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Abstract. Smart-Home Energy Management Systems (SHEMSs) are widely used for
energy management in smart buildings. Energy management in smart homes is an arduous
task and necessitates e�cient scheduling of appliances in buildings. Scheduling of smart
appliances is usually enmeshed by various and sometimes contradictory criteria, which
should be considered concurrently in the scheduling process. Multi-Criteria Decision
Making (MCDM) techniques are able to select the most suitable alternative among copious
ones. This paper tailors a comprehensive framework which merges MCDM techniques with
Evolutionary Multi-Objective Optimization (EMOO) techniques for selecting the most
proper schedule for appliances by creating a trade-o� between optimization criteria. A
Multi-Objective Ant Lion Optimizer (MOALO) was tailored and tested on a smart home
case study to detect all the Pareto solutions. A benchmark instance of the appliance
scheduling was solved employing the proposed methodology. Then, Shannon's entropy
technique was employed to �nd the weights corresponding to the objectives. Finally, the
acquired Pareto optimal solutions were ranked utilizing the Evidential Reasoning (ER)
method. By inspecting the e�ciency of every solution considering multiple criteria such
as unsafety, electricity cost, delay, Peak to Average Ratio (PAR), and CO2 emission,
e�ectiveness of the proposed approach in enhancing the method for smart appliance
scheduling was con�rmed.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

During the previous decade, the electrical energy con-
sumption of residential sectors has increased rapidly
all around the world due to the expansion in appliance
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ownership [1]. Therefore, improvement in the energy
e�ciency of electrical facilities is very in
uential for
energy-saving in buildings, reducing the loads on elec-
trical grids, and decreasing the carbon footprint. Con-
sequently, electricity conservation in buildings not only
results in saving fossil fuels but also prevents capacity
expansion in the power sector [2,3]. Many research
results are available for supporting the decisions in the
management of networks [4,5]. The emergence of smart
homes and the Internet has led to an opportunity for
automatic operation, scheduling of the appliances, and
energy management in residential buildings.
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In recent years, utilization of metaheuristic op-
timization algorithms to overcome real-life problems
has turned out to be a topic of huge interest for
related studies. The main objective of such techniques
is to su�ciently explore the search space to achieve
global or quasi-global solutions. These algorithms
have received increasing attention of both academia
and industry [6,7]. Many metaheuristics with various
philosophies and characteristics are developed and
implemented in an immense domain of �elds with
variations of single-objective optimization, e.g. Genetic
Algorithm (GA) [8], Particle Swarm Optimization
(PSO) [9], colliding bodies optimization [10], Vibrating
Particles System (VPS) [11], Ant Lion Optimizer
(ALO) [12], etc., and Multi-Objective Optimization
(MOO), e.g. non-dominated sorting GA [13], multi-
objective PSO [14,15], multi-objective VPS [16], Multi-
Objective Ant Lion Optimizer (MOALO) [17], etc.
Some applications of metaheuristics to engineering
optimization problems can be found in [18,19]. A newly
developed MOALO, which mimics the trapping mecha-
nism of antlions in nature, is selected in this study [17].
Like many metaheuristic algorithms, MOALO has the
advantage of simplicity and 
exibility.

Electric energy management is involved in var-
ious problems in which the decision-maker needs to
circumscribe possible scheduling options and select the
one with optimal solutions, which have balance among
di�erent objectives. The Evolutionary Multi-Objective
Optimization (EMOO) methods represent a suitable
and practical procedure that supports robust and con-
current optimization of contradictory and frequently
incommensurable objectives. In a real system, it is
unwise to reach a decision that is founded on meeting
only one criterion during the process of decision-
making. This proves the exigency of using multiple-
criteria assessment techniques to obtain a solution that
meets all the decision-making presumptions with an
agreeable degree of satisfaction [20].

Diverse EMOO procedures have been utilized
to solve Multi-Objective Home Appliance Schedul-
ing Problems (MOHASPs) and their sequent optimal
Pareto solutions have been produced, plotted, and
widely announced. Nevertheless, no e�ort has been
put into selecting a solution that meets the objectives
within a reasonable level. Due to the intimately
interwoven multi-criteria nature of scheduling prob-
lems, ascertaining which solution is the best alternative
can be challenging [21]. These criteria, also called
objectives, are frequently incompatible. Multi-Criteria
Decision Making (MCDM) approaches o�er an e�cient
mechanism for selecting a suitable Pareto member [22].
In this research, an MCDM approach is combined
with an EMOO technique to utilize the capability
of the optimization technique for �nding the optimal
Pareto front (alternatives) and the capability of the

MCDM for simultaneously ranking them by various
criteria to produce a single-compromise solution with
a computational background.

Since the end of the 1970s, several MCDM meth-
ods have been proposed to assist decision-makers in
�nding values of the criteria and the alternatives based
on their preferences [23]. The goal of using MCDM
techniques in decision making is to ease the process
of organizing and harmonizing the requisite data in
evaluation so that users feel comfortable with and sure
in making decisions [24]. However, MCDM techniques
are dissimilar in terms of theoretical background,
formulation, questions, and types of input and/or
output [25]. They can be divided into three main
categories [26]: (a) value measurement techniques; (b)
goal, aspiration, and reference level techniques; and (c)
outranking techniques.

In the value measuring technique, a numerical
value is assigned to every alternative, which intimates
the rank of a solution versus others. Then, for making
a trade-o� between multiple criteria, each criterion
is weighted based on decision-maker-accepted crite-
ria [21]. The Analytical Hierarchy Process (AHP) [27]
and multi-attribute utility theory fall into this category.
The second category involves iterative methods that
indicate closeness of the solutions to a prede�ned goal
or reference level. The examples of this category are
Evidential Reasoning (ER) [28] and the Technique for
Order of Performance by Similarity to Ideal Solution
(TOPSIS) [29]. Generally, these techniques are focused
on purifying the most inappropriate alternatives at
the initial stage of the multi-criteria assessment pro-
cess [24]. In the outranking techniques, the alternatives
are sorted by a pairwise matching and if enough proof
exists to show that alternative (a) is preferable to
alternative (b), it is assumed that alternative (b) is
outranked by (a). PROMETHEE [30] and ELECTRE
[31] are examples of the outranking techniques.

Regarding the number of MCDM techniques
available, the decision on selecting a suitable decision
support tool can be challenging to justify. None of
the techniques are perfect nor can they be applied
to all problems. Every technique has its limitations,
particularities, hypotheses, premises, and perspectives.
There are di�erent ways of selecting a suitable MCDM
technique to solve particular problems. One way is to
consider the requisite input information, that is, the
data and parameters of the method and, consequently,
the modeling e�ort, as well as to take into account the
outcomes and their granularity [32].

In this research, the ER technique is accommo-
dated to produce an e�cient Pareto solutions rank-
ing system and discover the most appropriate solu-
tion. ER technique considers incomplete assessments
or ignorance as a kind of probabilistic uncertainty,
fuzziness, and vagueness and incorporates qualita-
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tive/quantitative attributes in an integrated frame-
work using belief structures, belief matrices, and a
rule/utility-based grading strategy for aggregating the
information. The in
uential feature of this method is
that varieties of data can consistently be modelled in
an integrated system [33].

There are two general approaches to adopting
MCDM in EMOO methods [34]: (a) employing MCDM
for Pareto optimal solutions set obtained by EMOO; or
(b) integrating MCDM with EMOO as a robust parallel
searching means.

Decision-making is widely gone through in several
aspects of engineering and some studies have employed
MCDM techniques to determine the most appropriate
Pareto solutions in project scheduling problems [21],
building design [22], water distribution systems [28],
etc. However, in most of the appliance scheduling
problems, only Pareto solutions are acquired, plotted,
and informed. This was one of the reasons that the
authors of the present paper were persuaded to employ
MCDM techniques in solving MOHASP to determine
the best appliance operation schedule of a given smart
home. Except for the paper of Du et al. [35], in which
a user-oriented weighting approach decided the best
schedule, there is no research proposing an exhaustive
framework for synthesizing the MCDM techniques
with MOO methods to more e�ciently schedule the
appliances.

Previous studies have investigated the in
uence
of smart home appliances scheduling on their opera-
tional unsafety [35], electricity cost of household [35],
operational delay of appliances [36], peak-to-average
power ratio, and CO2 emission [37]. However, joint
optimization of these objectives has been considered in
none of the studies. This study tries to optimize all the
objectives mentioned above concurrently by assuming
that households are equipped with smart appliances.
Other new contributions of this paper include a pro-
posed MOHASP modeling framework incorporating
an MOALO algorithm, tailored for methodical multi-
criteria assessment handling, alongside an ER approach
for ranking the Pareto solutions. In order to illustrate
e�ciency and compatibility of the proposed system,
an example of home appliance scheduling is solved for
identifying the best Pareto solution. The MOALO
algorithm is presented in the following sections. First,
the Shannon entropy procedure for acquiring the asso-
ciated relative normalized weights of each objective is
explained. Furthermore, the ER approach is elaborated
on and the integration framework for the MCDM
approaches and for MOO methods is discussed. Then,
the formulations and modeling of the MOHASP are
given. A benchmark instance from the literature will be
solved and the optimal Pareto solutions are identi�ed in
order to show the e�ciency of the suggested procedure.
Given the expectations of the decision makers, the most

suitable solution is determined by the ER approach.
E�ciency of the results of the suggested methodology
is discussed using an identical method and the optimal
solution is presented. Finally, concluding remarks and
suggestions for future research are provided.

2. Methodology

Figure 1 shows the process of the suggested system
for energy management beginning by initial adjustment
and collection of the necessary data for the real-time
day-ahead electricity price, real-time day-ahead CO2
footprint, requirements of the users for the operations
of the appliances, at-home and awake statuses of
the users, and energy consumption of the appliances.
Then, the MOALO algorithm for meeting the global
Pareto optimal front is served up. Each objective,
consisting of safety, electricity cost, delay, PAR, and
CO2 emission, holds a particular corresponding nor-
malized weight. These objectives make employing
Shannon's entropy method possible. For the purpose
of relating the objectives mentioned above with the
overall performance indicator, a hierarchical struc-
ture can be formed with the computed corresponding
weights to indicate the modality of assessing the overall
performance. In the following procedure, the ER
technique assists the users in evaluating Pareto solu-
tions (alternatives), speci�es overall utility scores, and
indicates their level of comfort by each solution while
simultaneously considering all the criteria. Finally, the
Pareto solutions are sorted according to their utility
scores in descending order and the �rst one is picked
as the best solution. The 
owchart of the proposed
Smart-Home Energy Management System (SHEMS)
methodology is presented in Figure 1.

2.1. Preparing the required information for
appliances scheduling operation

The day-ahead real-time electricity price for tomorrow
is passed on from the utility company to the SHEMS.
Since users have various demands for the operations
of appliances and their at-home statuses and awake
statuses are dissimilar, the awake and at-home statuses
of the users and their demands for the operations of
appliances are put in the SHEMS by the users. The
SHEMS provides the schedules for the home appliances
by the proposed approach according to the electricity
price as well as status and demands of the users. Then,
it will automatically control the appliances based on
the energy consumption schedules by the home area
network [35,36]. The smart home appliances are cate-
gorized into schedulable, such as washing machines and
water heaters, and non-schedulable, such as TV and
lights. Energy consumption of schedulable appliances
is adjustable and they are schedulable in progress.
They are supposed not to be interrupted [35]. The
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Figure 1. Flowchart of the proposed Smart-Home Energy Management System (SHEMS) methodology.

energy management system will not include the non-
schedulable appliances for which the real-time demands
of users will be in control of their operation [35].
The information concerning operations of appliances
includes the Length of Operation Time (LOT) and the
Operation Time Interval (OTI), which are denoted by

a and [�a; �a] for appliance a, respectively. Here, �a
is the earliest start time and �a is the latest �nish
time of the operation. Regarding the general operation
time of appliances, each time slot has 12 minutes and

the LOT is assigned to the time slots. The LOT is
planned to the least integer greater than or equal to
the number when the length of the operation is not an
integer multiple of 12. Therefore, one day is planned
in 120 time slots and the OTI is assigned to the related
time slot. For example, the LOT is 3, i.e., 
 = 2, for
an appliance whose LOT is 36 minutes and the OTI is
from 1 to 60, i.e., � = 1; � = 60 for an appliance whose
operation is considered in the range of 12 midnight and
12 noon [36].
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2.2. Multi-Objective Optimization (MOO)
2.2.1. Basic de�nitions for MOO
Without loss of generality, the brief fundamentals of
MOO (minimization) are de�ned as follows.

De�nition 1 (Pareto dominance). Considering two
vectors like ~x = (z1; x2; :::; xk) and ~y = (y1; y2; :::; yk)
vector ~x is called to dominate ~y (denoted by ~x � ~y) if
and only if [17]:

8i 2 f1; 2; :::; kg : fi(~x) � fi(~y)^
9i 2 f1; 2; :::; kg : fi(~x) < fi(~y): (1)

The de�nition of Pareto optimality is presented as
follows [38,39]:

De�nition 2 (Pareto optimality). A solution ~x 2
X is assumed Pareto optimal if and only if:

f@~y 2 Xj~x � ~yg: (2)

De�nition 3 (Pareto optimal set). The set of all
Pareto optimal solutions is de�ned as follows:

Ps := f~x; ~y 2 Xj@~x � ~yg: (3)

De�nition 4 (Pareto optimal front). A set
including the values of objective functions for Pareto
solutions set is:

Pf := ff�!(x)j~x 2 Psg: (4)

2.2.2. Multi-Objective Ant Lion Optimizer (MOALO)
MOALO is one of the newest nature-inspired opti-
mization algorithms introduced by Mirjalili et al. [17],
which mimics hunting behavior of antlions and their
interactions with the favorite corresponding prey-ants.
The antlion algorithm has two types of populations,
namely the antlions and the ants. The general hunting
process of MOALO represents the interaction among
antlions and ants in the trap as follows: random walk
of ants, building traps, entrapment of ants in traps,
catching preys, re-building the traps, and elitism. An
antlion larva walks on a circular path and throws out
sand by its massive jaw to dig a cone-shape trap by a
very sharp edge in the sand so that the insects easily
fall to its bottom. Then, the larva hides underneath
the bottom of the trap and waits for preys to fall
in. If the antlion realizes that a prey has fallen in
the trap, it tries to catch the prey and then, pulls it
under the soil. After consuming the prey, it throws
the leftovers outside the pit, amending the pit for
the next catch [12]. In the algorithm, the archive
is �rst used to save non-dominated Pareto optimal
solutions obtained so far. Then, solutions are chosen
from this archive using a roulette wheel mechanism

based on coverage of the solutions (as antlions) to
guide ants to promising areas of multi-objective search
spaces. Reviewing the literature shows its e�ciency
in solving challenging real-world problems and it is
selected not only due to its solution quality but also
for its convergence speed and very small number of
parameters. The optimization process of the MOALO
algorithm is described below [17]:

Step 1. Initialize the set of ants and antlions with
random values.
Step 2. Choose a random antlion from the archive.
Step 3. Choose the elite by Roulette wheel and
Eq. (5) from the archive:

Pi =
c
Ni
: (5)

Step 4. Update c and d by Eqs. (6) and (7):

ct =
ct
I
; (6)

dt =
dt
I
; (7)

where ct is the minimum of all variables at the
tth iteration, dt presents the vector including the
maximum of all variables at the tth iteration, and
= 1+10! t

T ; in this formula, t is the current iteration,
T is the maximum number of iterations, and ! is
de�ned based on the current iteration to adjust the
accuracy level of exploration:

! =

8>>>>>><>>>>>>:
2 when 0:1T < t
3 when 0:5T < t
4 when 0:75T < t
5 when 0:9T < t
6 when 0:95T < t

(8)

Step 5. Create a random walk and its normalization.
The ALO algorithm uses the following formulation to
simulate the random walk of ants:

X(t) = [0; cumsum(2r(t1)� 1);

cumsum(2r(t2)� 1); :::;

cumsum(2r(t3)� 1)]: (9)

In this formulation, cumsum computes the cumula-
tive sum, n shows the maximum iteration number, t
is the iteration (random walk step in this study), and:

r(t) =

(
1 if rand > 0:5
0 if rand � 0:5

is a stochastic function in which rand is a random
number produced with uniform distribution in the
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range of [0,1]. The random walks should be normal-
ized by Eq. (10) to prevent ants from overshooting
and to keep random walks in the boundaries of the
search space:

Xt
i =

(Xt
i � ai)� (dti � cti)

(bi � ai) + cti; (10)

cti = Antliontj + ct; (11)

dti = Antliontj + dt; (12)

where cti presents the minimum of all variables for the
ith ant, dti is the maximum of all variables for the ith
ant, and Antliontj shows the position of the selected
jth antlion at the tth iteration.
Step 6. Update position of the ant using Eq. (13):

Antti =
RtA �RtE

2
; (13)

where Antti shows the position of the ith ant at the
tth iteration, RtA represents random walk around the
antlion chosen using the roulette wheel at the tth
iteration, and RtE is the random walk around the elite
at the tth iteration.
Step 7. If every ant has been traversed, then go to
Step 8; otherwise, go to Step 2.
Step 8. Calculate the objective values of all the ants.
Step 9. Update the archive.
Step 10. If the archive is full, eliminate some
solutions by roulette wheel and Eq. (14) from the
archive to accommodate the new solutions.

Pi =
Ni
c
: (14)

Step 11. Check whether the termination condition
is met or not. If the condition is met, then go to
Step 12; otherwise, go to Step 2.
Step 12. Output the Pareto optimal solutions.

Pareto optimal solutions can be obtained and
ranked in various ways using metaheuristic algorithms.
MOALO uses an archive to store Pareto optimal
solutions and its convergence is inherited from ALO
algorithm. Once a solution has been selected from the
archive, the ALO algorithm is used in order to improve
its quality. Nonetheless, �nding the Pareto optimal
solutions set with a great variety is a challenging
task. To overcome this challenge, the MOPSO based
leader selection and archive maintenance strategies are
employed. Of particular importance is providing a
limit for the archive and to increase the distribution,
solutions should be selected from the archive. Distri-
bution of the solutions in the archive is measured by

the niching technique in which the proximity of every
solution is checked upon a prearranged radius. Then,
the number of solutions in the proximity is counted and
considered as the distribution measure. To improve the
distribution of solutions in the archive, two mechanisms
identical with those in MOPSO are considered. First,
the solutions with the minimum inhabited vicinity are
picked as antlions. Eq. (1) is then used to de�ne
the probability of picking a solution from the archive.
The 
owchart of the MOALO algorithm is shown in
Figure 1.

2.3. Multi-Criteria Decision Making (MCDM)
2.3.1. Shannon's entropy
Several methods can be utilized to discover the normal-
ized weights of objectives, e.g., Shannon's entropy tech-
nique [40], AHP [27], ordered weighted averaging [41],
and simple additive weighted approach [42]. In this
research, weighting of the attributes is based on crude
values of optimal Pareto solutions, because, according
to the above-mentioned methods, decisions of the users
might be insu�cient and result in a partial judgment
on weights. To evaluate the relative weights, Shannon's
entropy method declares the corresponding importance
weights of the attributes based on the di�erentiation
amongst data. Thus, Shannon's entropy can present a
more reliable measure for the corresponding weights
of the objectives in the loss of preferences of the
users [21]. Shannon's entropy acts as a measure for
the degree of uncertainty in information formulated
in terms of probability theory. It is associated with
the information source as a measure of uncertainty.
The information can be easily de�ned as objective
values. The uncertainty in information is addressed by
Shannon's entropy utilizing the theory of probability.
The inherent hypothesis is that lower probability of
an event shows its higher chance to provide more
information by its occurrence, i.e., an objective with
a biased distribution o�ers more relative importance
than a sharply peaked one does [21,43]. The Shan-
non's entropy parameter (Ej) of the jth objective is
formulated as follows:

Ej = �
Pn
i=1 Pij lnPij

lnn
; where i 2 f1; 2; :::; ng and

j 2 f1; 2; :::;mg; (15)

Pij =
fijPn
i=1 fij

; where i 2 f1; 2; :::; ng and

j 2 f1; 2; :::;mg; (16)

!j =
(1� Ej)Pm
j=1(1� Ej) ; where

mX
j=1

!j = 1; (17)

where fij indicates the jth objective function of the ith
solution and Pij is the jth linear normalized objective
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of the ith solution, which is utilized to calculate the
value of Ej for the jth objective. n and m are the num-
ber of solutions and number of objectives, respectively.
Finally, !j shows the corresponding relative normalized
weight of the jth solution, which is determined by
Eqs. (15) and (16).

2.4. Evidential Reasoning (ER)
Decision making is widely used in di�erent �elds of en-
gineering and several approaches have been presented
and employed in dealing with MCDM problems, e.g.,
additive utility function approaches [44], outranking
approaches [45], and ER [28]. Using MCDM approaches
makes user preference criteria controllable and more
e�cient. Moreover, the data may be easily transferred
to the controller. Hence, the daily repetitive and
time-consuming procedure of review and action of the
schedule can be adjusted.

The ER is a comprehensive approach to inte-
grated investigation of the MCDM problems under
various uncertainty types like ignorance and fuzziness
jointly [28]. The ER approach comprises all parts of
the MCDM framework, employing the belief matrices
and the belief structures. The ER information ag-
gregation methodology contains a rule-or-utility-based
information transformation procedure concerning dif-
ferent quantitative and qualitative information types
under the required circumstances of utility and value
equality [21,33].

In MOO, where objectives are frequently con-

icting, the Pareto solutions might be so copious
and it could be time-consuming to ultimately select
an individual compromising solution. The output of
MOO algorithms is a set of non-dominated solutions.
Every non-dominated solution meets the scheduling
objectives to some extent, which requires the utilization
of the MCDM methods to pick the most suitable non-
dominated solution. The MCDM problems handle the
procedure of ordering solutions by considering various
criteria. Therefore, taking multiple attributes into
consideration, non-dominated solutions can be ordered
by using the ER approach, which is able to present
more e�cient and practical appliance scheduling al-
ternatives. The ER approach includes the following
steps [28,46]:

1. Identi�cation and analysis of multiple assessment
criteria using a comprehensive study of engineering
judgments or expert interviews with regard to
the weight assigned to each criterion. This step
collects and models various kinds of supporting
attributes such as qualitative, quantitative, pre-
cise numbers, fuzziness, uncertainties, comparison
numbers, and belief structures concerning criteria
weights and utility by a belief decision matrix.
Precise numbers show single or exact values without
any uncertainty, whereas interval numbers denote

estimates in ranges and belief structures indicate an
evaluation as a distribution (for instance, unsafety
of a speci�c alternative is \Good" to a belief
degree of 71% and, at the same time, it can be
evaluated to be \Moderate" to a degree of belief
of 29%; such an evaluation can be represented as
f(Good; 0:71); (Moderate; 0:29)g and is referred to
as a belief structure). When the assessor is not
su�ciently sure on the assessment because of the
lack of knowledge or evidence, the sum of proba-
bilities is unequal to one (incomplete assessment).
Furthermore, when no data is available to assess
the performance of an alternative for a criterion,
the total belief degree is assumed to be zero in the
belief structure;

2. Transformation of di�erent types of assessment
degrees into a general framework of judgment
by unifying the belief structures employing rule-
and-utility-based information transformation pro-
cedures so that they can be consistently compared
and aggregated. Belief structures should be trans-
lated during this step. For instance, `Very Bad' and
`Very Good' respectively indicate zero and one, and
the remaining grades may/may not be uniformly
distributed;

3. Employment of the ER formulation and algorithm
to agglomerate the assessing information on multi-
ple criteria types to attain the overall assessment of
each alternative;

4. Generation of utility scores or utility intervals in
the state of the lack of information. Utility-based
ranking is able to assess the overall performance of
every alternative with respect to all aspects (crite-
ria) jointly using a systematic-rational prioritizing
framework, which presents the best schedule for
smart home appliances and a schedule that satis�es
all preferences of the users. The ultimately selected
solution is a trade-o� among preferences of the
users.

There are various techniques for calculating the
weights of every criterion, such as pairwise matching
de�ned by users, Shannon's entropy, and so on. Since
the weights denote the relative importance, normal-
izing the values is more helpful than using absolute
values. The normalized values can be calculated by
the following equations:

!i =
WjPL
i=1Wj

; where i = f1; 2; :::; Lg; (18)

subject to:

0 � !i � 1; where
LX
i=1

!i = 1: (19)

The linguistic phrases like `worst,' `good,' etc. are
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�n =
�L
i=1

�
1� !iPN

j=1;j 6=n �i;j
���L

i=1(1� !iPN
j=1 �i;j)PN

n=1 �L
i=1

�
1� !iPN

j=1;j 6=n �ij
�� (N � 1)�L

i=1

�
1� !iPN

j=1 �i;j
���L

i=1(1� !i)
; (20)

�H =
�L
i=1

�
1� !iPN

j=1 �i;j
���L

i=1(1� !i)PN
n=1 �L

i=1

�
1� !iPN

j=1;j 6=n �ij
�� (N � 1)�L

i=1

�
1� !iPN

j=1 �i;j
���L

i=1(1� !i)
: (21)

Box I

known as grades and their entire set is denoted by H =
fHn; n = 1; 2; :::; Ng [21]. The analytical format of the
ER procedure is able to determine the combined beliefs
degree �n of the nth grade, where n 2 f1; 2; :::; Ng
and �H denotes the assessment of incompleteness for
the entire set H. Contrarily to the recursive ER, the
analytical format necessitates no iteration to assess
several attributes, hence presenting more 
exibility for
optimization and assessment [33]. Eqs. (20) and (21)
are presented in Box I to calculate �n and �H , where
�i;j is degree of belief of the ith primary criterion for
the jth grade and N is the number of grades in set
H. Combined belief degrees and incomplete assessment
(�n and �H) need to be translated into a single utility
score for ranking the alternatives. Therefore, it is
essential to produce numerical values corresponding to
the belief structures:

umax =
N�1X
n=1

�nu(Hn) + (�n + �H)u(Hn); (22)

umin = (�1 + �H)u(H1) +
NX
n=2

�nu(Hn); (23)

uave =
umax + umin

2
: (24)

The minimum, maximum, and average values of utility
scores are denoted by umax, umin, and uave, respec-
tively, and u(Hn) is a function showing utility score
of the the nth grade. For instance, if n = 6 and
all of the grades are equally ranged in [0; 1], then
u(Hn) = f0; 0:2; 0:4; 0:6; 0:8; 1g. According to Eqs. (7)
and (8), if there is no incomplete assessment (bH = 0),
all the three states of minimum, maximum, and average
values of utility scores are equal and can be calculated
by the following formulation:

umax = umin = uave =
NX
n=1

�n:u(Hn): (25)

3. Multi-objective home appliance scheduling
problem

The main model in this paper is derived from the multi-

objective demand-side scheduling problem, which was
presented by Du et al. [35], and smart-home appliance
scheduling problem, which was presented by Sou et
al. [37]. Du et al. [35] considered the objectives of
operational unsafety of appliances, electricity cost of
household, and operational delay of appliances. Peak
to Average Ratio (PAR) has a common formula and
CO2 emission is taken from Sou et al. Objective
functions and formulations of the model are presented
in the following:

3.1. Objective functions
3.1.1. Operational unsafety of appliances
The awake and at-home statuses of the users for
controlling the operations of the appliances are consid-
ered as operational unsafety of the appliances. This
objective function decreases the appliance operation
in out-of-home or sleeping condition of users and
Unsafety Time Rate (UTR) quanti�es this situation.
The minimization formulation for operational unsafety
(f1(x)) of appliances in a home with n time-adjustable
appliances has been presented by Du et al. [35] as
follows:

min
x
f1(x); (26)

f1(x) =
nX
a=1

�UTRa(Xa)
a ; (27)

UTRa(Xa) =

a � Sa(Xa)


a
; (28)

Sa(Xa) =
TX
t=1

Sa(Xa; t):M(t):N(t); (29)

Sa(Xa; t) =

(
1; t 2 [Xa; Xa + 
a � 1]
0; t 2 H[Xa; Xa + 
a � 1]

(30)

M(t) =

(
1; if users are at home
0; if users are away

(31)

N(t) =

(
1; if users are awake
0; if users are asleep

(32)
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Figure 2. Representation of the Unsafety Time Rate (UTR) concept.

H = f1; 2; :::; Tg; Xa 2 [�a; �a
a + 1]; (33)

X = fX1; X2; :::; Xa; :::; Xng; (34)

subject to:

Xa 2 [�a; �a � 
a + 1]; where a=f1; 2; :::; ng: (35)

Within these formulations, UTR of appliance a is
denoted by UTRa and Xa is the starting time slot
of the operation of the appliance. �a is the un-
safety parameter; with higher values of �a, the cost
of operational unsafety will be higher. The set
X = fX1; X2; :::; Xa; :::; Xng indicates the starting
time slots of appliances. Sa is the number of time
slots that users are awake and at home during the time
appliance a is in operation and it is determined by the
operation status of the appliance Sa (Xa; t) with the
information of at-home status M(t) and awake status
N(t) of the users in a day. The phrase t 2 H[Xa; Xa +

a�1] demonstrates that t pertains to H = f1; 2; :::; Tg
excluding the range within this formulation. UTR of
appliance a is denoted by UTRa and Xa is the starting
time slot of its operation. Also, �a is the unsafety
parameter. The higher the value of �a, the higher
the cost of operational unsafety will be. The set X =
fX1; X2; :::; Xa; :::; Xng indicates starting time slots of
the appliances. Sa represents the number of time slots
that users are awake and at home, while the appliance
a is in operation and determined using its operation
status Sa(Xa; t) with the information of the at-home
status M(t) and awake status N(t) of the users in a
day. The phrase t 2 Hn[Xa; Xa + 
a� 1] demonstrates
that t pertains to H = f1; 2; :::; Tg excluding the range
[Xa; Xa + 
a � 1] and T = 120 is the boundary of
scheduling, which intimates the number of time slots
forward that the schedule of energy consumption is
made for time-adjustable appliances. Xa 2 [�a; �a
a+
1], because the operation should start ahead of the
deadline with at least the length of the operation time.
After determining the start time slots of appliances,
the UTRs of appliances are calculated by Eqs. (28){
(33) and the operational unsafety is calculated by
UTR. UTR is the ratio of the unsafe operation time
slots (the time slots that users are asleep or away,
but the appliance is in operation) to the operation

length. Consider that various appliances may have
identical UTRs and �a is presented for distinguishing
the operational unsafety of appliances. Also, suppose
that both the UTR and �a jointly de�ne operational
unsafety of the appliance by �UTRaa . The concept of
UTR is depicted in Figure 2.

The at-home status M(t) and awake status N(t)
of the users are separately determined by users as
various users have various at-home statuses and awake
statuses. Based on the prede�ned at-home and awake
statuses of the users, the operational unsafety of appli-
ances is calculated by Eqs. (26){(35). The operational
unsafety of the same energy consumption schedule
di�ers under various statuses of users.

3.1.2. Electricity cost of household
Pa shows the power of appliance a. By considering
each one hour as �ve identical time slots with the
�xed energy consumption of Pa

5 during each time slot,
the energy consumption schedule of appliance a is
calculated by [35,36]:

Ea=

8><>:e
t
ajeta= Pa

5 ; t 2 [Xa; Xa + 
a � 1];
eta=0; t 2 H[Xa; Xa + 
a � 1]
H=f1; 2; :::; Tg; Xa 2 [�a; �a
a + 1] (36)

where eta denotes the energy consumption of appli-
ance a during time slot t. Pursuant to the energy
consumption of appliances and the day-ahead real-
time electricity price, the minimization formulation of
electricity cost is:

min
x
f2(x); (37)

f2(x) =
TX
t=1

prct:lt(x); (38)

lt(x) =
nX
a=1

eta; (39)

X = fX1; X2; :::; Xa; :::; Xng; (40)

subject to:

Xa 2 [�a; �a � 
a + 1]; where a=f1; 2; :::; ng; (41)
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where prct is the real-time electricity price at time slot
t and lt is total energy consumption of all the time-
adjustable appliances during time slot t, which can be
obtained after determining the start time slots of all
appliances X. Energy consumption of every appliance
is scheduled by Eq. (36).

3.1.3. Operational delay of appliances
Figure 3 illustrates that operational delay of an ap-
pliance is the delay time from �a, the earliest start
time of the operation. The longest delay occurs exactly
when the appliance reaches the deadline to complete
its operation, i.e., the appliance starts at the time slot
�a � 
a + 1. For a home including n time-adjustable
appliances [35,36], the formulation of operational delay
minimization is as follows:

min
x
f3(x); (42)

f3(x) =
nX
a=1

�DTRa(Xa)
a ; (43)

DTRa(Xa) =
xa � �a

�a � 
a + 1� �a ; (44)

X = fX1; X2; :::; Xa; :::; Xng; (45)

subject to:

Xa 2 [�a; �a � 
a + 1]; where a=f1; 2; :::; ng; (46)

where DTRa indicates the delay time rate of appliance
a. �a > 1 shows the delay parameter of appliance
a. The higher the value of �a, the higher the cost of
operational delay will be [36].

3.1.4. Peak to Average Ratio (PAR)
Supporting stability of the entire electricity network is
an important issue that can be achieved by minimizing
the PAR. PAR is the rate of maximum daily power

demand to average daily power demand. Minimization
formulation of PAR is presented as follows:

min
x
f4(x); (47)

f4(x) =
max
x
lt(x)PT

t=1 lt(x)
; (48)

lt(x) =
nX
a=1

eta; (49)

X = fX1; X2; :::; Xa; :::; xng; (50)

subject to:

Xa 2 [�a; �a � 
a + 1]; where a=f1; 2; :::; ng: (51)

3.1.5. CO2 emission
During day and night, various renewable and non-
renewable sources with di�erent CO2 footprints are
used for electricity generation, leading to a dynamic
CO2 emission footprint during hours of a day. By
shifting operation of the appliances to the hours of the
day with low CO2 emissions, the total CO2 emissions
of households will be reduced. The minimization
formulation for total CO2 emission is presented as
follows:

min
x
f5(x); (52)

f5(x) =
TX
t=1

lt(x):Ct; (53)

lt(x) =
nX
a=1

eta; (54)

X = fX1; X2; :::; Xa; :::; Xng; (55)

subject to:

Xa 2 [�a; �a � 
a + 1]; where a=f1; 2; :::; ng; (56)

where Ct is the carbon emission in time slot t.

Figure 3. Representation of the delay time rate concept.
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4. Implementation of the proposed system

4.1. Numerical example
To verify and show e�ectiveness of the proposed ap-
pliance scheduling system in order to unify the ER
approach and MOALO for solving SHEMS, a bench-
mark of smart home, �rst proposed by Zhao et al. [36],
is adopted and the interrelations among di�erent ob-
jectives are investigated. Du et al. [35] altered the
data to consider the safety of appliances. In this study,
eight common appliances were recognized and some of
them were used more than once during the day. The
corresponding parameters are illustrated in Table 1.

Du et al. [35] considered the at-home and awake
statuses of users, as shown in Figures 4 and 5. The
electricity price data [47] and CO2 footprint data [48]
are shown in Figures 6 and 7, respectively. Both the
unsafety (�a) and delay (�a) parameters are considered
to be 2. It is worth mentioning that the at-home status
and awake status of the users in Figures 4 and 5 are
demonstrated to show how statuses of the users are

Table 1. Parameters of appliances.

Appliance

Operation
Time

Interval
(OTI)

Length of
Operation

Time
(LOT)

Power
(kW)

Rice cooker1 1{40 2 0.5
Rice cooker2 56{65 2 0.5
Rice cooker3 71{90 2 0.5
Water heater 86{105 3 1.5
Dishwasher 101{120 2 0.6
Washing machine 1{60 5 0.38
Electric kettle1 1{40 1 1.5
Electric kettle2 81{90 1 1.5
Clothes dryer 71{90 5 0.8
Oven 71{90 3 1.9
Electric radiator1 56{65 5 1.8
Electric radiator2 81{110 20 1.8
�1, �2, and �3 indicate that appliance * is
used three times within various OTIs in a day.

Figure 4. At-home status of the users.

Figure 5. Awake status of the users.

Figure 6. Electricity price data.

Figure 7. CO2 footprint data.

considered in operational unsafety of the appliances.
The users individually de�ne the at-home status and
awake status.

Regarding the e�ect of parameter setting on the
performance of metaheuristic algorithms, the Taguchi
method [49] is hired. Before calibration of the applied
algorithms, some preliminary tests are run to �nd the
proper parameter levels. To achieve more accurate and
better sustained results for the proposed algorithm,
the population number and iteration parameters are
con�gured.

4.2. Parameter con�guration
Due to the e�ect of parameter con�guration on the
performance of metaheuristics, the Taguchi method
of Design-Of-Experiment (DOE) [49] is performed for
the con�guration of the MOALO parameters. The
MOALO contains two key parameters, namely the
maximum number of iterations (T ) and the num-
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ber of antlions (n). Before calibration of the used
algorithms, some preliminary tests are run to �nd
appropriate parameter levels and 5 levels are considered
for each of the two parameters. For each run, the
maximum number of iterations is set to MaxIt =
f1000; 2000; 3000; 4000; 5000g and the number of ants
is set to n = f100; 150; 200; 250; 300g. The performance
indicators of multi-objective algorithms di�er from
single-objective algorithms. In the single-objective
case, the optimal solution has the global optimum of
a particular objective function, whereas, in the multi-
objective case, there may not exist a unique solution
that is optimal in terms of all objective functions.
Hence, a di�erent method is required for comparing
the performance of each test of the algorithm. There-
fore, relative performance metrics are used (spread of
non-dominance solutions, diversi�cation matrix, mean
ideal distance, rate of achievement to two objectives
simultaneously, and quality metric) are employed to
analyse the results of test runs quantitatively. These
metrics are well-known and available in several books
and papers. Hence, they are not explained here for
brevity. For a thorough explanation of this method and
its enhanced version, the interested reader may refer to
Jolai et al. [50]. All test results are calculated using the
Taguchi method; the mean of S/N (Signal per Noise)
ratio is shown in Figure 8. Taguchi is a well-known
method of DOE and widely applied in many papers
and books. Again, for brevity, it is not repeated in here
and for a thorough explanation, the interested reader
may refer to [50]. As demonstrated in Figure 8, the
second level of iteration numbers and the fourth level

Figure 8. Diagram of the mean e�ect of the Signal per
Noise (S/N) ratio.

of population numbers have better performance. Thus,
in this case, the iteration number is set to 2000 and the
population number set to 250.

4.3. Pareto selection
Table A.1 (Appendix) presents the acquired Pareto
solutions to the benchmark instance of SHEMS. The
utility scores of the solutions for each objective are also
provided in the table. Figure 9 shows the plot for the
parallel coordinates of the Pareto solutions. The data
can be used in the prospective research studies. As it
can be seen in Figure 10, except for cost-unsafety and
CO2 emission-unsafety objective pairs, which have no
clear relationship, the relationships between all other
objective pairs are oppositional and a Pareto diagram
can be plotted for them.

4.4. Determining the weights
Shannon's entropy technique determined the weights
for all objectives (see Section 2.3.1). The PAR
objective possessed the highest value of normalized
weight by 41.65%, which for delay, unsafety, cost, and
CO2 emission was equal to 36.65%, 16.49%, 4.91%,
and 0.3%, respectively. Table 2 shows that the PAR
objective forces a higher impact on the associated
uncertainty in the acquired results and possesses a
higher weight. It is clear that these weights will change
daily by changing the day-ahead CO2 footprint and
day-ahead electricity price. This is the advantage of
this weighting method over the previously developed
methods.

4.5. Ranking solutions
The acquired Pareto solutions should now be ranked
based on their overall performance, indicating the
satisfactory degree of every alternative by taking into
account all the criteria simultaneously. In order
to assess the overall performance of each solution,
a hierarchical structure is required to associate un-
safety of the appliances, electricity cost, delay of
appliances, PAR, and CO2 emission attributes with
their related normalized weights as the indicator of
the overall performance, as given in Figure 11. The
belief structure of each attribute is determined as
demonstrated in Figure 12. The x-axis shows the
grades (`Worst,' `Poor,' `Moderate,' `Good,' and `Best')
and the corresponding values of the attributes. For
example, consider the 40th alternative. The delay of
18.9562 lies between `Worst' and `Poor' grades with the
values of 22.6271 and 20.0001, respectively. Therefore,

Table 2. Normalized weights of the objectives by Shannon's entropy.

Objectives Unsafety Cost Delay PAR CO2 emission

Normalized weights 0.1649 0.0491 0.3665 0.4165 0.0030
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Figure 9. Plot for the parallel coordinates of the Pareto solutions.

Table 3. Belief structures of the attributes of the 40th alternative.

Grades (%)
Worst Poor Moderate Good Best

Unsafety 0 0 0 35.84 64.16
Cost 0 0 0 46.50 53.50
Delay 60.26 39.74 0 0 0
PAR 100 0 0 0 0
CO2 emission 0 0 0 93.22 6.78

attribute of the 40th alternative belongs to the grade
of `Worst' with 60% belief and to the grade of `Poor'
with 40% belief. An identical procedure is adopted
for all other attributes. The acquired belief structures
for all attributes are presented in Table 3. Figure 13
shows the overall performance utility assessment of all
solutions. The solutions are sorted based on their
acquired overall performance utility scores. The �rst
solution is recommended to the users. In this case,
the 6th Pareto solution is selected as the best one
because it has the highest utility score (79.52%) among
all the Pareto solutions. That is, this appliance

scheduling alternative satis�es the overall performance
by concurrently regarding all objectives with the utility
score of 79.52%. However, the overall performance
might be insu�cient for the �nal decision on the best
solution schedule, because every schedule should be
reviewed in terms of its weakness and strength points
in considering utility score of every objective. As can
be observed, the 6th alternative has the best utility
score for the PAR objective, which is equal to 100%,
and other objectives of this alternative have good levels
of utility score. In fact, the ER provides the users
with an obvious perception of the performance of each
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Figure 10. Obtained Pareto optimal solutions shown for each pair of objectives.
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Figure 11. Hierarchical structure of objective weights.

alternative for each single criterion and enables them
to investigate schedules quickly.

4.6. Discussion
Among the Pareto solutions, the 6th, 40th, 99th, 137th,
181st, and 230th alternatives (Pareto solutions) were
chosen to show the procedure of the overall assessment.
Figure 14 illustrates the correspondent utility score of
every objective along with the overall performance of
every alternative. The 181st alternative possesses 21%
overall utility score, which is quite low to be selected,
and does not present satisfactory performance in terms
of the unsafety objective. By careful investigation into

the best solutions, the users are able to select the
most suitable scheduling alternative. ER expedites the
investigation into the overall performance of scheduling
alternatives by providing more pieces of information
about the performance of each scheduling alternative
concerning each objective. The presumptions of the
users about the performance of each alternative makes
them more con�dent to perform their preferred ap-
pliance schedule. Therefore, energy control becomes
more e�cient in the smart home. As remarked before,
the ER approach achieves informative data about the
weaknesses of each scheduling alternative at any desir-
able level. This study divides the overall performance
into �ve grades including `worst grade,' `poor grade,'
`moderate grade,' `good grade,' and `best grade,' which
are spaced equally within the range of [0,1]. These
grades can be utilized to show the combined degree of
belief �n (Figure 15). Accordingly, overall performance
of the 6th solution is believed to pertain to the `best'
grade by a degree equal to 79.52%. As well, the 6th
alternative has no belief degree on the `worst' grade,
while the 40th, 137th, and 181st alternatives have belief
degrees of the `worst' grade with the values of 46.05%,
18.10%, and 47.58%, respectively. Consequently, the
users decide to select the 6th alternative as the best
one. If the �rst alternative is not suitable, the

Figure 12. Transfer of each attribute to the belief structure.

Figure 13. Overall performance utility assessment of all solutions.
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Figure 14. The utility scores of the 6th, 40th, 99th, 137th, 181st, and 230th alternatives concerning each objective.

Figure 15. Combined belief degrees (�n) for the 6th, 40th, 99th, 137th, 181st, and 230th alternatives concerning the
overall performance.

users could start investigating other alternatives. In
this case, there is no incomplete assessment, so the
incompleteness assessment is considered to be zero,
�H = 0.

In general, ER is highly e�ective in determining
the performance of each alternative and it empowers
the users to make a practical and transparent decision
on the best scheduling alternative. Employing the ER
procedure in smart home appliance scheduling makes a
more e�cient electrical energy control system possible
and provides the users with higher con�dence in their
decisions, because they have a transparent knowledge
on the performance of each scheduling alternative. In
some cases, an inappropriate alternative from the point
of view of the users may have the highest value of
utility score. In such cases, the next alternative could
be investigated.

Concerning the goal of achieving a trade-o�,
a solution that reaches a balance among unsafety,
cost, delay, PAR, and CO2 emission is preferred.

In comparison to other solutions, the 6th solution
provides a suitable trade-o� among the objectives by
concurrently satisfying them to an acceptable degree.
The best schedule is obtained in this paper and the
relative objectives are shown in Figure 16. If the
user recognizes that the schedule cannot satisfy their
preference in terms of unsafety or delay of appliances,
they are able to change the relative �a or �a of the
appliance.

5. Concluding remarks and future works

In this research, for the �rst time, unsafety of the
appliances, electricity cost, delay of appliances, Peak
to Average Ratio (PAR), and CO2 emission were
considered as the objectives of a smart home appli-
ance scheduling model and jointly optimized. More-
over, a comprehensive Multi-Criteria Decision Mak-
ing (MCDM) framework for ranking the acquired
Pareto solutions was tailored and evaluated for making



A. Kaveh and Y. Vazirinia/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 177{201 193

Figure 16. The best solution acquired in this research.

a trade-o� between objectives. A Multi-Objective
Ant Lion Optimizer (MOALO) was designed to solve
Smart-Home Energy Management System (SHEMS)
and then, applied to a benchmark appliance scheduling
instance from the literature. After that, an Eviden-
tial Reasoning (ER) approach was adopted to rank
the optimal Pareto solutions employing the weights
acquired by Shannon's entropy. The proposed ER
approach helps users to identify the e�ciency of every
alternative in a panoramic view to all the attributes
and, consequently, to select one of the Pareto solutions
with higher assurance. A comprehensive framework
to integrate MCDM techniques into an Evolutionary
Multi-Objective Optimization (EMOO) was employed
to facilitate the process of making a trade-o� among
objectives. The proposed approach to employing the

MCDM technique made it possible to select the most
e�cient appliance schedule. The ER approach gives a
transparent and comprehensive sense of e�ciency of the
alternatives and the users can �nd the strengths and
weaknesses of each alternative. The implementation of
the developed SHEMS will need easy access to the data
of day-ahead electricity cost and CO2 emission.

In future works on the basis of this study, the
authors intend to provide a user-friendly API utilizing
social media and BIM to help automatize the pro-
cess of smart home appliance operation scheduling.
Considering the multi-user nature of smart homes,
integrating the developed system with game theory
concepts may be bene�cial. Testing several metaheuris-
tics for solving this problem will also be an interesting
topic.
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Appendix

Pareto solutions of the MOALO for smart
home benchmark

Table A.1. All the acquired Pareto solutions for the smart home appliance scheduling benchmark.

Objectives Utility scores in terms of

# Unsafety Cost Delay PAR CO2

emission
Overall

performance
Unsafety Cost Delay PAR CO2

emission
1 17.1417 63.4492 17.8280 5.7980 714.1940 52% 31% 73% 46% 61% 97%
2 14.6435 71.4542 12.3762 5.7980 746.8006 74% 66% 24% 98% 61% 11%
3 15.2293 71.4569 12.4987 5.7980 746.6918 72% 58% 24% 96% 61% 11%
4 13.6921 62.2955 21.7105 5.7980 714.9864 46% 80% 80% 9% 61% 95%
5 12.2550 60.2432 22.6271 6.8521 715.6594 32% 100% 93% 0% 35% 94%
6 15.3649 65.6434 15.6477 4.2167 728.5132 80% 56% 60% 66% 100% 59%
7 14.9617 64.3873 14.2542 5.7980 738.1254 69% 62% 68% 80% 61% 34%
8 15.2293 62.5355 14.1747 5.7980 733.7811 69% 58% 79% 80% 61% 46%
9 14.7989 64.2737 14.9529 5.2709 734.7895 73% 64% 68% 73% 74% 43%
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Table A.1. All the acquired Pareto solutions for the smart home appliance scheduling benchmark (continued).

Objectives Utility scores in terms of

# Unsafety Cost Delay PAR CO2

emission
Overall

performance
Unsafety Cost Delay PAR CO2

emission
10 14.8493 63.0491 14.5018 5.7980 725.4890 69% 64% 76% 77% 61% 68%
11 17.0116 63.9736 15.5519 4.7438 730.9634 72% 33% 70% 67% 87% 53%
12 15.2226 63.5840 15.6671 5.7980 719.6484 63% 58% 72% 66% 61% 83%
13 13.9364 71.4542 12.6965 5.7980 746.8006 74% 76% 24% 95% 61% 11%
14 15.3974 63.5847 15.0823 5.7980 720.0563 65% 56% 72% 72% 61% 82%
15 15.0665 63.4514 15.5510 5.2709 735.3550 71% 60% 73% 67% 74% 41%
16 15.2570 63.9868 15.4740 4.7438 726.9526 75% 58% 70% 68% 87% 64%
17 13.1506 71.4902 12.3977 5.7980 745.3243 77% 87% 24% 97% 61% 15%
18 15.3970 70.1594 12.5776 5.7980 745.2823 71% 56% 32% 96% 61% 15%
19 15.1382 61.8578 17.1284 5.7980 718.4045 57% 59% 83% 52% 61% 86%
20 13.1063 63.3554 21.3051 5.7980 716.9784 48% 88% 74% 13% 61% 90%
21 16.9856 63.7382 13.7257 5.7980 731.6613 67% 33% 71% 85% 61% 51%
22 13.0207 59.9607 22.0699 7.3792 721.0676 26% 89% 94% 5% 22% 79%
23 15.7953 65.1334 13.6117 5.7980 732.1948 68% 50% 63% 86% 61% 50%
24 14.7750 62.6034 16.7423 5.7980 723.3095 60% 65% 78% 56% 61% 73%
25 15.3871 63.1638 15.5615 5.7980 727.7293 63% 56% 75% 67% 61% 62%
26 13.2207 62.2586 20.9829 5.7980 719.8696 49% 86% 80% 16% 61% 82%
27 14.3759 62.9120 15.2081 5.7980 731.2745 67% 70% 76% 71% 61% 52%
28 15.7184 62.3380 16.4147 5.7980 718.0575 59% 51% 80% 59% 61% 87%
29 17.7241 62.9968 17.0731 5.7980 718.7073 54% 23% 76% 53% 61% 85%
30 15.3974 63.0814 14.9029 5.7980 724.7709 66% 56% 75% 74% 61% 69%
31 14.9617 62.0403 15.4956 5.7980 725.2368 65% 62% 82% 68% 61% 68%
32 14.8214 62.9751 18.0663 5.7980 717.8952 55% 64% 76% 43% 61% 88%
33 16.5320 63.5697 17.0100 5.7980 717.1116 55% 40% 72% 53% 61% 90%
34 13.2907 63.6540 17.6197 5.7980 716.8579 59% 85% 72% 48% 61% 90%
35 13.3738 63.7130 17.5972 6.8521 716.8148 47% 84% 72% 48% 35% 90%
36 13.2768 64.1006 17.0175 5.7980 719.1450 61% 86% 69% 53% 61% 84%
37 13.5136 61.6662 17.8799 7.3792 725.0781 40% 82% 84% 45% 22% 69%
38 13.5136 61.5659 18.3079 5.7980 723.5365 57% 82% 85% 41% 61% 73%
39 14.3358 61.0696 18.9242 6.8521 722.5242 41% 71% 88% 35% 35% 75%
40 12.8923 60.9583 18.9562 8.2577 722.0227 28% 91% 88% 35% 0% 77%
41 14.5812 60.7093 18.2616 7.3792 726.5390 37% 67% 90% 42% 22% 65%
42 14.2213 60.4876 18.6142 5.7980 726.1011 55% 72% 91% 38% 61% 66%
43 14.6813 61.8451 18.0378 5.7980 723.8403 56% 66% 83% 44% 61% 72%
44 14.2213 61.5587 18.8636 5.7980 720.6617 54% 72% 85% 36% 61% 80%
45 14.2213 61.4180 18.8964 5.7980 721.1667 54% 72% 86% 36% 61% 79%
46 13.4135 61.6166 18.5765 5.7980 721.4916 56% 84% 84% 39% 61% 78%
47 13.9742 61.8152 18.2966 5.7980 721.8166 57% 76% 83% 41% 61% 77%
48 15.3923 60.5147 18.7253 5.7980 722.8884 52% 56% 91% 37% 61% 74%
49 14.6363 59.5679 19.8617 5.7980 721.1451 51% 67% 97% 26% 61% 79%
50 14.7812 60.6823 18.2502 7.3792 723.3192 37% 64% 90% 42% 22% 73%
51 14.5136 59.4906 18.7327 7.3792 723.3209 35% 68% 97% 37% 22% 73%
52 14.3136 59.5317 18.9923 5.7980 722.9183 54% 71% 97% 35% 61% 74%
53 14.1336 59.0726 21.1977 7.3792 721.3806 27% 74% 100% 14% 22% 78%
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Table A.1. All the acquired Pareto solutions for the smart home appliance scheduling benchmark (continued).

Objectives Utility scores in terms of

# Unsafety Cost Delay PAR CO2

emission
Overall

performance
Unsafety Cost Delay PAR CO2

emission
54 13.8252 60.0048 21.9048 7.3792 720.9801 25% 78% 94% 7% 22% 79%
55 13.7279 60.0275 21.9785 7.3792 723.1382 25% 79% 94% 6% 22% 74%
56 14.1336 59.5729 19.3477 8.2577 721.0120 25% 74% 97% 31% 0% 79%
57 14.0505 59.1530 19.6956 5.7980 722.2769 52% 75% 99% 28% 61% 76%
58 14.3136 59.1240 20.4415 8.2577 722.8441 19% 71% 100% 21% 0% 75%
59 13.9279 59.9384 20.6726 7.3792 723.9357 29% 76% 95% 19% 22% 72%
60 13.9279 59.3325 21.1022 5.7980 723.8097 48% 76% 98% 15% 61% 72%
61 14.3136 59.9450 20.5745 7.3792 716.8616 29% 71% 95% 20% 22% 90%
62 14.4110 59.4418 20.1251 7.3792 720.8947 30% 70% 98% 24% 22% 80%
63 14.6161 62.2988 19.3456 5.7980 719.4611 52% 67% 80% 31% 61% 83%
64 14.4282 62.4868 19.9747 5.7980 719.6376 50% 69% 79% 25% 61% 83%
65 15.2777 61.3393 19.0967 5.9736 720.3384 49% 58% 86% 34% 57% 81%
66 14.2213 59.3630 20.5508 8.2577 720.8116 19% 72% 98% 20% 0% 80%
67 14.1336 60.1509 20.4066 5.7980 721.2573 50% 74% 93% 21% 61% 79%
68 14.1336 59.5069 21.5452 7.3792 718.4550 26% 74% 97% 10% 22% 86%
69 14.1336 59.6788 21.5244 7.3792 719.0413 26% 74% 96% 10% 22% 85%
70 12.8408 59.7234 22.2827 6.8521 719.2443 33% 92% 96% 3% 35% 84%
71 13.9645 62.4396 19.5292 5.7980 719.9357 53% 76% 79% 29% 61% 82%
72 13.0207 59.4680 21.9931 8.2577 718.3342 14% 89% 97% 6% 0% 86%
73 16.6578 61.4601 17.5023 5.9736 730.0047 52% 38% 85% 49% 57% 56%
74 16.2847 66.7463 14.7403 5.7980 737.1302 64% 43% 53% 75% 61% 37%
75 16.2847 66.5647 14.8513 5.7980 737.7221 64% 43% 54% 74% 61% 35%
76 15.1550 62.6959 16.4547 5.7980 733.6621 60% 59% 78% 59% 61% 46%
77 15.7036 62.8599 15.9773 5.7980 733.3305 61% 52% 77% 63% 61% 47%
78 15.2151 62.2222 16.2553 5.7980 733.4252 61% 58% 81% 61% 61% 46%
79 16.5080 62.3312 16.2180 5.7980 733.2398 59% 40% 80% 61% 61% 47%
80 15.5877 60.5352 16.8389 5.7980 730.8753 58% 53% 91% 55% 61% 53%
81 13.5136 62.7928 17.2595 8.2577 733.0318 33% 82% 77% 51% 0% 48%
82 17.5776 65.9606 15.2584 5.7980 734.6493 61% 25% 58% 70% 61% 43%
83 17.5776 67.5448 14.8774 5.7980 737.0504 62% 25% 48% 74% 61% 37%
84 13.5136 63.1664 17.0801 8.2577 735.6544 33% 82% 75% 53% 0% 41%
85 13.2207 61.1238 18.0882 5.7980 726.9711 58% 86% 87% 43% 61% 64%
86 13.2207 61.7535 17.2806 5.7980 735.2347 60% 86% 84% 51% 61% 42%
87 13.6764 60.4028 17.1293 5.7980 733.9633 61% 80% 92% 52% 61% 45%
88 14.0505 60.3698 19.3792 7.3792 726.0636 33% 75% 92% 31% 22% 66%
89 14.0505 60.5958 19.3735 5.7980 726.1201 53% 75% 91% 31% 61% 66%
90 14.2254 61.9653 16.6060 5.7980 737.1763 62% 72% 82% 57% 61% 37%
91 13.4883 62.5930 17.3593 5.7980 733.5048 59% 83% 78% 50% 61% 46%
92 19.3677 65.7170 14.9940 5.7980 734.3737 59% 0% 59% 73% 61% 44%
93 13.2207 61.8930 18.0217 8.2577 728.4742 31% 86% 83% 44% 0% 60%
94 13.6484 61.1524 17.1547 5.7980 735.3783 60% 80% 87% 52% 61% 41%
95 14.5441 60.3545 16.8152 5.7980 732.2314 60% 68% 92% 55% 61% 50%
96 14.5136 59.1926 19.4110 5.7980 725.2773 52% 68% 99% 31% 61% 68%
97 13.3555 60.0092 18.1028 5.7980 727.4578 58% 85% 94% 43% 61% 62%
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Table A.1. All the acquired Pareto solutions for the smart home appliance scheduling benchmark (continued).

Objectives Utility scores in terms of

# Unsafety Cost Delay PAR CO2

emission
Overall

performance
Unsafety Cost Delay PAR CO2

emission
98 15.0524 60.6945 18.7427 5.7980 724.4386 53% 61% 90% 37% 61% 70%
99 13.2207 59.8390 18.1093 5.7980 729.2846 58% 86% 95% 43% 61% 57%
100 14.5136 59.0930 19.1686 5.7980 727.6424 53% 68% 100% 33% 61% 62%
101 13.2207 60.3757 17.9799 7.3792 729.4188 40% 86% 92% 44% 22% 57%
102 13.2207 59.7321 18.1703 5.7980 730.2261 58% 86% 96% 42% 61% 55%
103 14.5136 59.7548 18.4267 5.7980 728.5667 55% 68% 96% 40% 61% 59%
104 14.5441 60.3401 16.6917 5.7980 732.3622 61% 68% 92% 56% 61% 49%
105 14.5441 61.4770 16.6261 5.7980 734.8168 61% 68% 85% 57% 61% 43%
106 13.6484 60.2172 17.2796 5.7980 732.2641 60% 80% 93% 51% 61% 50%
107 14.5136 59.1566 19.3477 5.7980 726.1765 53% 68% 99% 31% 61% 66%
108 14.8065 60.0030 17.8386 5.7980 731.3030 56% 64% 94% 46% 61% 52%
109 14.5136 59.4036 18.4209 7.3792 728.1273 36% 68% 98% 40% 22% 61%
110 14.5136 59.2375 18.6406 5.7980 730.6881 55% 68% 99% 38% 61% 54%
111 15.5183 59.5558 17.6075 5.7980 731.4037 55% 54% 97% 48% 61% 52%
112 13.6484 60.0652 17.6483 5.7980 730.7418 59% 80% 94% 47% 61% 54%
113 14.9413 60.0796 17.8576 5.7980 729.7118 56% 62% 94% 45% 61% 56%
114 13.3555 59.9869 18.0087 5.7980 728.2227 58% 85% 94% 44% 61% 60%
115 14.5136 59.7321 18.0644 5.7980 730.9709 56% 68% 96% 43% 61% 53%
116 15.2293 61.1173 16.4521 5.7980 735.3054 60% 58% 87% 59% 61% 41%
117 13.5136 60.3321 17.9319 7.3792 729.5955 40% 82% 92% 45% 22% 57%
118 13.5136 60.4125 17.6816 7.3792 731.5180 41% 82% 92% 47% 22% 52%
119 16.5222 59.8713 16.8378 5.7980 732.8086 56% 40% 95% 55% 61% 48%
120 15.2293 60.1073 16.5709 5.7980 732.9533 60% 58% 94% 58% 61% 48%
121 15.2293 59.9566 16.7661 5.7980 733.3702 59% 58% 94% 56% 61% 47%
122 13.6484 61.6413 17.2025 5.7980 734.9969 60% 80% 84% 52% 61% 42%
123 13.6484 61.1046 17.2761 5.7980 734.8627 60% 80% 87% 51% 61% 43%
124 14.5136 59.5796 18.6534 5.7980 726.5798 55% 68% 97% 38% 61% 65%
125 14.9996 62.7050 15.8599 5.7980 735.0816 63% 61% 78% 64% 61% 42%
126 14.5692 63.0770 16.0686 5.7980 735.2087 63% 67% 75% 62% 61% 42%
127 14.7320 62.7145 15.9001 5.7980 734.6931 63% 65% 78% 64% 61% 43%
128 14.5136 59.0483 18.9812 5.7980 728.9206 54% 68% 100% 35% 61% 58%
129 17.8452 70.2607 13.2550 5.7980 742.9204 66% 21% 32% 89% 61% 21%
130 17.5270 70.3729 13.3445 5.7980 743.2157 66% 26% 31% 88% 61% 21%
131 14.6562 74.2133 12.1999 5.7980 748.8843 74% 66% 8% 99% 61% 6%
132 14.3653 75.2809 12.1832 5.7980 750.9595 74% 70% 1% 99% 61% 0%
133 14.4361 75.4792 12.1973 5.7980 750.6642 74% 69% 0% 99% 61% 1%
134 14.5854 74.0150 12.1653 5.7980 749.1795 74% 67% 9% 100% 61% 5%
135 14.6562 74.2133 12.1191 5.7980 748.8843 74% 66% 8% 100% 61% 6%
136 14.2205 74.0222 12.2218 5.7980 748.8843 75% 72% 9% 99% 61% 6%
137 13.6355 60.6206 20.9640 7.3792 716.0881 29% 81% 90% 16% 22% 92%
138 15.4883 60.1020 18.7093 5.7980 726.3938 52% 55% 94% 37% 61% 65%
139 15.0741 60.5304 18.9947 5.7980 725.3321 52% 60% 91% 35% 61% 68%
140 14.4889 59.9507 20.5186 5.7980 716.6109 49% 69% 95% 20% 61% 91%
141 15.1923 60.1108 20.2116 5.7980 717.4020 48% 59% 94% 23% 61% 89%
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Table A.1. All the acquired Pareto solutions for the smart home appliance scheduling benchmark (continued).

Objectives Utility scores in terms of

# Unsafety Cost Delay PAR CO2

emission
Overall

performance
Unsafety Cost Delay PAR CO2

emission
142 14.7817 60.0392 20.3422 5.7980 716.7063 49% 64% 94% 22% 61% 91%
143 15.7413 61.8527 19.7089 5.7980 718.7407 48% 51% 83% 28% 61% 85%
144 15.3270 61.0949 19.1113 5.7980 721.7035 51% 57% 88% 33% 61% 78%
145 15.1062 60.7093 18.9790 5.7980 721.7106 52% 60% 90% 35% 61% 78%
146 14.3136 61.9817 20.1714 7.3792 715.7793 30% 71% 82% 23% 22% 93%
147 14.1336 60.2739 20.8586 7.3792 716.2160 28% 74% 93% 17% 22% 92%
148 14.3136 60.2350 20.6913 7.3792 716.0953 29% 71% 93% 18% 22% 92%
149 13.8408 60.3456 20.2310 5.7980 722.9539 51% 78% 92% 23% 61% 74%
150 14.0252 60.1744 19.7064 7.3792 722.6284 32% 75% 93% 28% 22% 75%
151 14.5142 60.7141 19.7164 5.7980 719.6693 51% 68% 90% 28% 61% 83%
152 14.8741 60.3285 19.2865 5.7980 719.6764 52% 63% 92% 32% 61% 83%
153 14.7817 60.5681 19.2197 5.7980 719.5987 52% 64% 91% 32% 61% 83%
154 15.6065 60.8887 19.5327 5.7980 718.0555 49% 53% 89% 29% 61% 87%
155 14.3555 61.2191 20.4670 5.7980 717.1479 49% 70% 87% 21% 61% 90%
156 14.2207 60.9932 20.5122 5.7980 717.0914 49% 72% 88% 20% 61% 90%
157 14.2207 60.8284 20.9273 5.7980 717.0842 48% 72% 89% 16% 61% 90%
158 15.6065 60.5588 18.6509 8.2577 725.2547 25% 53% 91% 38% 0% 68%
159 15.2207 59.8368 20.8187 8.2577 719.4964 16% 58% 95% 17% 0% 83%
160 15.2207 59.8044 20.7963 8.2577 719.5635 16% 58% 95% 17% 0% 83%
161 15.0207 59.2639 19.2798 8.2577 725.6042 23% 61% 99% 32% 0% 67%
162 15.6065 59.4557 19.2238 7.3792 726.0846 32% 53% 98% 32% 22% 66%
163 15.0207 59.2967 19.5771 7.3792 725.1592 31% 61% 98% 29% 22% 68%
164 13.2207 61.0038 20.6531 7.3792 716.7770 30% 86% 88% 19% 22% 91%
165 13.3555 61.1973 20.4932 5.9736 716.9006 48% 85% 87% 20% 57% 90%
166 14.7812 62.0419 19.4133 7.3792 719.2174 32% 64% 82% 31% 22% 84%
167 14.5136 61.3297 19.8860 5.7980 718.7829 51% 68% 86% 26% 61% 85%
168 14.7812 61.2792 19.7701 5.7980 719.0266 50% 64% 86% 27% 61% 85%
169 14.0505 60.9606 18.6518 7.3792 725.8881 36% 75% 88% 38% 22% 66%
170 14.4265 60.9960 18.4767 7.3792 726.8657 36% 69% 88% 39% 22% 64%
171 14.7812 61.8483 19.5491 7.3792 719.0938 31% 64% 83% 29% 22% 84%
172 14.7812 61.8159 19.4957 7.3792 719.1609 31% 64% 83% 30% 22% 84%
173 14.5136 61.8159 19.6197 8.2577 719.1609 23% 68% 83% 29% 0% 84%
174 13.1181 62.4439 20.3365 7.3792 717.2122 31% 88% 79% 22% 22% 89%
175 14.5136 62.4492 19.8929 8.2577 717.2666 22% 68% 79% 26% 0% 89%
176 14.5136 61.9126 19.9932 8.2577 717.1323 21% 68% 83% 25% 0% 90%
177 14.5136 60.4055 20.3002 7.3792 718.6664 29% 68% 92% 22% 22% 86%
178 12.9284 61.5858 20.5625 8.2577 716.8914 21% 91% 85% 20% 0% 90%
179 13.1181 62.0484 20.2701 8.2577 717.1133 22% 88% 82% 22% 0% 90%
180 14.9413 61.2790 18.0720 5.7980 727.6208 55% 62% 86% 43% 61% 62%
181 14.5136 61.3615 20.0766 8.2577 718.1755 21% 68% 86% 24% 0% 87%
182 14.5457 60.5910 18.5135 5.7980 726.0632 55% 68% 91% 39% 61% 66%
183 14.9413 61.3064 18.1093 5.7980 727.3524 55% 62% 86% 43% 61% 63%
184 14.5457 60.5910 18.4202 5.7980 726.0632 55% 68% 91% 40% 61% 66%
185 13.4821 62.2730 21.0476 6.8521 716.3638 34% 83% 80% 15% 35% 92%
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Table A.1. All the acquired Pareto solutions for the smart home appliance scheduling benchmark (continued).

Objectives Utility scores in terms of

# Unsafety Cost Delay PAR CO2

emission
Overall

performance
Unsafety Cost Delay PAR CO2

emission
186 13.4821 62.4377 20.4962 5.7980 716.3709 50% 83% 79% 20% 61% 92%
187 14.5136 61.7713 20.0256 7.3792 717.0970 30% 68% 83% 25% 22% 90%
188 14.8065 62.6212 19.5930 8.2577 718.8785 22% 64% 78% 29% 0% 85%
189 14.5136 61.8182 20.3324 7.3792 718.6522 29% 68% 83% 22% 22% 86%
190 14.8065 61.9225 19.7583 8.2577 719.0797 22% 64% 83% 27% 0% 84%
191 14.5136 62.0538 19.8999 8.2577 718.4546 22% 68% 82% 26% 0% 86%
192 14.5136 60.7659 19.5954 7.3792 722.7390 32% 68% 90% 29% 22% 75%
193 15.0631 61.1721 18.0313 5.7980 727.3383 55% 61% 87% 44% 61% 63%
194 15.2136 61.3981 17.9809 5.7980 727.3948 55% 58% 86% 44% 61% 62%
195 12.9284 62.5168 20.0203 7.3792 718.1382 32% 91% 79% 25% 22% 87%
196 12.8408 62.5973 20.3016 7.3792 717.0914 32% 92% 78% 22% 22% 90%
197 14.6786 61.2371 20.6427 7.3792 715.4032 28% 66% 87% 19% 22% 94%
198 14.3604 61.2371 20.6775 7.3792 715.4032 28% 70% 87% 19% 22% 94%
199 12.7025 61.0248 20.9104 7.3792 715.2125 30% 94% 88% 16% 22% 95%
200 14.5812 61.2508 20.6619 7.3792 715.2690 28% 67% 87% 19% 22% 95%
201 13.9954 60.7175 20.9286 5.7980 715.6962 48% 76% 90% 16% 61% 93%
202 16.9143 63.8164 16.4717 5.7980 720.0298 57% 34% 71% 59% 61% 82%
203 17.0170 63.7985 16.2233 5.7980 720.5454 58% 33% 71% 61% 61% 81%
204 17.0170 63.0336 16.2494 5.7980 722.6644 58% 33% 76% 61% 61% 75%
205 17.0170 63.3123 16.1666 5.7980 723.1146 58% 33% 74% 61% 61% 74%
206 16.6350 62.9733 19.6836 5.7980 716.7419 46% 38% 76% 28% 61% 91%
207 16.4350 63.0007 19.6884 5.7980 716.4735 47% 41% 76% 28% 61% 91%
208 17.4317 63.5465 17.3139 5.7980 718.2905 53% 27% 73% 51% 61% 87%
209 17.1099 63.4934 17.5999 5.7980 715.8325 52% 32% 73% 48% 61% 93%
210 16.6988 62.7554 16.0713 5.7980 727.2426 59% 38% 77% 62% 61% 63%
211 16.6988 63.0341 15.9150 5.7980 727.6929 60% 38% 76% 64% 61% 62%
212 17.3099 63.6615 17.3631 5.7980 715.9986 53% 29% 72% 50% 61% 93%
213 17.5241 63.5670 17.4538 5.7980 718.0009 52% 26% 72% 49% 61% 87%
214 17.0170 63.4589 17.3143 5.7980 716.7173 53% 33% 73% 51% 61% 91%
215 16.8488 63.5465 17.0416 5.7980 717.1675 55% 35% 73% 53% 61% 90%
216 16.8488 63.6916 16.9903 5.7980 716.8232 55% 35% 72% 54% 61% 90%
217 16.4509 62.7894 19.5575 5.7980 717.7272 47% 41% 77% 29% 61% 88%
218 16.0367 62.8235 19.6282 5.7980 717.3033 48% 47% 77% 29% 61% 89%
219 16.8037 63.8872 19.5354 5.7980 715.4207 46% 36% 71% 29% 61% 94%
220 16.6406 62.7620 19.4548 5.7980 717.9956 47% 38% 77% 30% 61% 87%
221 16.7872 63.0548 19.4907 5.7980 715.9776 46% 36% 76% 30% 61% 93%
222 16.3290 63.0908 19.5748 5.7980 716.1252 47% 43% 75% 29% 61% 92%
223 16.0108 63.0908 19.6325 5.7980 716.1252 48% 47% 75% 28% 61% 92%
224 15.9026 63.2819 19.7192 5.7980 716.1252 48% 49% 74% 28% 61% 92%
225 15.0473 63.4531 20.0844 5.7980 715.1278 48% 61% 73% 24% 61% 95%
226 16.7246 63.4485 16.0845 5.7980 724.5290 59% 37% 73% 62% 61% 70%
227 16.0170 62.8571 17.4775 5.7980 716.9415 54% 47% 77% 49% 61% 90%
228 16.1168 63.4053 19.8602 5.7980 715.6859 47% 46% 73% 26% 61% 93%
229 15.6102 63.4531 19.9504 5.7980 715.1278 48% 53% 73% 25% 61% 95%
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Table A.1. All the acquired Pareto solutions for the smart home appliance scheduling benchmark (continued).

Objectives Utility scores in terms of

# Unsafety Cost Delay PAR CO2

emission
Overall

performance
Unsafety Cost Delay PAR CO2

emission
230 15.4350 63.4394 19.9664 5.7980 715.2620 48% 55% 73% 25% 61% 95%
231 16.8488 63.3073 16.2750 5.7980 726.9442 58% 35% 74% 60% 61% 64%
232 15.5108 63.8872 19.6028 5.7980 715.4207 49% 54% 71% 29% 61% 94%
233 16.8170 62.4509 17.0874 5.7980 717.8897 55% 36% 79% 53% 61% 88%
234 16.8170 62.8481 17.0022 5.7980 717.4218 55% 36% 77% 54% 61% 89%
235 16.8170 62.5599 16.9742 5.7980 717.7043 55% 36% 79% 54% 61% 88%
236 17.1135 63.7973 18.2044 5.7980 713.2298 50% 32% 71% 42% 61% 100%
237 17.5241 63.7836 18.0555 5.7980 713.3640 50% 26% 71% 44% 61% 100%
238 17.2059 63.7836 18.1527 5.7980 713.3640 50% 30% 71% 43% 61% 100%
239 16.7246 63.4580 16.0320 5.7980 724.7762 59% 37% 73% 63% 61% 69%
240 17.6215 63.5533 17.4930 5.7980 718.1351 52% 25% 73% 49% 61% 87%
241 17.7241 63.6313 17.4408 5.7980 716.1046 52% 23% 72% 49% 61% 92%
242 17.3099 63.2076 17.4845 5.7980 715.9986 53% 29% 75% 49% 61% 93%
243 15.7184 62.8775 19.9174 5.7980 716.7736 48% 51% 77% 26% 61% 91%
244 17.2072 63.6505 17.9371 5.7980 713.4983 51% 30% 72% 45% 61% 99%
245 16.8255 63.7301 18.4221 5.7980 717.6390 50% 36% 72% 40% 61% 88%
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