a
unique solution that can be both optimal and all-
encompassing does not exist; besides, the solutions
constitute a set called non-inferior solutions. This
process is presented as follows [23]:

Pareto dominance: A < B if and only if:(
fi(A) � fi(B); 8i 2 f1; 2; :::;mg
fi(A) < fi(B); 8i 2 f1; 2; :::;mg (26)

Pareto optimal: solution A is Pareto if and only if:

!9X 2 Rn : X � A: (27)

The Pareto optimal set contains the Pareto opti-
mal solutions and the area contained by all non-inferior
objective vectors is called Pareto front.

By solving the proposed multi-objective problem,
the Pareto optimal solutions are obtained. Conse-
quently, the best-comprised solution of Pareto should
be selected for the proposed problem. In this regard,
the max-min fuzzy satisfying criterion is employed to
select the best-comprised solution. In this method,
�rst, the Fuzzy Membership Functions (FMFs) are
measured. This procedure can be mathematically
expressed as follows:

�q;z =

8><>:
1

fmax
q �fq;z
fmax
q �fmin

q

0

fq;z < fmin
q

fmin
q < fq;z < fmax

q
fq;z > fmax

q

9>=>; ;

8q 2 � ; z 2 S; (28)

where z refers to the zth solution of the qth objective
function. fmax

q is the membership objective function
with the maximum value of fq calculated for the
minimum value of fq0 , which is in conict with fq,
i.e., q0 2 � � q. This means that the maximum value
of fq is obtained when fq0 is optimally minimized.
Generally, the values of fmin

q and fmax
q are obtained

for the optimization of the qth objective function in
a single objective problem, separately. Therefore, the
maximum value of overall satisfaction is obtained as
the best comprised solution as follows:

� = max8z2S f min8q2 �
f�q;zgg: (29)

In a multi-objective optimization problem, the
concept of optimality is replaced by a non-dominated

solution (Pareto optimality). A general multi-objective
optimization problem can be formulated as follows:

Minimize

F = [f1(X); f2(X); :::; fNobj (X)]; (30)

where X is a feasible solution, fi(X) is the ith objective
function, and Nobj is the number of objective functions.

For any two solutions X1 and X2, the solution
X1 dominates X2 if the following two conditions are
satis�ed:(8m 2 f1; 2; :::; Nobjg ; fm(X1) � fm(X2)
9n 2 f1; 2; :::; Nobjg ; fn(X1) < fn(X2)

(31)

If any of the conditions are unacceptable, X1
cannot dominate X2; otherwise, X1 dominates X2,
hence a non-dominated solution.

The Pareto front of the LMP problem solved
by MGSOACC algorithm is presented in Figure 8.
According to the �gure, non-inferior solutions are
reasonable. The solution with a larger membership
function value is chosen the best solution to the multi-
objective optimization problem in the search process
of MGSOACC algorithm. This selection is based on
the allowance price of 1 kg emission and market price.
The price of 1 kg emission is higher than that of 1 MW
loss, and the reduction of emission brings about more
bene�ts, including more money to DISCO, than the
reduction of loss.

4. Conclusion

In order to solve the optimization problem due to
loss/emission reduction in the distribution networks,
a multi-objective group search optimizer with adaptive
covariance matrix and chaotic search was given in the
presence of Distributed Energy Resources (DERs) in
accordance with the suggested market prices.

The simulation results con�rmed that DER gen-
erations were directly related to the suggested price
of the bus installed on it. Moreover, the performance
of the proposed method seems to be appropriate and
e�ective in the simultaneous reduction of two technical
objectives: loss and emission. This method reduces
loss and emission by 87% and 44% in the IEEE 33-
bus network, respectively, and by 89% and 21% in the
IEEE 69-bus network, respectively.

The application of the game-theoretic method as
a guarantee of the fairness in the case of the incentive
allocation method helps make the proposed method
more e�ective.

Comparison of algorithms proves that the pro-
posed optimization method has a better perfor-
mance than the other optimization methods, includ-
ing MOPSO, MOPSO-FDR, MOGA, and NSGA-II,
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Figure 8. Obtained non-inferior solution using MGSOACC algorithm for di�erent market prices when objectives are
power loss and emission reduction.

in terms of the worst, average, and best solutions.
However, in terms of standard deviation, this method
is slightly worse than optimization methods.

The suggested method, which is based on the
non-inferior solution, is more e�cient than the other
conventional multi-objective approaches.

Because these several non-inferior solutions allow
decision-makers to select the best solution according
to various behaviors of network objectives in the
loss/emission reduction procedure, depending on the
network behavior in the decision-making process, the
share of bene�ts allocated to each objective can be
reduced or increased.

Furthermore, the simulation results prove that the
proposed method is a reliable answer to the distribution
pricing problem.

Nomenclature

AER Allocated contribution to participation
due to emission reduction

ALR Allocated contribution to participation
due to loss reduction

b The b branch
Ci Interval number

CL Lower bounds of the objective interval

CR Upper bounds of the objective interval
CCGT Combined Cycle Gas Turbines
CO Carbon monoxide
CO2 Carbon dioxide
�i The angle of bus voltage
DER Distributed Energy Resource
D-ICE Diesel Internal Combustion Engines
DISCO Distribution Company
" Maximum deviation of the MS
EDG;i The emission produced by the main

bus
emissionbase The emission of network without DER

units participation
�i(�) Shapley value function for player i
t The emission allowance price
G-ICE Gas internal combustion engines
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Ibr Current of the branch
� Market price
lossbase The losses of network without DER

units participation
m Midpoint of interval
� Control parameter
MOGA Multi-Objective Genetic Algorithm
MOPSO Multi-Objective Particle Swarm

Optimization
MOPSO-FDR Multi-Objective Particle Swarm

Optimization using Diversity Factor
and Roulette Wheel

NSGA Non-dominated Sorting Genetic
Algorithm

MS Maximum deviation of the MS
Nbr Total number of branches
NDER Number of DERs
NOx Oxides of nitrogen family
Pi Net injected active power
PDER;i Active power of ith DER
Ploss Active power losses
Pmin;DER;i Minimum active power of ith DER
pfi Power factor of ith DER
pfmax;i Maximum power factor
Pfmin;i Minimum power factor
�i LMP at the DER connected busses
�a Active power price at DER connected

busses
�r Reactive power price at DER connected

busses
Qi Net injected reactive power
QDER;i Reactive power of ith DER
Qmin;DER;i Minimum reactive power of ith DER
Qmax;DER;i Maximum reactive power of ith DER
Rbr Resistance of the branch
jSj Coalition index
SO2 Oxides of sulphur family
� Radius of interval
�ij The angle of the admittance between

ith and jth buses
U Vectors of interval variables
u(g) Chaotic sequence elements
UL Upper bounds of the interval variables
UR Lower bounds of the interval variables
Vi The amplitude of bus voltage
�l(s) Function of reduced loss via coalition

S
�l(s)��l(s�d) Function of reduced loss via coalition

S without DGd

�e(s) Function of reduced emission via
coalition S

�e(s)��e(s�d)Function of reduced emission via
coalition S without DGd

!e Share of DER units from mitigating
the emission allowance to the DISCO

X Vectors of independent variables

x(g)
i Position of the ith ranger
}i Pareto-optimal solution
Y Vectors of dependent variables
Yij The amplitude of the admittance

between the ith and jth buses

References

1. Zhang, D., Li, M., Ji, X., Wu, J., and Dong, Y.
\Revealing potential of energy-saving behind emission
reduction", Management of Environmental Quality:
An International Journal, 30(4), pp. 714{730 (2018).

2. Karasoy, A. and Ak�cay, S. \E�ects of renewable energy
consumption and trade on environmental pollution",
Management of Environmental Quality: An Interna-
tional Journal, 30(2), pp. 437{455 (2019).

3. Pavani, P. and Singh, S.N. \Placement of DG for
reliability improvement and loss minimization with
recon�guration of radial distribution systems", Inter-
national Journal of Energy Sector Management, 8(3),
pp. 312{329 (2014).

4. Lorestani, A., Gharehpetian, G.B., and Nazari, M.H.
\Optimal sizing and techno-economic analysis of
energy- and cost-e�cient standalone multi-carrier mi-
crogrid", Energy, 178, pp. 751{764 (2019).

5. Lorestani, A., Mohammadian, M., Aghaee, S.S., et al.
\A novel analytical-heuristic approach for placement
of multiple distributed generator in distribution net-
work", 2016 Smart Grids Conference (SGC), IEEE,
pp. 1{7 (2016).

6. Ahmadi, P., Nazari, M.H., and Hosseinian, S.H. \Op-
timal resources planning of residential complex energy
system in a day-ahead market based on invasive weed
optimization algorithm", Engineering, Technology &
Applied Science Research, 7(5), pp. 1934{1939 (2017).

7. Nazari, M.H., Hosseinian, S.H., and Azad-farsani, E.
\A multi-objective LMP pricing strategy in distribu-
tion networks based on MOGA algorithm", Journal
of Intelligent & Fuzzy Systems, 36(6), pp. 6143{6154
(2019).

8. Azad-Farsani, E. \Loss minimization in distribution
systems based on LMP calculation using honey bee
mating optimization and point estimate method",
Energy, 140, pp. 1{9 (2017).

9. Alkaabi, S.S., Zeineldin, H.H., and Khadkikar, V.
\Short-term reactive power planning to minimize cost
of energy losses considering PV systems", IEEE Trans-
actions on Smart Grid, 10(3), pp. 2923{2935 (2019).



M.H. Nazari et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 230{246 245

10. Savelli, I., Giannitrapani, A., Paoletti, S., and Vicino,
A. \An optimization model for the electricity market
clearing problem with uniform purchase price and
zonal selling prices", IEEE Transactions on Power
Systems, 33(3), pp. 2864{2873 (2018).

11. Ding, F. and Fuller, J.D. \Nodal, uniform, or zonal
pricing: distribution of economic surplus", IEEE
Transactions on Power Systems, 20(2), pp. 875{882
(2005).

12. Liu, L. and Zobian, A. \The importance of marginal
loss pricing in an RTO environment", The Electricity
Journal, 15(8), pp. 40{45 (2002).

13. Huang, S., Wu, Q., Oren, S.S., Li, R., and Liu,
Z. \Distribution locational marginal pricing through
quadratic programming for congestion management in
distribution networks", IEEE Transactions on Power
Systems, 30(4), pp. 2170{2178 (2015).

14. ISO New England Inc., ISO New England Manual
for Market Operations, ISO-NE PUBLIC, Revision 57
(2019).

15. Yang, Z., Bose, A., Zhong, H., Zhang, N., Lin, J., Xia,
Q., and Kang, C. \LMP revisited: A linear model
for the loss-embedded LMP", IEEE Transactions on
Power Systems, 32(5), pp. 4080{4090 (2017).

16. Hosseinian, S.H., Askarian-Abyaneh, H., Azad-
Farsani, E., and Abedi, M. \Stochastic locational
marginal price calculation in distribution systems us-
ing game theory and point estimate method", IET
Generation, Transmission & Distribution, 9(14), pp.
1811{1818 (2015).

17. Sotkiewicz, P.M. and Vignolo, J.M. \Nodal pricing for
distribution networks: e�cient pricing for e�ciency
enhancing DG", IEEE Transactions on Power Sys-
tems, 21(2), pp. 1013{1014 (2006).

18. Morais, H., Faria, P., and Vale, Z. \Demand response
design and use based on network locational marginal
prices", International Journal of Electrical Power &
Energy Systems, 61, pp. 180{191 (2014).

19. Farsani, E.A., Abyaneh, H.A., Abedi, M., and Hos-
seinian, S.H. \A novel policy for LMP calculation
in distribution networks based on loss and emission
reduction allocation using nucleolus theory", IEEE
Transactions on Power Systems, 31(1), pp. 143{152
(2016).

20. Wei, Y., and Yanli, W. \Advanced Studies on Loca-
tional Marginal Pricing", Doctoral Dissertations, Ten-
nessee Research, and Creative Exchange, University of
Tennessee (2013).

21. Sarafraz, F., Ghasemi, H., and Monsef, H. \Locational
marginal price forecasting by locally linear neuro-fuzzy
model", 10th International Conference on Environ-
ment and Electrical Engineering, IEEE, pp. 1{4 (2011).

22. Khodadadi, A., Hasanpor Divshali, P., Nazari, M.H.,
and Hosseinian, S.H. \Small-signal stability improve-
ment of an islanded microgrid with electronically-
interfaced distributed energy resources in the presence
of parametric uncertainties", Electric Power Systems
Research, 160, pp. 151{162 (2018).

23. Wang, L., Zhong, X., and Liu, M. \A novel group
search optimizer for multi-objective optimization",
Expert Systems with Applications, 39(3), pp. 2939{
2946 (2012).

24. �Ozceylan, E., Kabak, M., and Da�gdeviren, M. \A
fuzzy-based decision making procedure for machine
selection problem", Journal of Intelligent & Fuzzy
Systems, 30(3), pp. 1841{1856 (2016).

25. Galiana, F.D. and Khatib, S.E. \Emission allowances
auction for an oligopolistic electricity market operating
under cap-and-trade", IET Generation, Transmission
& Distribution, 4(2), p. 191 (2010).

26. Farsani, E.A., Abyaneh, H.A., Abedi, M., and Hos-
seinian, S.H. \A novel policy for LMP calculation
in distribution networks based on loss and emission
reduction allocation using Nucleolus theory", IEEE
Transactions on Power Systems, 31(1), pp. 143{152
(2016).

27. Wu, Q.H., Lu, Z., Li, M.S., and Ji, T.Y. \Optimal
placement of FACTS devices by a group search opti-
mizer with multiple rpoducer", 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress
on Computational Intelligence), IEEE, pp. 1033{1039
(2008).

28. Hansen, N., M�uller, S.D., and Koumoutsakos, P.
\Reducing the time complexity of the derandomized
evolution tsrategy with covariance matrix adaptation
(CMA-ES)", Evolutionary Computation, 11(1), pp. 1{
18 (2003).

29. Peng, J. and Jiang, H. \Fair and analytical allocating
of transmission losses using two-step coalitional game",
IEEE Power Engineering Society General Meeting,
Denver (2004).

30. Peng, J.-C., Jiang, H., and Song, Y.-H. \A weakly
conditioned imputation of an impedance-branch dissi-
pation power", IEEE Transactions on Power Systems,
22(4), pp. 2124{2133 (2007).

31. Sharma, S. and Abhyankar, A. \Loss allocation for
weakly meshed distribution system using analytical
formulation of shapley value", IEEE Transactions on
Power Systems, 32(2), pp. 1369{1377 (2016).

32. Wei, F., Wu, Q.H., Jing, Z.X., Chen, J.J., and Zhou,
X.X. \Optimal unit sizing for small-scale integrated
energy systems using multi-objective interval optimiza-
tion and evidential reasoning approach", Energy, 111,
pp. 933{946 (2016).

33. Hosseini, S.J.al-D., Moradian, M., Shahinzadeh, H.,
and Ahmadi, S. \Optimal placement of distributed
generators with regard to reliability -assessment using
virus colony search algorithm", International Journal
of Renewable Energy Research (IJRER), 8(2), pp. 714{
723 (2018).

34. Nazari, M.H., Khodadadi, A., Lorestani, A., Hos-
seinian, S.H., and Gharehpetian, G.B. \Optimal multi-
objective D-STATCOM placement using MOGA for
THD mitigation and cost minimization", Journal of
Intelligent & Fuzzy Systems, 35(2), pp. 2339{2348
(2018).



246 M.H. Nazari et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 230{246

35. Coello Coello, C.A., Veldhuizen, D.A., and Lam-
ont, G.B., Evolutionary Algorithms for Solving Multi-
Objective Problems, Springer US (2002).

36. Abdolahi, A., Salehi, J., Samadi Gazijahani, F., and
Safari, A. \Probabilistic multi-objective arbitrage of
dispersed energy storage systems for optimal con-
gestion management of active distribution networks
including solar/wind/CHP hybrid energy system",
Journal of Renewable and Sustainable Energy, 10(4),
p. 045502 (2018).

37. Zheng, J.H., Chen, J.J., Wu, Q.H., and Jing, Z.X.
\Multi-objective optimization and decision making
for power dispatch of a large-scale integrated energy
system with distributed DHCs embedded", Applied
Energy, 154, pp. 369{379 (2015).

38. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.
\A fast and elitist multiobjective genetic algorithm:
NSGA-II", IEEE Transactions on Evolutionary Com-
putation, 6(2), pp. 182{197 (2002).

Biographies

Mohammad Hassan Nazari was born in Iran. He
received the MS degree in Electrical Engineering from
Sharif University of Technology, Tehran, Iran in 2013.
Currently, he is pursuing the PhD degree in Electrical
Engineering at Amirkabir University of Technology
(AUT), Tehran, Iran. His research interests include
techno-economic techniques in power market, power
quality, smart grids, optimization methods, and evo-
lutionary algorithms.

Seyed Hossein Hosseinian was born in Iran. He re-
ceived the PhD degree from the Electrical Engineering
Department, University of Newcastle, Newcastle upon
Tyne, U.K. in 1995. At present, he is a Professor at
the Electrical Engineering Department at Amirkabir
University of Technology (AUT), Tehran, Iran. His
special �elds of interest include transient in power
systems, power quality, restructuring, and deregulation
in power systems. He is the author of four books in the
�eld of power systems. He is also the author and the
coauthor of over 300 technical papers.

Ehsan Azad Farsani was born in Farsani, Iran. He
received PhD degree in Electrical Engineering from
the Amirkabir University of Technology, Tehran, Iran
in 2014. Currently, he is an Assistant Professor
in Electrical Engineering at Golpayegan University
of Technology, Isfahan, Iran. His research interests
include power market, smart grids, stochastic electric
power system planning, optimization methods, and
evolutionary algorithms.

Davood Faramarzi was born in Iran. He received
the BS and MS degrees in Electrical Engineering from
Amirkabir University of Technology (AUT), Tehran,
Iran in 2014 and 2016, respectively. Currently, he is
pursuing the PhD degree in Electrical Engineering at
Amirkabir University of Technology (AUT), Tehran,
Iran. His research interests include smart grid man-
agement and resilience of power systems.




