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Abstract. Nanouids and the enhancement of heat transfer in real systems have proved
to be a widely researched area of nanotechnology; other areas of particular interest to
researchers include the improvement of thermal conductivity, thermophoresis phenomenon,
dispersion of nanoparticles volume fraction, and few others. Based on the touch of
nanotechnology, this study investigates the analytic and mathematical performance of
micropolar nanouid in the enhancement of heat transfer. The base uid is taken for
the purpose of thermal conductivity subject to two types of nanoparticles: copper and
silver. The mathematical analysis of the micropolar nanouid was carried out by invoking
the non-integer order derivative and transform methods. By applying a mathematical tool
to the equations of micropolar nanouid, the solutions were explored for temperature,
microrotation, and velocity. In order to meet the physical aspects of the problem based
on micropolar nanouid, the comparison of velocity �eld of micropolar nanouid for the
suspension of ethylene glycol into silver and that of ethylene glycol into copper is made to
enhance the rate of heat transfer.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Nanoparticles are small quantities of nanometer-sized
particles that are composed of metals, e.g., copper
oxide, alumina, carbides, titania, gold, copper, and
several others. These nanoparticles have the capabil-
ity to enhance the thermophysical properties of base
uids including ethylene glycol, biouids, oil, water,
lubricants, polymer solutions, and many others. Next,
kerosene, engine oil, water, and ethylene glycol are
insu�cient for heat transfer due to their low thermal
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conductivity. In order to enhance the convective heat
transfer performance of such uids, various techniques
have been implemented such as boundary conditions
and changing ow geometries. There is no doubt that
uids have lower thermal conductivity than metals.
The thermal conductivity of base uids can be en-
hanced by adding metals and, consequentially, such
uids are characterized as nanouids [1]. Moreover,
the fundamental concepts of micropolar uid originated
from Eringen's study [2] to characterize the dynamics
of such uids by considering the microscopic impacts
rising from micro-motion and local structure of the
uids. A broad assessment of the micropolar uid with
its engineering applications was conducted by Ariman
et al. [3,4]. Hassanien and Gorla [5] explored the e�ects
of nonisothermal stretching sheet on micropolar with
heat transfer, blowing, and suction. Mohammadein
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and Gorla [6] analyzed internal heat generation and
dissipation with heat transfer in micropolar. Hussanan
et al. [7] obtained a closed-form solution for Newtonian
heating in micropolar uid to the problem of free con-
vection ow. Choi [8] studied the application of non-
Newtonian uid ow with nanoparticles to enhance
the thermal conductivity of uid. Congedo et al. [9]
carried out the analysis and modeling of nanouids
with natural convection heat transfer. Ghasemi and
Aminossadati [10] traced the impacts of water-CuO
nanouid along with natural convection heat transfer.
Hussanan et al. [11] examined the e�ect of some
nanouids on accelerated plate with magnetic �eld and
a porous medium. The water functionalized carbon
nanotube ow was analyzed over a moving/static
wedge in the magnetic �eld by Khan et al. [12].
Haq et al. [13] explored the e�ects of magnetic �eld
with water functionalized metallic nanoparticles for
squeezed ow over a sensor surface. In short, this
study includes few latest references on nanouids [14-
16], modern fractional derivatives [17-22], heat trans-
fer [23-27], nanoparticles [28-31], porosity and magnetic
�eld [32-37], and few di�erent circumstances [38-43].
Motivated by the above research work on nanouids,
the purpose of this study is to investigate the analytic
and mathematical performance of micropolar nanouid
to enhance heat transfer. The base uid is taken for
the purpose of thermal conductivity subject to two
types of nanoparticles, namely copper and silver, as
shown in Figure 1(a)-(c). The mathematical analysis
of the micropolar nanouid has been carried out by
invoking the non-integer order derivative and transform
methods. By applying a mathematical tool to the
equations of micropolar nanouid, the solutions have
been explored in terms of temperature, microrotation,
and velocity. In order to meet the physical aspects
of the problem based on micropolar nanouid, the
comparison of velocity �eld of micropolar nanouid for
the suspension of ethylene glycol into silver and that
of ethylene glycol into copper is made to enhance the
rate of heat transfer.

2. Mathematical equations of nanouid

An unsteady ow of ethylene glycol based on mi-
cropolar nanouid occupies the space lying over an
oscillating plate perpendicular to the y-axis and is
situated on the (x; z) plane. Initially, due to the
constant temperature of Tw, the uid is considered at
rest. At t = 0+, the plate starts to oscillate with the
velocity UH(t) cos!t or U sin!t on its plane and the
level of temperature increases up to Tw. The governing
equations for the micropolar uid are as follows:

r:(�nfV) =
@�nf
@t

; (1)

r:p+r� (r�V)(K1 + �nf )

�r(r:V)(K1 + 2�nf ) = �nfb� �nf dVdt
+K1(r�N); (2)

2K1N + nfr� (r�N)�r(r:N)(nf + �+ �)

= �nfI� �nf j dNdt +K1(r�V); (3)

where �nf , V, p, K1, �nf , b, N, I, �, �, j, and nf are
the nanouid density, velocity �eld, pressure, vortex
viscosity, nanouid dynamic viscosity, body force vec-
tor, microrotation vectors (gyration), body couple per
unit mass vector, spin gradient viscosity coe�cients,
micro-inertia density, and spin gradient viscosity, re-
spectively. Under constant viscosity, Eqs. (1)-(3)
can be converted in terms of Navier-Stokes equations
for micropolar uid. Brinkman [44] expressed the
relationship between base uid and dynamic viscosity
of the nanouid written below:

�f = �nf (1� ')2:5: (4)

Aminossadati and Ghasemi [45] and Matin et al. [46]
described the viscosity of nanouid in terms of the

Figure 1. (a) Ethylene glycol. (b) Copper metal powder. (c) Silver metal powder.
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following:

'�s + �f (1� ') = �nf : (5)

The expression of nf is established according to a
published study by Bourantas and Loukopoulos [47]:

j
�
K1

2
+ �nf

�
= nf : (6)

The continuity equation for incompressible ow is as
follows:

r:V = 0: (7)

By using the vector identity and neglecting body couple
force, Eqs. (2) and (3) for free convection ow are
expressed as follows:

r:p�r(r:V)�nf �r2:V(K1 + �nf )

=�nfg � �nf dVdt +K1(r�N); (8)

2K1N� nfr2N�r(r:N)(�+ �)

=K1(r�V)� �nf j dNdt : (9)

The simpli�cation of Eqs. (8) and (9) takes place by
using mass conservation as follows:

r:p�r2:V(K1 + �nf )� �nfg = K1(r�N)

� �nf dVdt ; (10)

2K1N� nfr2N�r(r:N)(�+ �) = K1(r�V)

� �nf j dNdt : (11)

In order to apply the statement of material derivative,
Eqs. (10) and (11) are expressed equivalently as follows:

r:p�r2:V(K1 + �nf )� �nf g = K1(r�N)

� �nf
�

V(r:V) +
dV
dt

�
; (12)

2K1N� nfr2N�r(r:N)(�+ �)=K1(r�V)

��nf j
�

N(r:N) +
dN
dt

�
:

(13)

For the problem considering Cartesian coordinates (x,
y, z), the velocity, microrotation, and gravitational
�elds are, respectively, assumed as follows:

V(w(y; t); 0; 0); N(0; 0; N(y; t)); and g(g; 0; 0):
(14)

Simplifying Eqs. (12)-(14) gives:

@p
@x

= �nf
@w
@x

+K1
@N
@x

+�nfg+(K1 + �nf )
@2w
@y2 ;

(15)

2K1N = K1
@w
@y
� �nf j @N@x + nf j

@N
@x

: (16)

Implementing Boussinesq approximation on Eq. (15)
and assuming K1 = 0 in Eq. (16), we �nd that:

(T � T1)g(�T �)nf + (K1 + �nf )
@2w
@y2 ;+K1

@N
@x

� �nf @w@x = 0; (17)

nf j
@2N
@y2 � �nf j @N@t = 0: (18)

Energy equation with thermal radiation as the previ-
ously published papers [48,49] is de�ned as follows:

Knf
@2T
@y2 � (�C)nf

@T
@t
� @qr
@y

= 0; (19)

where Knf is the thermal conductivity of nanouids,
and (�C)nf is the heat capacity under constant pres-
sure described by Khan et al. [50]:

'(�Cp)s + (�Cp)f (1� ') = (�Cp)nf ;

Knf

Kf
=

2Kf + 2'(Ks �Kf ) +Ks

2Kf + '(Ks �Kf ) +Ks
: (20)

The imposed conditions are set as follows:

T (y; 0)=T1; T (0; t)=Tw; T (1; t)=T1; (21)

N(y; 0)=C1; N(0; t)= t; N(1; t)=0; (22)

w(y; 0) = 0; w(0; t) = UH(t) cos(!t) or

U sin(!t); w(1; t) = 0: (23)

The energy equation (19) can be implemented using
Rosseland approximation [51,52]:

Knf

�
16T 3��
3Knfk�

�
@2T
@y2 � @T

@t
(�C)nf = 0: (24)

Inserting the following dimensionless quantities into
Eqs. (17)-(19) gives:

T =
T � T1
Tw � T1 ; N� =

vfN
U2 ; w� =

w
U
;

t� =
U2t
vf

; y� =
Uy
vf
;

and:
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K =
k1

�f
; R =

16T 31��
3Kfk�

;

Gr =
(Tw � T )1g(�T )f

U3 ; Pr =
(Cp)f�f
Kf

:

(*: symbol is dropped for simplicity).
The governing partial di�erential equations for

temperature distribution, microroration �eld, and ve-
locity �eld are obtained in the Appendix (Eqs. (A.1)
to (A.6)), respectively.

@2T
@y2 = @0pr@�1

1
@T
@t
; (25)

@2N
@y2 = @2@�1

3
@N
@t

; (26)

@2w
@y2 = @2@�1

5
@w
@t
� @�1

5 Gr@4T � @�1
5 k

@N
@y

: (27)

Here, the assumptions for Eqs. (25)-(27) are as follows:

T (y; 0) = 0; T (0; t) = t; T (1; t) = 0; (28)

N(y; 0) = 0; N(0; t) = t; N(1; t) = 0; (29)

w(y; 0) = 0; w(0; t) = UH(t) cos(!t) or

U sin(!t); w(1; t) = 0: (30)

Finally, expressing the governing equations (25)-(27)
in terms of Caputo-Fabirizio fractional derivative, we
have:

@2T
@y2 = @�1

1 pr@0
@�

@t�
T; (31)

@2N
@y2 = @2@�1

3
@�

@t�
N; (32)

@2w
@y2 = @2@�1

5
@�

@t�
w � @�1

5 Gr@4T � @�1
5 k

@N
@y

: (33)

A fractional di�erential operator is de�ned for Eqs.
(31)-(33). We have:

CF
�
@�

@t�

�
= CF

�
D�
t

�
=

tZ
0

G0(�)
1� � exp

�
��(t� �)

1� �
�
d�; 0 � � � 1;

(34)

where D�
t or @�

@t� represents the fractional operator
of Caputo-Fabirizio having order 0 � � � 1 [53-
55] de�ned at the normalization functions, which are
M(1) = M(0) = 1.

3. Investigation of temperature distribution
and microroration �eld

Using Laplace transform for Caputo-Fabirizio fraction-
alized di�erential equations (31)-(32) and utilizing the
fact that � = 1

(1��) , we obtain the following:

@2 �T
@y2 = @�1

1 pr@0
�s

(s+ ��)
�T ; (35)

@2 �N
@y2 = @�1

3 @2
�s

(s+ ��)
�N: (36)

Expressing Eqs. (35)-(36) in a more suitable format
equivalently, we have:

�T = s�2 exp

"
�y
r

pr@0�s
@1s+ @1��

#
; (37)

�N = s�2 exp

"
�y
r @2�s
@3s+ @3��

#
: (38)

Reworking on Eqs. (37)-(38), we obtain the summation
form as follows:

�T =
1
s2 +

1X
l=1

1
l!

 
�y
r
�pr@0

@1

!l
1X
m=0

(���)m�
�
m+ l

2

�
m!�

� l
2

�
sm+2

; (39)

�N =
1
s2 +

1X
l=1

1
l!

 
�y
r
�@2

@3

!l
1X
m=0

(���)m�
�
m+ l

2

�
m!�

� l
2

�
sm+2

: (40)

Inverting Eqs. (39)-(40), we expressed the general
solutions of temperature and microrotation �eld in
terms of Fox-H function as follows:

T =t+ (l!)�1

tZ
0

(t� �)
1X
l=1

 
�y
r
�pr@0

@1

!l

H1;1
1;3

24(��t)

������
�
1� l

2 ; 1
�

(0; 1);
�
1� l

2 ; 0
�
; (0; 1)

35 d�; (41)

N =t+ (l!)�1

tZ
0

(t� �)
1X
l=1

 
�y
r
�@2

@3

!l

H1;1
1;3

24(��t)

������
�
1� l

2 ; 1
�

(0; 1);
�
1� l

2 ; 0
�
; (0; 1)

35 d�; (42)
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1X
f

(��)f
Qp
j=1 �(aj +Ajf)

f !
Qq
j=1 �(bj +Bjf)

= H1;p
p;q+1

�
�
���� (1� a1; A1); (1� a2; A2); (1� a3; A3); � � � ; (1� ap; Ap)
(0; 1); (1� b1; B1); (1� b2; B2); (1� b3; B3); � � � ; (1� bq; Bq)

�
: (43)

Box I

where the special function is de�ned by Eq. (43) as
shown in Box I [56-59].

4. Investigation of velocity �eld

Using Laplace transform for Caputo-Fabirizio fraction-
alized di�erential equation (33) and utilizing the fact
that � = 1

(1��) , we obtain the following:

@2 �w
@y2 =

@2�s
(@5s+ @5��)

�w � @�1
5 Gr@4 �T� @�1

5 k
@ �N
@y

:
(44)

Solving the partial di�erential equation (44) and using
initial and boundary conditions (28-30), we get:

�w =
Us

s2 + !2 exp

(
�y
s @2�s

(@5s+ @5��)

)

+
k
q@2�@3h@5@2�@3
� @2

i 1
s2 exp

(
�y
s @1�s

(@3s+ @3��)

)

� Gr@4h
pr@0�@5@1

�@2

i 1
s(s+��)

exp

(
�y
r@0�prs

@1

)
:

(45)

Reworking on Eq. (45), we obtain the summation form
as follows:

�w =
Us

s2 + !2 + U
1X
l=1

1
l!

��yp@2�
@5

�l 1X
m=0

(���)�
�
m+ l

2

�
m!�

� l
2

� s
sm(s2 + !2)

+
k
q@2�@3h@2@5�@3
� @2

i
� 1
s2 exp

(
�y
s @2�s
@3(s+ ��)

)
� Gr@4h

pr@5@0�@1
�@2

i 1
s(s+��)

exp

(
�y
r
pr@0�s
@1

)
:

(46)

Inverting Eq. (46), we expressed the general solution of

velocity as follows:

wc =UH(t) cos!t

+ UH(t)
1X
l=1

1
l!

��yp@2�
@5

�l tZ
0

cos!(t� �)

H1;1
1;3

24���
t

� ������
�
1� l

2 ; 1
�

(0; 1);
�
1� l

2 ; 0
�
; (0; 1)

35 d�
+

k
q@2�@3h@5@2�@3
� @2

i tZ
0

�
�
y; �;

@2�
@3

; ��
�
d�

� Gr@4h@5@0�pr@1
� @2

i tZ
0

�
�
y; �;

@0�pr
@1

; ��
�

exp (���(t� �)) d�; (47)

where:

L�1

(
1
s2 exp

 
�y
r

As
s+B

!)
=

tZ
0

�(y; �; A;B)d�;

and:

L�1

(
1
s

exp

 
�y
r

As
s+B

!)
= �(y; �; A;B):

The case of sine oscillations has been established
by applying a similar algorithm:

ws =U sin!t+ U
1X
l=1

1
l!

��yp@2�
@5

�l tZ
0

sin!(t� �)

�H1;1
1;3

24���
t

� ������
�
1� l

2 ; 1
�

(0; 1);
�
1� l

2 ; 0
�
; (0; 1)

35 d�
+

k
q@2�@3h@2@5�@3
� @2

i tZ
0

�
�
y; �;

@2�
@3

; ��
�
d�
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� Gr@4h@5@0pr�@1
� @2

i tZ
0

�
�
y; �;

@0pr�
@1

; ��
�

exp (���(t� �)) d�: (48)

5. Limiting cases

5.1. Investigation of regular or conventional
nanouid, K1 = 0

The solutions for velocity �eld to the regular or conven-
tional nanouid are established by assuming K1 = 0 (in
the absence of microrotation parameter) in Eqs. (47)
and (48), as shown in the following:

wc =UH(t) cos!t

+ UH(t)
1X
l=1

1
l!

��yp@2�
@5

�l tZ
0

cos!(t� �)

H1;1
1;3

��
��
t

� ���� �
1� l

2 ; 1
�

(0; 1);
�
1� l

2 ; 0
�
; (0; 1)

�
d�

� Gr@4h@5@0pr�@1
� @2

i tZ
0

�
�
y; �;

@0pr�
@1

; ��
�

exp (���(t� �)) d�: (49)

ws =U sin!t

+ U
1X
l=1

1
l!

��yp@2�
@5

�l tZ
0

sin!(t� �)

H1;1
1;3

24���
t

� ������
�
1� l

2 ; 1
�

(0; 1);
�
1� l

2 ; 0
�
; (0; 1)

35 d�
� Gr@4h@5@0pr�@1

� @2

i tZ
0

�
�
y; �;

@0pr�
@1

; ��
�

exp(���(t� �))d�: (50)

5.2. Investigation of regular or conventional
Newtonian uid, K1 = � = 0

It is also pointed out that the analytic solutions to the
regular or conventional Newtonian uid can be recov-
ered from Eqs. (47) and (48) by assuming K1 = � = 0
(in the absence of microrotation parameter). In what
follows, one can also transform the analytic solutions
into an ordinary di�erential operator by substituting
� = 1.

6. Results and conclusion

In this research, micropolar nanouid veri�ably showed
better thermal performance than conventional uids
based on the mathematical tools of non-integer order
fractional derivative and transform. The analysis
results showed vivid e�ects on the enhancement of high
thermal conductivity subject to suspended nanopar-
ticles in the base uid. The graphical illustrations
of the investigated solutions, which recti�ed physical
conditions, were discussed. Various graphs are depicted
in Table 1 for highlighting the e�ects of nanoparticles
and embedded parameters of micropolar nanouid.
However, the key results are enumerated below:

(i) The analytic solutions were explored in terms
of temperature, microrotation, and velocity; in
addition, similar solutions for velocity �eld and
temperature distribution to the regular or conven-
tional nanouid, K1 = 0, and Newtonian uid,
K1 = � = 0:, were also recovered as the limiting
cases;

(ii) Figure 2 depicts the e�ect of nanoparticles based
on the two types of solutions, i.e., fractionalized
nanouids, � = 0:4, and ordinary nanouids, � =
1:0, in which the velocity �eld of copper-ethylene
glycol is higher than that of pure ethylene glycol
and silver-ethylene glycol. It is noted that the
velocity �eld of fractionalized nanouids, � = 0:4,
has reciprocal behavior with ordinary nanouids,
� = 1:0. This may result from the exponential
kernel in the Caputo-Fabrizio fractional deriva-
tive;

(iii) Figure 3 depicts temperature distribution with
and without Caputo-Fabrizio fractional derivative
for the inuence of pure ethylene glycol, copper-

Table 1. Fundamental thermo-physical properties.

Base uid/nanoparticles � (kg/m3) Cp (J/kgK) k (W/m)

Cu 8933 385 401

Ag 10500 235 429

Ethylene glycol 1.115 0.58 0.1490



K.A. Abro and A. Y�ld�r�m/Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 3917{3927 3923

Figure 2. Pro�le of velocity �eld with and without Caputo-Fabrizio derivative.

Figure 3. Pro�le of temperature distribution with and without Caputo-Fabrizio derivative.

Figure 4. Pro�le of microrotation with and without Caputo-Fabrizio derivative.

ethylene glycol, and silver-ethylene glycol. In
this �gure, copper-ethylene glycol has scattering
e�ects on the fractionalized temperature distri-
bution and has opposite impacts on the ordinary
temperature distribution;

(iv) The inuence of nanoparticles on microrotation
is underlined in Figure 4, in which the e�ect of
microrotation is observed to be opposite near the
plate. It is also pointed out that copper-ethylene

glycol has accelerating behavior in comparison to
all others; on the contrary, copper-ethylene glycol
is of decelerating nature near the plate. This may
result from the e�ective fractional parameter, �;

(v) Figures 5(a), 5(b), and 5(c) are plotted to inves-
tigate the e�ects of di�erent values of volume � =
0:0; 0:01; 0:02 on velocity �eld. Here, nanoparti-
cles are suspended as copper-ethylene glycol and
silver-ethylene glycol for the velocity �eld with
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Figure 5(a). Pro�le of velocity �eld with and without Caputo-Fabrizio derivative when nanoparticle volume fraction is
� = 0:0.

Figure 5(b). Pro�le of velocity �eld with and without Caputo-Fabrizio derivative when nanoparticle volume fraction is
� = 0:01.

Figure 5(c). Pro�le of velocity �eld with and without Caputo-Fabrizio derivative when nanoparticle volume fraction is
� = 0:02.

and without Caputo-Fabrizio fractional deriva-
tive. An increase in volume fraction results in
the scattering behavior of copper-ethylene glycol
with Caputo-Fabrizio fractional operator and the
sequestrating behavior of copper-ethylene glycol
without Caputo-Fabrizio fractional operator. It is
signi�cantly noted that the converse phenomenon
is observed as the values of volume fraction
increase; in simple words silver-ethylene glycol for
the velocity �eld with Caputo-Fabrizio fractional
derivative has scattering behavior and copper-
ethylene glycol has sequestrating behavior. This
is due to the fact that when temperature is lower
than 180�C, then an increase in volume fraction
generates an increase in thermal conductivity.

The same phenomenon can also be observed for
temperature distribution and microrotation, too.
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