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Abstract. This paper considers a closed-loop supply chain with one manufacturer and one
retailer for trading a single product. On behalf of the manufacturer, the retailer collects the
used items from the end customers for possible remanufacturing. The production of �nished
products (manufactured and remanufactured) is subject to learning. The lead time for the
retailer is assumed to be stochastic. The manufacturer delivers the retailer's order quantity
in a number of equal-sized shipments. The objective is to determine the optimal number of
shipments and shipment size by minimizing the average expected total cost of the closed-
loop supply chain. A solution method for the model is presented, and important results
are obtained for numerical examples. According to the numerical study, an impressive cost
reduction due to consideration of learning in production and remanufacturing is observed.
To investigate the impact of key model parameters on the optimal results, a sensitivity
analysis is also carried out. The proposed model is applicable to those business �rms
whose production process is executed by the human beings.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Manufacturing industries all over the world are nowa-
days giving greater importance to remanufacturing of
used items to protect the environment and the society
from being over-polluted. Several companies take up
the recycling process to add to their organization some
value from recovery, too. In electronic industries, many
products collected at the end of their useful life may
have components with intrinsic economic value. In the
steel manufacturing industry, production cost could be
reduced by mingling the metals obtained from collected
used products with the virgin raw materials. However,
the collection of used products from the market and
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their reinsertion into the downstream 
ow of materials
form closed-loop supply chains. Sometimes, the used
products with good quality are returned for new ones to
upgrade purposes with some new features or advanced
technology; sometimes, these are left at the end of
life in poor conditions. Therefore, there is a need
for inspection, selection, or a sorting process in order
to determine the quality of used items acceptable for
recycling. There are plenty of ways in which used items
are returned from end customers. The manufacturer
can collect the used products through his own channel,
and a third party can be appointed for this collection,
or even the retailer can be in charge of collecting them
on behalf of the manufacturer.

In competitive business environment, most of the
production runs are conducted by machines to save
time, energy, or achieve errorless production. However,
there are also some products that cannot be designed
only by a machine; a human mind is required. For
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example, consider manufacturing of some sophisticated
garment products or leather goods where human in-
volvement is very much needed. When a human
being is included in a manufacturing system, the
erroneous (learning-forgetting) nature is also included
there. Learning nature can be seen in cases of repetitive
jobs. When the number of repetition increases, workers
become more con�dent and spend less time doing their
jobs. The human characteristic `learning' was well
de�ned by Wright [1] with a curve known as learning
curve. According to the theory, it can be stated
that when the produced quantity doubles, a certain
percentage of cost reduction takes place. In the litera-
ture, learning is mostly considered in production in the
forward channel. What is the impact of worker learning
in the production of �nished products (manufactured
and remanufactured) in a closed-loop supply chain?
How is the situation handled if the delivery lead time
from the manufacturer to the retailer is stochastic in
a closed-loop scenario? In practice, the delivery lead
time cannot be always known as constant; it may vary
due to many reasons such as variable transportation
time, production time, or loading/unloading time. To
�nd the answers to the above questions, in this paper,
stochastic delivery lead time is considered, and its
e�ect jointly with worker learning in production on the
performance of the associated closed-loop supply chain
is investigated.

2. Literature review

In this section, the literature on two key topics viz.
variable/stochastic lead time and learning in produc-
tion is brie
y reviewed. Liao and Shyu [2] and Ben-
Daya and Raouf [3] proposed inventory models where
lead time was assumed to be a decision variable. Ben-
Daya and Hariga [4] discussed variable lead time due
to production time, transferring time, setup time, etc.
Ouyang et al. [5], Hoque and Goyal [6], and Mandal and
Giri [7] controlled the lead time with some additional
costs. Lin [8] considered variable lead time that can be
reduced by investment. Taleizadeh et al. [9] assumed
changeable lead time, which is linearly dependent on
the lot size. Several other studies were also conducted
by Taleizadeh and his coauthors [10-12] considering
multi-product single/multi-constraint inventory situ-
ations, stochastic replenishment, and dynamic/fuzzy
demands.

Yano [13] developed an inventory model with
stochastic lead time in a two-level assembly system
with the objective of minimizing the sum of the holding
cost and tardiness cost. Ouyang et al. [14] extended
Yano's [13] model allowing shortages in inventory.
Sajadieh et al. [15] determined an optimal policy for
an integrated vendor-buyer model with stochastic lead
time. They allowed shortages and assumed batches

of equal sizes. Hoque [16] extended the model of
Sajadieh et al. [15], assuming unequal batch deliveries
from the vendor to the buyer. He considered the
lead time distribution as normal instead of exponential
distribution adopted by Sajadieh et al. [15]. Maity
et al. [17] developed a model with probabilistic lead
time and shortages. They assumed a practical pricing
decision that can be much e�ective in real life. Isotupa
and Samanta [18] obtained a model with stochastic lead
time, which follows an Erlang distribution. Disney
et al. [19] ignored the normal distribution of lead
time and presented an optimal condition with greater
generalization. Roldan et al. [20] presented a survey on
inventory-routing problems with stochastic lead time
and demand.

Learning is an important human factor that has
attracted the attention of many researchers throughout
the last few decades. Wright [1] was the �rst to apply
the learning curve to industrial problems. The workers,
the employees, even the managers who do the same
work repeatedly can automatically do their subsequent
jobs with a comparatively better speed. Learning
curve is a curve where time per repetition decreases
as the number of repetitions increases. Yelle [21]
provided a comprehensive survey of works on learning
curve. Like learning, forgetting is also an important
human factor. Someone who learns in the production
period can forget some portion in the non-production
period. Elmaghraby [22] and Jaber and Bonney [23]
were among the �rst authors who observed the for-
getting phenomenon along with learning. Jaber and
Bonney [23] made a comparison of their model with
the forgetting model developed by Elmaghraby [22]
and Carlson and Rowe [24], and found that their
proposed model was more e�cient than others. Chiu
et al. [25] studied learning and forgetting in the case of
production and, also, setup. Khan et al. [26] extended
Huang's [27] model considering learning in production
and error in inspections. Burr and Pearne [28], Teng
et al. [29], Van Hoof [30], and Grosse et al. [31] also
studied the learning process. Teyarachakul et al. [32]
assumed forgetting curve and compared larger and
shorter non-production periods. For a shorter non-
production period, the rate of forgetting is low and,
also, the batch size reduces. They found optimal
policy that implies whether the smaller batch size is
more e�ective or the bigger one. Glock and Jaber [33]
proposed a model for an imperfect production process
in which items that were not good in quality were repro-
duced. In both production and reproduction processes,
learning and forgetting both were involved. Lolli et
al. [34] highlighted the learning and forgetting curve
with imperfect production and rework for imperfect
items like Glock and Jaber [33]. Later, Jaber and
Givi [35] assumed that the production interruption
and the forgetting occurred at the break time due
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to a change in the production and rework processes.
Recently, Giri and Glock [36] studied learning and
forgetting e�ects in production as well as inspection.
They considered stochastic production return, and
observed that more learning e�ect caused recovery of
more used items.

In a Closed-Loop Supply Chain (CLSC), Clark
and Scarf [37] �rst proposed multi-echelon inventory
system. Guide and Wassenhove [38] developed a
model to investigate pro�ts that can be made by
remanufacturing through reusable materials, which can
help change many business policies made by di�erent
decision-makers in business management. Majumdar
and Groenevelt [39] presented a two-period model in
the context of recycling with a competing face. In their
model, two vendors (one original and the other local)
compete in the market for reusable items. It was shown
that the local vendor gave motivations for reducing the
remanufacturing cost. Koh et al. [40] assumed a model
where a �xed portion of used items as remanufactured
and the remanufactured items are exactly the same as
the freshly manufactured products. Savaskan et al. [41]
considered a model where the manufacturer determines
how to take the used items from the consumer for
remanufacturing. There were three possible choices:
manufacturer himself, retailer, and third party. It was
shown that the most fruitful way is to assemble the
wastage by the retailer. Chung et al. [42] provided
some e�ective policy for remanufacturing with the
used items. Jaber and El Saadany [43] assumed that
the demands for manufactured and remanufactured
items are di�erent. Hong et al. [44] proposed a
model where the used items were collected by the
manufacturer, the retailer, and the collector (third
party) but two of them collected at the same time
in all possible ways. De Giovanni and Zaccour [45]
made a comparison of di�erent ways of returning used
products due to environmental consciousness. Naeem
et al. [46] discussed the recycling process where demand
and return rate were taken as constant and variable
both. Giri and Sharma [47] assumed return rate based
on product quality. They [48] developed a closed-

loop supply chain model with stochastic demand and
random return. Cobb [49] proposed a model with
an uncertain return rate. Jena et al. [50] proposed
a CLSC model with uncertain return rates where
advertising plays a vital role in di�erent cases such
as advertising by manufacturer, advertising by retailer,
centralized advertising, decentralized advertising, etc.
Masoudipour et al. [51] also discussed a bi-objective
model with a quality-based return rate in a closed-loop
supply chain system.

Table 1 shows a comparison of the present
model and the relevant existing models. It should
be noticed that although signi�cant works have been
done considering variable/stochastic lead time and
learning/forgetting in production, most of them are
bound in EOQ/EPQ model with an integrated or
non-integrated system where the manufacturer is not
allowed to produce items using the refused ones.
Recently, Angius et al. [52] analyzed stochastic lead
time in a closed-loop supply chain with a Markovian
approach. However, learning in production along with
the stochastic lead time has not yet been considered in
CLSC. To �ll the research gap, this paper studies learn-
ing in the production process in CLSC with stochastic
lead time. The rest of the paper is organized as follows.
Section 3 presents problem description and modeling
assumptions. In Section 4, notations are given, which
are used throughout the paper. Section 5 deals with the
formulation and development of the model. Section 6
exhibits numerical analysis which ends in sensitivity
analysis of some important model parameters. The
paper is concluded with some managerial insights and
future research directions in Section 7.

3. Problem description

A closed-loop supply chain, which consists of a manu-
facturer and a retailer, is considered. The manufac-
turer produces a single product in lots and delivers
each lot in n batches to the retailer. On behalf of
the manufacturer, the retailer collects the used items
from the end customers and supplies them to the man-

Table 1. Comparison between the existing models and our proposed model.

Authors CLSC Lead time Learning in production Inspection
Savaskan et al. [41] Yes No No No
Hoque and Goyal [6] No Controllable No No
Hoque [16] No Stochastic No No
Glock and Jaber [33] No No Yes No
Khan et al. [26] No No Yes Yes
Disney et al. [19] No Stochastic No No
Angius et al. [52] Yes Stochastic No No
Giri and Glock [36] Yes No Yes Yes
This paper Yes Stochastic Yes Yes
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ufacturer for possible remanufacturing. However, the
manufacturer bears the purchase cost and holding cost
of returned items. Besides, the following assumptions
are made:

(i) The return rate of used items is in
uenced
by the investment in collection and product
demands. Here, the investment implies the
economic amount of e�ort, which is applied to
the end users to add incentive in order to receive
high return;

(ii) The collected used items are inspected. A
fraction � (0 < � � 1) of inspected used items
that quali�es for remanufacturing is accepted
and returned to the manufacturer for remanu-
facturing;

(iii) The demand rate and the production rate of
the �nished product are both constant. The
production rate is greater than the demand rate;

(iv) Delivery lead time is stochastic and independent
of deliveries to the retailer;

(v) The retailer's inventory is continuously re-
viewed, and a batch is requested to deliver when
the stock level drops to a certain level;

(vi) Shortages in the retailer's inventory are allowed
and are completely backlogged;

(vii) A joint setup is made for manufacturing and
remanufacturing. Remanufactured products are
as good as manufactured products, i.e., it is not
possible to distinguish between manufactured
and remanufactured products [37];

(viii) One unit of raw material is required to produce
one unit of the �nished good;

(ix) Learning occurs during the production of the
�nished goods (manufactured and remanufac-
tured). Learning leads to an increase in the
rate of production over time and depends on the
length of the production interval.

A con�guration of the proposed model is depicted
in Figure 1, which illustrates the 
ow of products
throughout the closed-loop supply chain. The return
rate of used items is a fraction of demand, which
is in
uenced by the investment. A fraction of the
returned items is found acceptable for remanufacturing.
The rejected items are disposed with a disposal cost.

4. Notations

In this section, the notations used to develop the
proposed model are described.

Manufacturer:
cm Production cost per unit time
Am Setup cost per set up
P Production rate
hm Holding cost of the �nished product

per unit per unit time
hmu Holding cost of returned items per unit

per unit time
cmr Unit purchase cost of raw material
cmu Unit cost for purchase and recovery of

used items selected for remanufacturing
cmd Unit disposal cost
� Fraction of used items acceptable for

remanufacturing, 0 < � � 1
n Number of shipments

Figure 1. Product 
ow diagram.



2940 B.C. Giri and M. Masanta/Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 2936{2951

b Learning exponent, (0 < b < 1)
T1(= 1=P ) Manufacturer's production time to

produce the �rst unit in case of
learning

Tpi(Tdi) Manufacturer's production (non-
production) period in cycle i

TCmi Total cost per unit time for the ith
cycle

R Return rate of used items

Retailer
D Demand rate
Ar Ordering cost per order
hr Holding cost per unit per unit time
s Shortage cost per unit per unit time
Tr Length of an ordering cycle
TCr Total cost per unit time
Q Batch size
L Lead time as a random variable
� Standard deviation of lead time
fL(l) Probability density function of L
k Reorder level

5. Model formulation and analysis

It is assumed that the manufacturer produces and
delivers a lot of size nQ to the retailer in n equal-sized
batches of size Q. Since the lead time is random, the
retailer requests the manufacturer for a batch when the
stock level drops to the reorder level k. Therefore, the
next batch is expected to receive when the stock at the
reorder point comes to zero level, i.e., after the mean
lead time k=D [16]. The deviation of lead time may
occur due to the variation of loading/unloading time.
The used items collected by the retailer are inspected
and, after inspection, only a fraction is accepted for
remanufacturing. The manufacturer has to order that

amount of fresh raw materials that cannot be met by
the accepted used items. The manufacturer bears all
the costs for holding, promotion for collection, and
inspection of used items.

5.1. Retailer's total cost
When random variable L takes value l, the following
three cases that may arise are considered:

- Case (i): A batch Q arrives early for the retailer,
i.e., 0 < l < k=D. In this case, using Figure 2(a), the
inventory holding area of the retailer for one batch
can be calculated as given below:

Inventory holding area

= Area(�OPNM +4QRS +�PTSQ)

=
1
2

(k�Dl+k)l+
1
2

(k�Dl+Q�k)
�
Q�Dl
D

�
+

(Q�Dl)k
D

=
1
2

�
Q2

D
+ 2Q

�
k
D
� l
��

;

where:

k =
DQ
P

:

Thus, for the entire lot, Qp, of the manufacturer,
the expected inventory holding cost of the retailer is
computed as follows:

hr

k=DZ
0

n
2

�
Q2

D
+ 2Q

�
k
D
� l
��

fL(l)dl:

- Case (ii): A batch Q arrives late for the retail-
erlimiting the lead time l in the range k

D � l <
k+Q
D . In this case, shortages may occur. Based

on Figure 2(b), the inventory shortage area for a
single batch Q is obtained as 1

2D (Dl � k)2. Hence

Figure 2. Retailer's inventory under stochastic lead time.
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the retailer's expected shortage cost for all batches
is as follows:

ns
2

k+Q
DZ

k=D

�
Dl � k
D

�
(Dl � k)fL(l)dl:

Similar to Case (i), the inventory holding area for
one batch Q is obtained as follows:

Area (4QMR +4STU +�POUS)

=
�
k2

2D
+

(Q�Dl)2

2D
+
k(Q�Dl)

D

�
=

1
2D

(Q�Dl + k)2:

Therefore, the expected inventory holding cost of the
retailer for all batches is as follows:

nhr

k+Q
DZ

k=D

1
2D

(Q�Dl + k)2fL(l)dl:

- Case (iii): A batch Q arrives late for the retailer
limiting the lead time l in the range k+Q

D � l <
1. In this case, there is no inventory, except only
shortages (see Figure 2(c)). The shortage area for
one batch Q is given by:

Area (�PQRS) =
Q2

2D
+ Area (�OQRS)

=
Q2

2D
+Q

�
l � Q+ k

D

�
:

Therefore, the expected shortage cost for all batches
is:

ns
1Z

k+Q
D

�
Ql � Q2

2D
� Qk

D

�
fL(l)dl:

Considering all the three cases, the retailer's
expected inventory holding cost for all batches is:

nhr

2641
2

k=DZ
0

�
Q2

D
+ 2Q

�
k
D
� l
��

fL(l)dl

+

k+Q
DZ

k=D

1
2D

(Q�Dl + k)2fL(l)dl

375 ;
and the expected shortage cost for all batches is:

ns

264 k+Q
DZ

k=D

1
2

�
Dl � k
D

�
(Dl � k)fL(l)dl

+
Z 1
k+Q
D

�
Ql � Q2

2D
� Qk

D

�
fL(l)dl

#
:

Hence, the expected total cost of the retailer for one
cycle is:

TCr =Ar+
nhr

2

264 k=DZ
0

�
Q2

D
+2Q

�
k
D
� l
��

fL(l)dl

+

k+Q
DZ

k=D

1
D

(Q�Dl + k)2fL(l)dl

375
+ ns

264 k+Q
DZ

k=D

1
2

�
Dl � k
D

�
(Dl � k)fL(l)dl

+
1Z

k+Q
D

�
Ql � Q2

2D
� Qk

D

�
fL(l)dl

375 :
(1)

5.2. Manufacturer's cost
5.2.1. Change in holding cost
The manufacturer's change in holding cost due to
random delivery lead time is �rst calculated. In
Case (ii), i.e., when batch Q arrives late by a time
l�k=D limiting l to the range k

D � l < k+Q
D , the batch

is kept with the manufacturer over the delay period and
it creates an extra inventory of nQ(l � k=D). Thus,
in this case, the expected additional inventory holding
cost of the manufacturer is:

hm

k+Q
DZ

k=D

nQ(l � k=D)fL(l)dl:

In Case (iii), i.e., when batch Q arrives late by a time
l�k=D limiting l to the range k+Q

D � l <1, the batch
is kept with the manufacturer over the delay period and
it creates an extra inventory of nQ(l � k=D). Thus,
the expected additional inventory holding cost of the
manufacturer, in this case, is as follows:

hm

1Z
k+Q
D

nQ(l � k=D)fL(l)dl:

Therefore, the expected net change in the manufac-
turer's holding cost due to stochastic delivery lead time
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at the retailer is:

hm

264 1Z
k
D

nQ(l � k=D)fL(l)dl

375 :
5.2.2. Learning in production
Since learning in production has impact on production
time, in general, the ith production cycle is considered.
The production time in the ith cycle [26] is given by:

Tpi=

iQpZ
(i�1)Qp

T1x�bdx =
T1

1�bQ1�b
p

�
i1�b�(i�1)1�b� :

(2)

Based on the above, the production quantity in the ith
cycle can be written as a function of time, t, as follows:

Q(t) =
�

(1� b)t
T1

1
i1�b � (i� 1)1�b

� 1
1�b

: (3)

Then, the average inventory in the ith cycle during
production is as follows:

ITpi=
TpiZ
0

Q(t)dt=
T1

2�b
�
i1�b�(i�1)1�b� (nQ)(2�b):

(4)

Therefore, the time for the �rst dispatch after the start
of production in the ith cycle is as follows:

T1i =

Q+(i�1)nQZ
(i�1)nQ

T1x�bdx

=
T1

1� bQ1�b �(1+(i�1)n)1�b�((i�1)n)1�b� :
(5)

Now, the manufacturer's inventory in the non-
production period of the ith cycle is calculated based
on Figure 3 [26] as follows:

ITdi =Area (�ABFE +�BIHF��ACGE)

=
nT1

1�bQ2�b �(1+(i�1)n)1�b�((i�1)n)1�b�
+
n(n�1)Q2

D
�T1(i1�b�(i�1)1�b)

2�b (nQ)2�b:
(6)

The total inventory moved from the manufacturer
to the retailer in a cycle is n(n�1)Q2

2D . Thus, the
manufacturer's average inventory in the ith cycle is:

Figure 3a. Manufacturer's inventory level under learning.

Figure 3b. Manufacturer's total inventory under
learning.

ITpi + ITdi � n(n� 1)Q2

2D

=
nT1

1� bQ2�b �(1 + (i� 1)n)1�b � ((i� 1)n)1�b�
+
n(n�1)Q2

2D
� T1(i1�b�(i�1)1�b)

(2� b)(1� b) (nQ)2�b:
(7)

Therefore, considering the result of Subsection 5.2.1,
the manufacturer's expected holding cost for the ith
cycle is:

hm

264nT1Q2�b((1 + (i� 1)n)1�b � ((i� 1)n)1�b)
1� b

+
n(n� 1)Q2

2D
� T1(i1�b � (i� 1)1�b)

(2� b)(1� b) (nQ)2�b

+
1Z

k=D

nQ(l � k=D)fL(l)dl

375 :
Hence, for the ith cycle, the manufacturer's expected
total cost, which is the sum of the setup cost, produc-
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tion cost, and expected holding cost, is as follows:

TCmi = Am + cmTpi + hm

264 1Z
k=D

nQ(l � r=D)fL(l)dl

+
nT1Q2�b

1� b ((1+(i�1)n)1�b�((i�1)n)1�b)

+
n(n�1)Q2

2D
� T1(i1�b�(i�1)1�b)

(2�b)(1�b) (nQ)2�b
375 :
(8)

5.2.3. Cost for used items
It is assumed that the used items are collected by the
retailer on behalf of the manufacturer at a rate, R,
which is in
uenced by the collection investment and
demand. The Collection Investment (CI) indicates the
economic amount of e�ort (e.g., promotion, marketing,
etc.), which is applied to the end users to create
the necessary incentive to receive targeted return. It
is assumed that R =

q
CI

 D where 
 is a scaling

parameter and
q

CI

 < 1. When the collected items

are used for remanufacturing, the inventory level of the
collected items after time t is given by:

I(t) = n�RTri �Q(t) =

s
CI



(n�Q)�Q(t): (9)

If the stock of the collected used items is exhausted
after a time period T2, then we have I(T2) = 0. This
gives:

Q(T2) =

s
CI



(n�Q); (10)

which further gives:

T2 =

"s
CI



(n�Q)

#1�b�
T1

1� b [i1�b� (i� 1)1�b
�
:
(11)

Using Figure 4, the inventory holding area for collected
used items is calculated as follows:

Area (4ABC + EFC)

=
1
2
RnTri(nTri) +

T2Z
0

I(t)dt

=
1

2D

s
CI


n2Q2 +

T2Z
0

I(t)dt:

Figure 4. Used product inventory.

Therefore, the total cost for remanufacturing is:

TCmu = hmu

24 1
2D

�n2Q2 +
T2Z
0

I(t)dt

35+ cmu�nQ;

� =

s
CI


: (12)

5.3. Total cost of the CLSC
By combining the retailer's cost and the manufacturer's
cost as derived from Subsections 5.1 and 5.2, respec-
tively, the average expected cost of the closed-loop
supply chain for the ith cycle is given by:

TCi(n;Q) =
1

nTri
[TCr + TCmi + cmr(1� ��)nQ

+ cmd(1� �)�nQ+ TCmu] =
1

nTri

264Ar
+
nhr

2

0B@ k=DZ
0

�
Q2

D
+ 2Q

�
k
D
� l
��

fL(l)dl

+

k+Q
DZ

k=D

1
D

(Q�Dl + k)2fL(l)dl

1CA
+ ns

0B@ k+Q
DZ

k=D

1
2

�
Dl � k
D

�
(Dl � k)fL(l)dl

+
1Z

k+Q
D

�
Ql � Q2

2D
� Qk

D

�
fL(l)dl

1CA+Am
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+ cmTpi + hm

0B@ 1Z
k=D

nQ(l � k=D)fL(l)dl

+
nT1Q2�b

1� b ((1 + (i�1)n)1�b � ((i� 1)n)1�b)

+
n(n�1)Q2

2D
�T1(i1�b�(i�1)1�b)

(2�b)(1�b) (nQ)2�b
1CA

+ hmu

0@ 1
2D

�n2Q2 +
T2Z
0

I(t)dt

1A+ cmu�nQ

+ cmr(1� ��)nQ+ cmd(1� �)�nQ

375 : (13)

Our objective is to �nd the optimal values of n
and Q that minimize the average expected total cost
TCi(n;Q), i = 1; 2; � � � . Since n is discrete and Q
is continuous, it is not possible to apply the calculus
method to optimize TCi(n;Q) with respect to n and
Q jointly. First, it should be assumed that n is real,
not just an integer. Then, the following results are
presented:

Theorem 1. The average expected total cost func-
tion TCi(n;Q) is convex in n for any given Q, i =
1; 2; 3; � � � .

Proof: Di�erentiating Eq. (13) with respect to n, we
have:

@TCi
@n

=� Ar +Am + cmTpi
n2Tri

+
hmQ2

2DTri

+
hmu�Q2

2DTri
+
hmT1Q2�b

Tri

[(1 + (i� 1)n)�b(i� 1)

� (i� 1)1�bn�b]

� hmT1(i1�b � (i� 1)1�b)
(2� b)Tri n�bQ2�b

� hmu
n2Tri

T2Z
0

�
(1� b)Pt

i1�b � (i� 1)1�b
� 1

1�b
dt:

(14)

Di�erentiating again with respect to n, we get:

@2TCi
@n2 =

2(Ar +Am + cmTpi)
n3Tri

+
2hmu
n3Tri

T2Z
0

�
(1� b)Pt

i1�b � (i� 1)1�b
� 1

1�b
dt

+
bhmT1Q2�b

Tri

�
(i� 1)1�bn�b�1

�(1 + (i� 1)n)�b�1(i� 1)2�
+
bhmT1(i1�b � (i� 1)1�b)

2� b n�b�1Q2�b

=
2(Ar +Am + cmTpi)

n3Tri

+
2hmu[��(nQ)]2�b
n3Tri(2� b)

�
i1�b � (i� 1)1�b

P

�
+
bhmT1Q2�b

Tri

�
(i� 1)1�bn�b�1

�(1 + (i� 1)n)�b�1(i� 1)2�
+
bhmT1(i1�b � (i� 1)1�b)

2� b n�b�1Q2�b;
(15)

since:

2hmu
n3Tri

T2Z
0

�
(1� b)Pt

i1�b � (i� 1)1�b
� 1

1�b
dt

=
2hmu
n3Tri

�
(1� b)P

i1�b � (i� 1)1�b
� 1

1�b 1� b
2� b"

[��(nQ)]1�b T1

1� b [i1�b � (i� 1)1�b
# 2�b

1�b

=
2hmu[��(nQ)]2�b
n3Tri(2� b)

�
i1�b � (i� 1)1�b

P

�
:

(16)

Since 0 < b < 1 and based on Eq. (15), the third term
is positive as ((i � 1)n)�b�1 > (1 + (i � 1)n)�b�1 and
each of the second and fourth terms is positive as i1�b >
(i�1)1�b for all i. Therefore, @

2TCi
@n2 > 0, implying that

TCi(n;Q) is convex in n.

Theorem 2. If hm > hr=2, then the average
expected cost function TCi(n;Q) is convex with respect
to Q for all Q < Q0

i where Q0
i is obtained by the

equation shown in Box I.
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Q0
i =

(b+ 1)cmn�b i
1�b�(i�1)1�b

(1�b)
hm((1 + (i� 1)n)1�b � ((i� 1)n)1�b) + (i1�b�(i�1)1�b)

2�b [hmu(��)2�bn1�b � hmn�b] ;

i = 1; 2; 3; � � � :

Box I

Proof: Di�erentiating Eq. (13) twice with respect to
Q, we get:

@2TCi
@Q2 =

2D
nQ3 (Ar +Am) +

exp
�Q2

2�2D2p
2��

�
hm
D
� hr

2D

�
+ b(b+ 1)cmDT1n�bQ�b�2 i1�b � (i� 1)1�b

(1� b)
�bhmDT1Q�b�1((1+(i�1)n)1�b�((i�1)n)1�b)

+ bhmDT1Q�b�1n�b (i1�b � (i� 1)1�b)
2� b

+

k+Q
DZ
k
D

(Dl � k)2(hr + s)
Q3 fL(l)dl

� b
2� bhmuDT1(��)2�bn1�bQ�b�1

(i1�b � (i� 1)1�b): (17)

The second term in the right-hand side of Eq. (17) is
positive if hm > hr=2. The sixth term is positive as it
is the sum of holding cost and shortage cost of retailer.
The sum of the third, fourth, �fth, and seventh terms
will be positive if:

(b+ 1)cmn�bQ�1 i1�b � (i� 1)1�b
(1� b)

> hm((1 + (i� 1)n)1�b � ((i� 1)n)1�b)

+
(i1�b�(i�1)1�b)

2� b
�
hmu(��)2�bn1�b�hmn�b� ;

i.e.: Q < Q0
i , i = 1; 2; 3; � � �

Therefore, if hm > hr=2, then we see that @2TCi
@Q2 >

0 for all Q < Q0
i , i = 1; 2; 3; � � � .

Hence, the theorem is proved.

Solution algorithm: In the following, the step by
step procedure is used to �nd the optimal values of n
and Q for successive production cycles [26].

Step 1. Set i = 1 and n = 1;
Step 2. Find the optimal value of Q from (13) and,

then, determine the corresponding value of
TCi. Set n = n+ 1;

Step 3. Repeat Step 2 until the value of TCi for the
nth batch is greater than that for the (n �
1)th batch;

Step 4. Write Q� = Q and TC�i = TCi for n� = n�1;
Step 5. Set i = i+ 1 and n = 1;
Step 6. Repeat Steps 2 to 4 up to a certain value of

i, say, i = 10.

6. Numerical example

Now, it is time to demonstrate the proposed model
numerically with the following parameter values: cm =
$100000 per year, Am = $400 per set up, hm = $4
per unit per year, hmu = $3 per unit per year, cmr =
$200 per unit, cmu = $50 per unit, cmd = $1 per unit,
b = 0:32, R =

q
CI

 D where

q
CI

 = 0:65, � = 0:8,

P = 3200 units per year, D = 1000 units per year,
Ar = $100 per order, hr = $5 per unit per year, and
s = $8 per unit per year.

The probability density function of L is also
assumed here:

fL(l) =
1p
2��

e� 1
2�2 (l� k

D )2
;

where � = 0:12.
For this data set, we check that the average

expected cost function TCi(n;Q) is convex with respect
to Q, see Figure 5.

For i = 1, the optimal solution is obtained as
n� = 4 and Q� = 204:245, and the corresponding
average expected cost of the closed-loop supply chain
is TC = $137195. Table 2 shows the optimal results of
consecutive ten cycles.

One can see from Table 2 that there is an
impressive cost reduction in the �rst few cycles. After
that, the cost reduction slows down and the cost curve
almost plateaus after 8 or 9 cycles. A similar obser-
vation is made in production time Tpi. This happens
because of the human factor `learning' in production.
Initially, workers do their jobs faster than the previous
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Figure 5. Convexity of TC(n;Q) for the �rst cycle, given
n = 4.

Table 2. Optimal results of consecutive ten cycles.

i n� Q� T �pi TC�i
1 4 204.245 0.0439 137195

2 3 218.083 0.0228 134960

3 3 207.257 0.0186 134416

4 3 201.121 0.0163 134107

5 3 196.961 0.0148 133896

6 3 193.871 0.0137 133740

7 3 191.446 0.0129 133616

8 3 189.467 0.0123 133515

9 2 265.536 0.0112 133419

10 2 263.653 0.0108 133344

Table 3. Comparison of the results of the base model and
the proposed model.

Model n� Q� TC�

Base model 4 115.1 162500

Proposed model 3 222:81# 134220:8#

# average of the optimal results of the �rst 10 cycles.

cycle; however, after a few production cycles, their
e�ciency reaches a threshold level, and no signi�cant
improvement in their actions is observed. Table 3
presents a comparison of the optimal results of the
proposed model and the base model, ignoring learning
in production. As observed from Table 3, the proposed
model with learning in production provides lower cost
than the model without learning in production (base
model).

Now, we take � =
q

CI

 and discuss the e�ect of

� on the average expected total cost. Table 4 shows
the optimal results for di�erent values of �. Here
again, the average values of the results are calculated
considering the �rst 10 cycles for each �.

Figure 6. � versus average expected total cost.

Table 4. Optimal results for di�erent values of �.

� n� Average Q� Average TC�

0.0 3 232.92 204917.4

0.25 3 224.13 177731.2

0.45 3 223.88 155966

0.65 3 222.81 134220.8

0.85 2 242.59 112394

Table 5. Sensitivity of the average expected cost with
respect to P .

P Average TC�

3200 134220.8
4000 133571
5000 133067.4
6000 132730
7000 132488.8

When � = 0, i.e., there is no returned item, the
average expected cost is higher than that of the case of
returned items. As � increases, the average expected
cost decreases. This implies that it is bene�cial for
the manufacturer to collect the returned items as much
as possible. Based on Figure 6, it is obvious that as
� increases, the average expected total cost decreases.
The average expected cost is maximum when � = 0,
i.e., no used items are accepted for remanufacturing.

We now look into the ratio of P=D keeping P and
D �xed alternatively. As the ratio P=D approaches 1,
i.e., the demand rate is getting closer to the production
rate, the average expected cost increases. Similarly,
Figure 7 depicts that the average expected cost de-
creases steadily with the increasing value of P=D. Now,
keeping D �xed, if P = 4000, 5000, 6000, and 7000 are
considered, it is seen from Table 5 that the rate of
change in the average expected cost is very small and
gradually decreases. It ultimately becomes stable after
a certain higher value of P .
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Figure 7. P=D versus average expected total cost.

Figure 8. Raw material cost versus average expected
total cost.

Figure 8 shows how the raw material cost in-

uences the average expected total cost. We observe
an adverse e�ect of raw material cost on the average
expected total cost. It is obvious that if the manu-
facturer uses costly raw materials, then very high cost
will ensue. The learning exponent, b, has an important
role in optimal decisions. As b increases, the average
production rate increases. This is mainly because of
continuously gained experience of the workers due to
the repetition of the same work. In practice, the power
of gaining experience of the workers is limited to a
certain level and varies from person to person as human
beings have di�erent capacities. Figure 9 shows that
the rate of increase in the average production rate
decreases, yet it is up to a certain value of b after
which there is almost no change. As the production
rate increases for increasing b, the production time
decreases, resulting in a noticeable cost reduction (see
Figure 10). Figure 10 exhibits cost reduction for
increasing value of the learning exponent, b. Figure 11
illustrates the role of standard deviation of mean lead
time in the proposed model, more speci�cally in the
cost function. It is also observed that the change of
the growth level of the average expected total cost with
respect to the standard deviation � is very low.

Figure 9. Learning exponent b versus average production
rate.

Figure 10. Learning exponent b versus average expected
total cost.

Figure 11. Standard deviation of lead time versus
average expected total cost.

The proposed model can be applied to several
industrial problems in practice. Some real applications
of the key topics of this study observed with positive
results throughout the years are given below:

� Primarily, the remanufacturing process was experi-
enced (industrial level) by tank remanufacturing in
World War I. After World War II in the UK, all
the car manufacturers found the recycling process
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pro�table. Therefore, Caterpillar and Xerox have
developed ongoing revenue opportunities from the
2nd, 3rd, ... nth life products. At the expert
remanufacturing workshop (CfSD, 2006), Xerox re-
ported that the products could be remanufactured
and useful up to the 7th life [53];

� In European Union, new regulations on end of life for
automotive products (2000=EC), electrical and elec-
tronic equipment (2003=EU) are made to protect
the environment from pollution due to waste [54];

� In 1990, Kodak initiated a single-use camera recov-
ery program to recycle and reuse the items. In 2003,
the return rate was more than 70% in the United
States and 60% throughout the whole world [55];

� Xerox Europe responsible for 25% of Xeroxs world-
wide business launched regulations for a waste-free
company, which results in cost saving of Xerox of
over US$76 million in 1999. Equipment recycling
was a fundamental approach to achieving Waste-
Free Product goals. Today, 90% of Xerox-designed
equipment is recyclable, which detracts about 145
million pounds of waste from land�lls in 1998 [55];

� Using data from the Census of Industrial Production
(CIP) from the Department of Statistic, Ministry
of Trade and Industry in Singapore for the years
1980 to 2007, it was observed that, in the transport
equipment industry and the electronic industry,
when the gained skill doubles, the unit labor input
is reduced to 30% and 56% of the initial labor,
respectively [56].

7. Conclusion

The paper analyzed a closed-loop supply chain with a
manufacturer and a retailer where the retailer collects
the used items on behalf of the manufacturer. The
production of the �nished goods (manufactured and
remanufactured) is subject to learning, i.e., the pro-
duction process is executed by workers who perform the
same job again and again with increasing speed. The
proposed model was formulated considering stochastic
lead time.

Several managerial insights can be drawn from the
�ndings of the proposed model:

1. As more returned items with a greater fraction of
accepted used items reduce the expected total cost
of the CLSC, managers should strive for higher
return rates. They should determine a suitable
o�er price to attract more customers to sell their
rejected items. In doing so, management not only
improves the intrinsic economic value of used items,
but also protects the environment from pollution
due to possible improper disposal of used products
by the end users;

2. As observed in the numerical study, a higher value
of learning exponent leads to a signi�cant cost
reduction of the whole system. However, after a
few production cycles, the cost curve plateaus. At
that time, the management has to make a decision
whether investment in providing supports, such as
sophisticated equipment, technology, etc., for the
workers would be a viable tool to improve further
the performance of the workers or not.

In practice, the proposed model can be applied to the
manufacturing systems where the production largely
depends on workers/labors, e.g., garment factories,
leather goods manufacturing industries, etc. [26].
There are many ingredients that can be used for future
research. For example, the model can be extended
by incorporating stochastic demand, which may be
in
uenced by factors such as price, quality, availability,
etc. Further, there can be errors in inspection. As
human being is involved in inspection, there can be
two error types: wrong acceptance of bad items and
wrong rejection of good items. One may also consider
forgetting in production along with learning; the work-
ers can do a better job by repeated work; however, at
the same time, they can lose the experience if there is
a signi�cant gap after learning.
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