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Abstract. A key parameter for analyzing the human balance dynamics in the standing
position is the Center of Pressure (CoP). However, no conclusive idea has been posed with
respect to elicited dynamics of the CoP signal in quiet standing so far. In this paper, a
heuristic algorithm was proposed to prove the chaotic behavior of the CoP signal with high
con�dence. In the proposed algorithm, �rst, the deterministic and non-deterministic (either
stochastic or chaotic) components of the CoP signal were extracted using the Empirical
Mode Decomposition (EMD) method. Then, the nonlinear features of the extracted
components such as fractal dimension, Lyapunov exponent, correlation dimension, and
alpha parameter were computed. Then, based on the quantitative value of the computed
features, the chaotic component was selected from the extracted components. Finally,
through the Recurrence Quantitative Analysis (RQA), the selected chaotic component was
reanalyzed to ensure the correct selection of the chaotic component. In this respect, the
kind of CoP dynamics can be determined with high con�dence. The analyzed CoP signals
were recorded through some experiments on 12 healthy subjects aging 20 to 70 years old.
The results of this study indicated that CoP was a chaotic signal with high con�dence.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The position of the ground reaction force called the
Center of Pressure (CoP) plays a key role in controlling
the balance during standing [1{4]. CoP, by itself,
can be a criterion for measuring the stability during
quiet standing [1]. Not only may the magnitude
of the CoP but its direction of displacement, or
heading, of the CoP can provide further insight into
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the CoP [2]. In other words, the CoP measurement
is usually performed as an indicator for maintaining
balance and postural control. Hence, in recent years,
many researchers have investigated the behavior of
CoP signal as a nonlinear signal [5{19]. The eminent
conducted studies on this issue have focused on two
main axes: (a) study of the complicated nature of the
CoP signal and process of standing balance [6{10] and
(b) the changes of the CoP features under di�erent
conditions [11{19]. In the �rst group of studies,
researchers have investigated whether the process of
standing is chaotic. Some of these studies have failed
to de�nitely determine whether the behavior of the
CoP signal was chaotic or stochastic [10]. For instance,
Collins and Luca considered the behavior of the CoP
signal for the �rst time and suggested that this behav-



R. Hajipour et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1560{1569 1561

ior had a sign of random correlated noise [7]. Later,
other researchers have suggested that the complex and
unpredictable behavior of the motor sensor control
system can be indicative of the chaos in controlling
the status of the individual's body [8,9]. Ghomashchi
et al. could not reach a de�nite conclusion about the
chaotic or stochastic behavior of the CoP signal [10].
In the second group of studies, in order to analyze the
changes in the nonlinear features of the CoP in dif-
ferent conditions, researchers have employed di�erent
methods. For instance, Kuznetsov et al. and Gurses
and Celik employed fractal analysis and Correlation
Dimension (CD) estimation of CoP signal to investi-
gate the process of standing balance and body sway,
respectively [13,14]. However, a controversial question
has remained without a de�nite answer, i.e., Is the
CoP a chaotic signal or not? The Langevin equation
was also used for modeling the CoP dynamics [15,16].
They analyzed the change of CoP dynamics, excluding
the visual feedback, age, and disease severity [15,16].
Although the change in the balance dynamics can
be determined through this approach, nothing can be
claimed about the nature of the CoP during standing.
In addition, the original Langevin equation describes
a speci�c stochastic process called Brownian motion
[17], while no conclusive evidence has been presented
so far for specifying the Brownian nature of the CoP
signal. Snoussi et al. studied the behavior of CoP by
decomposing the signal into its components using the
Empirical Mode Decomposition (EMD) method [18].
They emphasized that the presence of deterministic
and stochastic components accompanied by chaotic
components in the CoP signal might result in mixing up
the chaotic behavior of CoP with a stochastic behavior.
Therefore, they used the EMD method to extract the
chaotic component of the CoP signal based on the
analysis of the Lyapunov Exponent (LE). Through the
EMD, a time series is partitioned into Intrinsic Mode
Functions (IMF) without leaving the time domain.
Such modes may provide a better understanding of
di�erent signals in the data. In other words, EMD can
facilitate extracting the time components and showing
di�erent behavioral aspects of the nonlinear and non-
stationary signals, hence being useful for this study.
However, the analysis based on the LE alone may yield
some misleading results due to the presence of either
discretization errors or measurement noise. Therefore,
in this study, an analysis algorithm was proposed based
on the EMD method to select the chaotic component
among the extracted components with high con�dence.

2. Methods and materials

2.1. Data collection
The experiments were conducted on 12 healthy individ-
uals with no history of disease including six males and

Figure 1. The healthy subject standing quietly on a force
plate.

six females between 20 and 70 years who participated
in the experiments. Although the age range is wide,
according to the received medical consultations, the
balance quality in the individuals over 50 was not
signi�cantly a�ected due to aging. Therefore, there
was no need to categorize the individuals according to
their age. The individuals were asked to stand quietly
with barefoot on the Force Plate (9286A, KISTLER)
and eyes open during experiments. Each trial lasted
two minutes and the sampling frequency was 100 Hz.
Individuals maintained their upright posture while CoP
signal was recorded during each experiment. Figure 1
shows the experimental setup.

2.2. The proposed analysis methodology
Figure 2 shows the owchart of the proposed analysis
methodology. In this suggested algorithm, �rst, the
CoP data were decomposed into their components
using a nonlinear preprocessing method called EMD.
Then, Fractal Dimension (FD) was computed for
the extracted components. Since the possibility of
computational errors may be raised owing to data
discretization, a fractional number instead of an in-
teger number can be obtained. Since there is no
trivial approach to reducing the quantization error,
a heuristically simple approach was selected. In this
study, Higuchi method was used for computing the
fractal dimension [19]. According to this approach, the
fractal dimension is computed through the following
exponential relation [19]:

hL (k)i / k�D; (1)

where D is the fractal dimension, k the length of the
time interval, and hL(k)i the average value of the
lengths associated with the time series constructed
by the raw data [19]. In this study, the computed
fractal dimension (D) was about 1. Therefore, 1�0:01
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Figure 2. The owchart of the Center of Pressure (CoP)
signal chaotic component selection algorithm.

(or 1 � less than 0.01) does not signi�cantly change
the L value, since 0.01 (or less) can be negligible in
comparison with 1. However, it can also be misleading
because the L value will not be as outlier data as
that one can recognize. Therefore, in this study, 0.01
was regarded as a computational margin. In this
regard, those components whose fractal dimension were
fractional and were at least 0.01 more or less than the
integer value were selected as the candidate chaotic
components. Next, CD and LE were computed for the
candidate components [20]. The selected components
should contain fractional CD and positive LE. Finally,
through another nonlinear analysis method called
Detrended Fluctuation Analysis (DFA), logarithmic
diagrams related to the extracted components were
plotted. The component containing the logarithmic
diagram with a su�ciently expanded linear area and
the least misleading possibility of estimating the scaling
exponent was calculated as the slope of a straight line
�t to the log-log graph. Therefore, the component
whose logarithmic diagram had the most expanded
linear area was selected as the component, which is
a chaotic component with high con�dence.

2.2.1. EMD analysis
EMD is an experimental method for analyzing the
natural signals that are usually non-linear and non-
stationary [5,21]. It was �rst introduced by Wu and
Huang in [21]. EMD decomposed a nonlinear non-
stationary signal into a �nite number of oscillatory
functions called IMF. IMFs of a signal were then
extracted in a process called the screening process,
which is implemented through the following stages:

1. Specifying all the local extrema of the signal.

2. Obtaining the upper and lower envelope of the
signal.

3. Calculating the mean of the upper and lower en-
velopes of the signal:

e (t) =
XL (t) +XU (t)

2
: (2)

4. Subtracting the envelope mean from the entering
signal:

d (t) = X (t)� e (t) : (3)

The screening process continued for the remaining
signal d(t) until reaching the �nal speci�ed conditions.
The extracted component will be IMF if it meets the
following two conditions:

1. Throughout the dataset, the number of extremes
and crossing the zero should be equal or maximally
have one unit of di�erence;
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2. In each point, the envelope mean de�ned by the
local maximums and the envelope de�ned by the
local minimums should be zero. In other words, an
IMF should be a symmetric function at about zero.

If the above conditions are met, the extracted com-
ponent will be considered as IMF. Otherwise, the
screening process continues on the remaining signal
until extracting the �rst IMF.

The screening process can be halted by any of the
following prede�ned conditions:

1. When the remaining component is so small that it
is smaller than a prede�ned signi�cant amount;

2. When the remaining component changes into a
monotonic function from which no other IMF can
be extracted.

Upon the end of the screening process, the men-
tioned nonlinear analysis was carried out.

2.2.2. DFA analysis
DFA is a known approach to quanti�cation of the
complexity of non-stationary signals based on the
analysis of short-term and long-term autocorrelation
of a signal. DFA algorithm output is a parameter
called a which is the slope of the logarithmic graph.
It indicates the statistical self-a�nity of the signal.
In this method, the signal squares least distance from
the signal trend is analyzed as a function of the scale
parameter [22{24]. For X(i), DFA algorithm was
applied, as shown in the following:

1. Calculation of the value of the X(i) oscillation:

y (k) =
kX
i=1

(X (i)�Xavg)
y: (4)

2. Calculation of the average value of the signal
oscillation relative to its trend:

F (n) =
r

1
N

NX
k=1

(y (k)� yn (k))2: (5)

3. Plotting logF (n) logarithmic graph to log n:

F (n) � na: (6)

In the plotted logarithmic graph, the slope of the
linear region is referred to as parameter a. In fact,
a is the slope of a region where logF has a linear
relationship with logn.

2.2.3. Calculating the LE
Since no di�erential equation model could describe
the raw data or IMFs, the LE should be computed
with the available signals. Therefore, the Wolf well-
known method was applied [25]. According to the Wolf

method, the LE is de�ned by the long-term evolution
of nearby orbits in the reconstructed m-dimensional
phase state and it can be computed through Eq. (7)
[25]:

�1 =
1

tM � t0
MX
k=1

log2
L0 (tk)
L (tk�1)

; (7)

where �1 is the LE, L(tk�1) the Euclidian distance
between a data point located at the nearest neigh-
borhood of a point in the phase portrait related to
a time instance (tk�1), L0(tk) the Euclidian distance
between the next replaced data point and the next
point in the phase portrait related to a time instance
(tk), and M is the total number of the replacement
steps; further, t0 and tM represent the initial and the
last time instances.

2.2.4. Analysis of IMF5 using RQA
In the last step of the proposed algorithm, the com-
plexity of the selected IMF and raw CoP signal was
compared to obtain the desired results. In other words,
the selected IMF is expected to be a more complex
signal than the raw CoP signal. Therefore, it can
be concluded that the selected IMF is the chaotic
component of the CoP signal with high con�dence.
In line with the objectives of this study, Recurrence
Quantitative Analysis (RQA) was employed. RQA is
a nonlinear method for analyzing dynamic systems,
especially for measuring the complexity of a signal [26].
This method was established to quantify Recursive
Plots (RP) on the basis of short-scale structures [27].
It makes an RP in which some variables that measure
di�erent aspects of the dynamics of COP data are
extracted [28]. Generally, RPs are a graphic expres-
sion of the trajectories of dynamics of system mode
space [26,27,29]. A relatively simple method widely
used in some previous researches, RQA is characterized
by the main principle, i.e., the phase space of a
single time series can only be reconstructed through
time delay [30]. The output of the RQA is a set of
features for quantitative analysis of recursive graphs.
In this study, a feature called determinism (DET) was
employed. This measure is related to the predictability
of the system dynamics. The DET is de�ned as the
percentage of the recurrence points of diagonal lines
to the total number of recurrence points. It can be
measured as follows:

DET =
PN
l=lmin lP (l)PN
i;j=1R (i; j)

; (8)

where P (l) is the distribution of the diagonal lines and l
is the number of points forming the line. This measure
is related to the predictability of the system dynamics.
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3. Results

3.1. Analysis of the IMFs
Figure 3 shows an example of CoP decomposition into
11 IMF components using the EMD algorithm. At
the next step, the fractal dimension of the obtained

IMFs is calculated. At this stage, the components
with fractional dimensions and a value of at least 0.01
more or less than an integer value were selected as the
candidate chaotic components. The calculated values
for the selected IMFs for two sample participants are
given in Tables 1 and 2. According to these tables,

Figure 3. Center of Pressure (CoP) signal taken from a healthy subject during quiet standing for 2 minutes and extracted
Intrinsic Mode Functions (IMFs) from raw Center of Pressure (CoP) signal using the Empirical Mode Decomposition
(EMD) algorithm.
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Table 1. Parameters of fractal dimension, correlation dimension, Lyapunov exponent, and parameter � related to raw
Center of Pressure (CoP) signal and its extracted Intrinsic Mode Functions (IMFs) (related to Subject 1).

Signal

Feature CoP IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

FD 1.64 2.00 1.96 1.67 1.18 1.02 1.00 1.00 1.00 0.99 0.99 1.00 0.99

CD 1.57 1.69 1.60 1.45 1.39 1.36 1.66 1.75 1.60 1.79 1.69 1.64 1.76

LE 0.56 8.85 8.72 8.30 7.43 6.51 5.71 5.19 4.40 3.60 2.85 2.32 {0.00

� (DFA) 1.04 0.41 1.44 2.03 2.24 2.30 2.30 2.31 2.31 2.31 2.30 2.31 2.31

Table 2. Parameters of fractal dimension, correlation dimension, Lyapunov exponent, and parameter � related to raw
Center of Pressure (CoP) signal and its extracted Intrinsic Mode Functions (IMFs) (related to Subject 2).

Signal

Feature CoP IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

FD 1.78 2.00 1.95 1.69 1.20 1.04 1.01 1.00 1.00 0.99 0.99 0.99 0.99

CD 1.62 1.64 1.64 1.58 1.52 1.24 1.40 1.55 1.68 1.81 1.80 1.72 1.73

LE 0.69 8.65 8.70 8.25 7.56 6.79 5.32 4.83 4.33 3.59 3.05 2.91 {0.00

�(DFA) 0.89 0.46 1.53 2.07 2.25 2.29 2.30 2.31 2.31 2.31 2.31 2.31 2.31

Components 2{5 satis�ed the mentioned conditions. Of
note, there were some signi�cant similarities among the
computed fractal dimensions despite the individuals'
considerable weight, height, and age di�erences. This
�nding was achieved based on the calculated mean and
standard deviations of the computed fractal dimensions
among the participants. The computed standard
deviation was measured as 1:02�0:01, which was quite
smaller than the computed mean. These similarities
were also indicative of some similar movement patterns
during standing among the healthy individuals. At the
next step, to verify the accuracy of the chaotic nature
of the selected components, the CD and LE of the
selected IMFs were calculated. According to Tables
1 and 2, the calculated CD for Components 2{5 is also
a fractional number, and LE of Components 2{5 are
large and positive. These results con�rmed the chaotic
behavior of the selected component and the e�ect of
the measurement noise and computational error on the
results was almost negligible. Of note, the calculated
LE related to the second-to-�fth components were
greater than those related to the raw signal. According
to what was mentioned above, analysis of the raw CoP
signal can be misleading due to the stochastic and
deterministic components of CoP signal. In addition,
similar results among all participants were obtained.
Tables 1 and 2 present the obtained results for the two-
sample subjects, despite the similar results among the
participants.

3.2. Selection of an IMF using DFA
Finally, the components 2-5 were analyzed using DFA.
Computing the � value is the output of DFA. The �
value is the slope of a line �tted to the linear region
of the logarithmic graph (Eq. (6)). Thus, existence

Figure 4. logarithmic graph of Detrended Fluctuation
Analysis (DFA) analysis related to raw Center of Pressure
(CoP) signal (a) and logarithmic graph of IMF2 to IMF5
(b-e).

of calculation error is inevitable. Nevertheless, as
the range of the linear region becomes wider the
calculation error will be reduced more. According to
Figure 4, among Components 2{5, Component 5 has a
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wider linear area. Therefore, IMF5 was selected as a
component providing more precise information about
the chaotic nature of the CoP signal. Apparently, the
analysis of the complexity of the balancing process via
IMF5 is more suitable.

The calculated parameter � related to IMF5 for
all individuals was substantially larger than 0.5. Hence,
it can be claimed that the extracted IMF5 signal for
all individuals was an anti-persistent, signal which is
indicative of the emergent behaviors in the balancing
process.

3.3. Analysis of the Selected IMF Using RQA
As mentioned earlier, at the last step of the proposed
algorithm, the complexity of the selected IMF and raw
CoP signal was compared to elaborate the obtained
results. This comparison was made using a quantitative
feature (DET) extracted by RQA. Table 3 shows the
computed DET values as well as the related mean
and the standard deviation values. Accordingly, it
can be concluded that the calculated DET related to
the extracted IMF5 component (0:98 � 0:01) had a
larger value than the corresponding raw CoP signal
(0:89�0:06), thus proving that the nature of the IMF5
component was more complex than that of the raw CoP
signal.

The �nding that the calculated standard devi-
ation was small is indicative of the closeness of the
calculated DET values for all the individuals. This
�nding is interestingly consistent with the previously
mentioned conclusion about the presence of a similar
movement pattern during the balance process in the
able-bodied individuals.

4. Discussion

4.1. Groups
This study analyzed the obtained data on healthy
subjects of di�erent ages. The main focus was put
on the healthy subjects to identify the nature of CoP,
while the able-bodied subjects were quietly standing.
The CoP signal can be considered as a criterion for
quantitative analysis of balance quality in the quiet
standing position. Therefore, identifying the nature
of the speci�ed CoP signal during the quiet standing
can be an informative approach to human dynamic
balance analysis. Analysis of the balance dynamics
through quantitative criteria can be useful in diagnos-
ing some balance disorders and quantifying balance loss

among patients su�ering from balance disorders during
upright standing. In addition, designing an adequate
control strategy for motor rehabilitation needs acquir-
ing deep knowledge about the characteristics of balance
dynamics during quiet standing. According to the
obtained results, it can be argued with high con�dence
that the balance dynamics in the able-bodied subjects
is chaotic.

4.2. Dynamic similarity
Some evidence in recent years has proved the simi-
larities among the characteristics of balance dynamics
for di�erent individuals [31]. Consequently, an in-
signi�cant gap can be observed among the computed
nonlinear qualitative features of the signal such as
CoP, caused by body sway during quiet standing,
for di�erent healthy subjects. The calculated mean
and standard deviation of the computed fractal di-
mensions among the participants were 1:02 � 0:01.
The quite smaller value of the calculated standard
deviation than the calculated mean showed signi�cant
similarities between the computed fractal dimensions
of the extracted IMFs despite the considerable di�er-
ences between the subjects' weight and height, thus
con�rming this hypothesis. In addition, IMF5 was
selected as a component capable of providing more
precise information about the chaotic nature of the
CoP signal among all participants. The parameter �
calculated by DFA and related to IMF5 in all subjects
was substantially larger than 0.5, indicating that the
extracted IMF5 signal was an anti-correlated one in
all subjects. More interestingly, the complexity of
IMF5 was analyzed using RQA method, the results
of which demonstrated that the calculated values of
DETs for all subjects were close. The calculated mean
and standard deviations of the computed DET among
the participants were 0:98 � 0:01. All these results
not only are consistent with the evidence proving the
presence of similar movement patterns in the balancing
process in the able-bodied subjects but also point to the
presence of a speci�c nonlinear dynamic balance during
the standing position which is chaotic, according to our
interpretations.

4.3. Chaotic nature of CoP and IMF5
Application of the EMD method to decomposing the
CoP signal to local oscillations that make the non-
stationary signal has been previously investigated [19].
These components can bear valuable information about

Table 3. Determinism (DET) values of raw Center of Pressure (CoP) signal and IMF5 component in all subjects.

Subject

Signal IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 Mean�STD

Raw CoP 0.95 0.78 0.91 0.92 0.78 0.93 0.82 0.89 0.89 0.93 0.97 0.94 0.89�0.06

IMF5 0.99 0.98 0.99 0.99 0.95 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.98�0.01
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the nature of the signal; however, analysis results
obtained from some computed nonlinear features may
be tricky, especially when the features such as LE and
fractal dimensions should be computed. Measurement
noise and possible computational errors may under-
mine the accuracy of the computational results. In
our proposed multistage algorithm, the result related
to each stage rati�es the archived result related to the
last stages. The positive LE along with the fractional
fractal and CD of CoP related to all subjects may
prove the chaotic nature of CoP [32]. Nevertheless,
the results elucidate that the calculated LE related
to the second to �fth components are greater than
the calculated LE related to the raw CoP signal. It
can be shown that the analysis of the raw CoP signal
can be misleading. In addition, at the end of the
algorithm, IMF5 was selected as the chaotic component
of the CoP bearing the most precise information about
the CoP dynamic. The calculated DET measure, in
all subjects, related to extracted IMF5 component
had a larger value than the corresponding raw CoP,
proving that the IMF5 component was of more complex
nature than the raw CoP signal. This result also
rati�es that analysis of the raw CoP signal can be
misleading. According to the results, we believe that
the CoP signal contains the chaotic local oscillations
and consequently has a chaotic nature. Nevertheless, to
analyze the balance dynamics and its variations during
the upright standing, scrutinizing the extracted IMF5
is more appropriate.

4.4. Comparison with the other methods
The previous works mostly extracted the nonlinear
features of raw CoP signal to analyze the CoP dynamics
[5{19]. However, we believe that the presence of de-
terministic and stochastic components accompanied by
chaotic components in CoP signal may result in mixing
up the di�erent behaviors of CoP with each other.
Therefore, the analyses based on feature extraction
from the raw CoP can be misleading. Thus, this
study applied the EMD method to analyze the CoP
signals. It is worth noting that the EMD method has
been used so far to analyze the CoP [5], but the only
aim here was to distinguish between eyes-open and
eyes-closed conditions [5]. Some other researchers only
analyzed the changes of CoP dynamics with respect
to age and disease severity [12,16], or sought to show
the relationship between a nonlinear feature and actual
balance ability [6]. Overall, none of the previous
works [6{10] have posed clear and con�dent claims with
respect to the CoP signal dynamics. By using the
algorithm proposed in our study, a clear and con�dent
claim has been posed about CoP dynamics. According
to the presented study, it can be asserted that CoP
signal is a chaotic signal.

5. Conclusion

Determining the nature of Center of Pressure (CoP)
signal is signi�cantly challenging. In this study, a new
algorithm was proposed to determine the nature of CoP
based on some known nonlinear analyses. Although
the authors of this study believed that non-chaotic
components of the CoP signal would lead to wrong
analysis of CoP, how to choose a suitable decomposition
approach was still in debate. An appropriate decompo-
sition approach should be able to detect the obscured
dynamic properties of the signal. Therefore, a conven-
tional decomposition method based on the orthogonal
functions cannot be of help because the extracted
components should contain some information about the
nature of CoP. In this regard, inspired by the results of
the recent research, this study employed the Empirical
Mode Decomposition (EMD) method to decompose the
CoP signal. However, the e�ects of the measurement
noise and computational errors always undermine the
accuracy of the computational results from evaluating
the nonlinear features commonly used for identifying
the chaotic nature of signals. Therefore, in this study, a
multistage algorithm was utilized. At each stage, some
nonlinear features were computed. Then, some criteria
at each stage were employed, and some extracted
components were selected as the candidate chaotic
components. Finally, the �fth extracted component
was recognized as the chaotic component of the CoP
signal with high con�dence. Afterward, Recurrence
Quantitative Analysis (RQA) was employed to analyze
the complexity of the �fth extracted component. The
results of this analysis were in agreement with the
previously obtained result. Therefore, it was concluded
that CoP could be recognized as a chaotic signal with
high con�dence.

Of note, despite the considerable di�erences
among the individuals' weights and heights, some sig-
ni�cant similarities were observed among the calculated
quantitative features. These similarities suggested that
there might be a similar movement pattern during
quiet standing which could be consistent with the
fundamental concept of muscle synergy.
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