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Abstract. Red Deer Algorithm (RDA) is one of the recent metaheuristic algorithms
inspired by the behavior of red deer in the breeding season. RDA has exhibited viable
performance in dealing with a variety of combinatorial optimization problems in di�erent
real-world applications. In this paper, the parameters and operators of RDA were modi�ed
using some adaptive strategies to improve its performance. To prove the e�ciency of the
new Improved RDA (IRDA), a number of benchmarked functions were utilized and, also, a
Direct Current (DC) brushless motor design was considered, which is one of the real-world
engineering design issues. The results of the developed IRDA are compared with other
algorithms existing the literature. This comparative study con�rms that the proposed
IRDA outperforms other algorithms and provides very competitive results.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Metaheuristic algorithms represent a type of stochastic
optimization in nature that have become increasingly
applicable to many engineering design issues [1]. A
number of recently introduced optimizers exist for solv-
ing complex and non-linear problems. For example, the
following are some of the successful algorithms in recent
years: Social Engineering Optimizer (SEO) inspired
by the rules of social engineering [2]; Moth-Flame
Optimizer (MFO) inspired by the swarm behavior of
ying moth in the night with respect to the moon [3];
Sine Cousin Algorithm (SCA) inspired by the logic
of sine and cousin functions [4]; Exchange Market
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Algorithm (EMA) inspired by di�erent techniques of
marketing in a bazar [5]; and Red Deer Algorithm
(RDA) inspired by the evolutionary strategies of red
deer in the breeding season [6]. Generally, high
e�ciency of many metaheuristics in solving challenging
engineering design issues can be veri�ed with a large
number of local solutions [2]. In the case of real-world
optimization problems, upon increasing the size of the
designed model, it is di�cult to achieve a global so-
lution using the current metaheuristics [7]. Therefore,
such algorithms may need some improvements to solve
these NP-hard problems better [3].

One of interesting real-world optimization engi-
neering problems is designing a Direct Current (DC)
brushless motor. The advantages of DC motor are
becoming more common among both academics and
industrial practitioners due to the highlighted charac-
teristics, especially its fast control designs and high
e�ciency [8]. Accordingly, the present generation of
brushes and commentator may be considered as a
set of major demerits of these motors due to rapid
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erosion of their components [9]. Nowadays, growth
in safety hazards and increase in the maintenance
costs of such motors can be envisaged over a last
few decades [8]. This problem has been formulated
as a Brushless DC (BLDC) motor. The di�culty
of solving this problem serves as a motivation for
several studies to apply numerous metaheuristics [9].
Based on the No Free Lunch theorem [10], it is always
possible for a new optimizer to outperform the existing
algorithms. From another point of view, modifying the
solution algorithms may be useful in �nding the global
optimum instead of local solutions [11]. This reason
has motivated us to employ RDA as one of the recently
developed bio-optimizer for the �rst time in the area of
BLDC. The main contribution of our work is to propose
an improved version of RDA to solve the BLDC design
problem better.

According to the scienti�c studies in the area of
BLDC, this literature is generally very rich in employ-
ing recent and well-known metaheuristics. According
to a recent study by Duan and Gan [8], a BLDC was
applied by developing an Orthogonal Multi-Objective
Chemical Reaction Optimizer (OMOCRO). The aim
of this work was to maximize the e�ciency of BLDC
model by minimizing the material cost. They com-
pared OMOCRO with the state-of-the-art optimizers
including Non-dominated Sorting Genetic Algorithm
(NSGA-II) and Multi-Objective of Particle Swarm
Optimization (MOPSO). Another novel optimizer was
proposed by Lee et al. [9]. They proposed the Search
Region Management (RSM) algorithm to obtain a
global solution instead of a set of local solutions. Their
optimal design of BLDC was tested using Fuzzy Evolu-
tionary Algorithm (FEA) to optimize the torque ripple.
In 2016, a novel Multi-Objective Krill Herd (MOKH)
was proposed by Ayala et al. [12]. They also applied
beta distribution using the inertia weight collaboration.
They showed that their proposed algorithm could
outperform Electromagnetic-like Algorithm (EMA).
Ishikawa et al. discussed the viability of optimization
tools for solving the BLDC [13]. They considered a
new Genetic Algorithm (GA) based on the topology
optimization to solve the stator teeth in a BLDC motor
to minimize torque ripple. In 2016, another BLDC
motor was optimized by a recent population algorithm
called Interstellar Search Method (ISM) considering
mesh adaptive direct search in the work of Son et
al. [14]. Their goal was to minimize the torque ripple
as the objective function. In another research, Yoon
and Kwon [15] considered the optimal design of BLDC
with the cost-e�ciency of ferrite magnets to optimize
the ux density and the torque ripple, simultaneously.
Similarly, Kim et al. [16] optimized the anisotropic
ferrite magnet shape and magnetization direction of
an interior permanent magnet BLDC motor. They
employed a simulation-based optimization approach

to solve this complicated optimization model. The
2D analytical optimization case of BLSC motor was
suggested by Liu et al. [17]. Their aim was to predict
the magnetic �eld distribution and compare the results
with the best existing outputs from the literature. A
comprehensive discussion on the outer rotor type motor
design using a blower system of BLDC vehicle was done
by Lee et al. [18]. In 2017, Azari et al. [19] applied
Cuckoo Optimization Algorithm (COA), GA, and Par-
ticle Swarm Optimization (PSO) to achieve an optimal
design for BLDC motor. Their aim was to �nd the
best parameters of motor geometric functions. In 2018,
Xu and Deng [20] recently proposed a Pigeon-Inspired
Optimizer (PIO) to solve a set of power components for
BLDC design motor by merging adjacent-disturbances
and integrated dispatching.

Generally, it can be observed that recently devel-
oped optimizers exhibit better e�ciency than the well-
known and state-of-the-art algorithms. The aforemen-
tioned papers in the literature can be divided into three
categories. A number of studies have added di�erent
new factors to formulate a BLDC model. Since this
problem is NP-hard, a number of researchers have
mainly considered applying recent metaheuristics to
reach an optimal design of BLDC motor. Another
category considered both modeling and solution ap-
proaches. This study proposes an Improved Red Deer
Algorithm (IRDA) for the �rst time in this area to
better solve a BLDC design motor adopted from [19].
An extensive comparative study is performed on not
only the BLDC design motor but also some standard
benchmarked functions.

The rest of this paper can be summarized as
follows: Section 2 overviews RDA with its successful
literature as well as the steps and details. Section 3
proposes the developed IRDA with its formulations
and explanations. Section 4 makes a comprehensive
comparison between the proposed algorithm and other
applied algorithms to identify the pros and cons of the
proposed methodology. In fact, the conclusion and
future recommendations are suggested in Section 5.

2. Red Deer Algorithm (RDA)

RDA, �rst introduced by Fathollahi Fard and
Hajiaghaei-Keshteli [6], is one of recent evolutionary
optimizers inspired by the competition of red deer
in the breeding season. This algorithm enjoys high
e�ciency in tackling several engineering design issues
known as NP-hard. For example, Golmohamadi et
al. [21] addressed a fuzzy �xed-charge transportation
problem considering batch transferring by RDA and a
hybrid version employing Simulated Annealing (SA).
They compared the e�ciency of the proposed RDA
with those of Variable Neighborhood Search (VNS) and
Imperialist Competitive Algorithm (ICA). In another
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work, in the area of supply chain network design,
Samadi et al. [22] proposed a sustainable supply chain
network design problem. They developed three heuris-
tics as the initial solutions of their applied metaheuris-
tics including RDA and GA. Their results ensured
the performance of heuristic-based RDA in conclusion.
A similar work reported by Hajiaghaei-Keshteli and
Fathollahi-Fard [23] developed a sustainable closed-
loop supply chain considering discount supposition.
They addressed di�erent solution approaches based
on recent metaheuristics including Keshtel Algorithm
(KA), ICA, and RDA. In another comparative study,
Sahebjamnia et al. [24] illustrated a sustainable tire
closed-loop supply chain network design problem for
the �rst time. They solved their model using hybrid
metaheuristics based on recent algorithms, i.e., Wa-
ter Wave Optimization (WWO) and RDA. Similarly,
considering uncertainty in this area, Fathollahi-Fard et
al. [25] considered a multi-objective stochastic model
to formulate a closed-loop supply chain network design
considering social impacts. They solved this NP-
hard problem by three hybrid optimizers based on
KA and RDA. Concerning truck scheduling problems,
Mohammadzadeh et al. [26] applied WWO, Virus
Colony Search (VCS), and RDA to address a truck
scheduling problem in a cross-docking system. They
revealed that RDA outperformed other metaheuristics
existing in the literature. Overall, the aforementioned
papers [21{26] are only some examples among di�erent
other studies employing RDA and its di�erent variants
to show that RDA is one of the more successful recent
optimizers than other recent and well-known ones to
address di�erent engineering design issues and NP-hard
problems.

Similar to evolutionary optimizers, the RDA
starts with a population of random solutions called
Red Deers (RDs). These solutions are divided into
two types: \male RDs" as the best solutions and
\hinds" as the rest of solutions. Generally, roaring,
�ghting, and mating operations constitute the three
main behaviors of RDs in the breeding season. First
of all, male RDs roar strongly to show their power
against other males to attract hinds. After that,
some successful males are selected as the commanders
based on their proven superiority (�tness of solutions).
Another main action of this algorithm is the �ghting
process between the commanders and the rest of males
called stags. During this competition, better solutions
as the winners are chosen again as the commanders
to form harems composed of a group of hinds. Based
on the power of each commander, some hinds are
selected to be in the harem. The greater the power
of commander, the larger the number of hinds in
the harem. After generating harems, an amazing
mating behavior occurs. In this regard, �rst, the
commanders should mate with a number of hinds in

the harem and a few others in another harem to extent
this territory. Then, the stags can mate with the
nearest hind regardless of the restriction of harems. In
terms of the evolutionary concepts in the RDA, some
better solutions will be chosen as the next generation
of this algorithm through roulette wheel selection or
tournament selection mechanisms. At the end, the
stop condition of this algorithm based on the maximum
number of iterations should be satis�ed.

Like other metaheuristics, a balance between
exploitation and exploration phases is very impor-
tant. RDA enjoys exploitation properties through
the roaring and �ghting of males as well as mating
of stags with the nearest hinds. As such, the main
exploration phase involves generating some harems
for each commander, the mating operator with a
harem, and a randomly selected one. To summarize
the results of these procedures, Figure 1 reveals the
owchart of this metaheuristic. Accordingly, the blue
boxes specify the intensi�cation phase, whereas the
red boxes maintain the diversi�cation characteristics
of this algorithm. For the green box, to break away
from the local optimum solutions, the next generation

Figure 1. Flowchart of Red Deer Algorithm (RDA).
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will be selected based on the evolutionary concept. To
understand the RDA coding better, its pseudo-code is
provided in Appendix A. For the simplicity of RDA
and related formulas, readers are referred to the main
source [6] and other related papers in this area [21{26].

By and large, RDA is characterized by more
pros and cons than other recent metaheuristic algo-
rithms. This algorithm is very good at balancing the
exploration and exploitation phases [6]. The majority
of case studies can obtain a global optimum rather
than a local one [6,21{26]. The convergence rate
of this metaheuristic is generally better than several
well-known and recent optimizers such as ICA, GA,
PSO, WWO, VCS, etc. based on recently published
papers [21{26]. However, the main disadvantage of
this algorithm is its di�culty to be tuned due to some
controlling parameters. This study aims to �nd a way
to reduce the main parameters of this algorithm using
some adaptive strategies. To solve this drawback, the
parameters and operators of this algorithm will be
updated per iteration to search the feasible space better
and improve its capability to �nd global solutions.

3. Improved RDA (IRDA)

Here, a novel metaheuristic based on the RDA as an
improved version is proposed. In this regard, an adap-
tive version of RDA is developed to ease the calibration
of parameters and improve its capability to search
the feasible area better. Since the RDA has 6 input
parameters to tune (Maxit = the maximum number of
iterations; nPop = the number of population; nMale
= the number of males; Hind = nPop�nMale; alpha
= the percentage of mating in a harem; beta = the
percentage of mating of a commander with another in
the harem; gamma = the percentage of commandeers),
this reason makes the tuning of RDA very di�cult. The
proposed IRDA not only uses an adaptive strategy to
ease the tuning but also reveals a better performance
than the original version.

In the proposed IRDA, there is a set of rules
to formulate and value the number of parameters
including alpha, beta, and gamma. First of all, the
number of commanders should be planned. Each
commander generates a harem. From another point
of view, the number of commanders is the number of
best solutions that promotes the intensi�cation phase.
However, the number of harems is directly a�ected by
their diversi�cation properties. Therefore, the number
of commanders is very important in manipulating both
of the search phases. Overall, the following formula has
been proposed to update the percentage of commanders
among all males:

gamma =
�

0:1 + 0:9� it
Maxit

�
; (1)

where it is the current iteration of running the algo-
rithm. By considering the above formula, this number
increased during the iterations. The minimum possible
value of this parameter is 0.1. This rate uctuates
from the mentioned value to 1 as the highest value
of this parameter. In our experiments, the user
enjoys a chance to manipulate both exploitation and
exploration properties. To calculate alpha and beta,
an elitist strategy has been applied. The average
of �tness for the hinds in this harem and that in a
randomly selected harem have been computed. In
case of minimization, if the average of �tness in the
harem belonging to the considered commander is lower
than another, it appears that the hinds of this harem
are better than those of the other harem. Thus, the
percentage of mating for the commander is computed
as follows:

alpha =
�

0:5 + 0:5� it
Maxit

�
: (2)

Conversely, the beta is considered as follows:

beta = 1� alpha: (3)

Notably, if the average �tness of this harem is higher
than that of another harem, the values of these two
parameters should be exchanged. It means that the
rate of beta should be calculated through Eq. (2).
Similarly, Eq. (3) should be considered for calculating
the rate of alpha. The main reason behind this strategy
is to promote the intensi�cation properties of the pro-
posed methodology due to an increase in the number
of iterations. To facilitate a better understanding of
the proposed IRDA, the pseudo-code of the algorithm
is reported in Appendix B. Notably, its owchart is
exactly similar to RDA in general, as seen in Figure 1.

Taken together, the developed IRDA has only
three simple parameters: Maxit, nPop, and nMale.
To update the other main parameters of RDA, an adap-
tive technique is taken into consideration to manage the
search mechanism of this algorithm more e�ciently.
This improved metaheuristic enjoys higher e�ciency
than the original RDA based on the results provided in
the next section.

4. Experimental results

In this section, the experimental analyses of the pro-
posed IRDA for some standard benchmarked func-
tions and an interesting engineering design issue called
BLDC are provided. First of all, the datasets required
to generate the benchmarks are reported. Conse-
quently, the calibration of the parameters for algo-
rithms is taken into consideration to enhance the
performance of the metaheuristics to make a fair
comparison. Afterwards, two comparative studies have
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evaluated the proposed IRDA with its original idea and
the best existing results from the literature. Notably,
all treatments have been run on the same computer
with the same processors as those of previous studies.
These computations have been run on a laptop with a
Core 2 Duo-2.26 GHz processor.

4.1. Data sets
Since two di�erent problems have been employed in this
study, the de�nitions and settings of data are clearly
specialized. Herein, the following sub-sections have
been provided to address the employed benchmarked
data comprehensively.

4.1.1. Standard benchmarked functions
Normally, to evaluate a novel optimizer, some stan-
dard benchmarked functions should be utilized. The
literature reports that there are more than 60 dif-
ferent benchmarked functions [2{6]. In this regard,
12 standard benchmarked functions taken from the
Congress on Evolutionary Computation (CEC) and
adopted from recent studies have been chosen [2],[5,6].
They are numbered as P1 to P12. All of them belong
to an optimized case of minimization. The global
optimum for all treatments is zero. Their formulas
and distributions are reported in Appendix C (as can
be seen in Table C1). Furthermore, to analyze the
proposed algorithms in di�erent cases, both low- and
high-dimensional situations have been utilized with 30
and 100 decision variables, respectively. Based on
their characteristics, they are divided into unimodal,
multimodal, and separable and non-separable classi�-
cations. Since these test problems have been addressed
in most of previous works, more details of the used
benchmarked functions can be found in [2{6].

4.1.2. BLDC motor structure
The proposed BLDC design motor in this study was
benchmarked in [19,27]. Accordingly, the de�nitions
and related formulations of the considered BLDC mo-
tor as well as the related design factors can be referred
to [19,27]. From an overall view, Figure 2 shows the
studied BLDC motor in this study. Generally, there
are 10 important decision variables for the considered
BLDC motor. The notations, de�nitions, and feasible
ranges of these variables are reported in Appendix D
(see Table D1).

4.2. Tuning of optimizers
Given that both RDA and IRDA have some controlling
parameters, they need to be tuned satisfactorily. If a
metaheuristic is not calibrated very well, its behavior
will not be e�cient [28{30]. In this subsection, these
optimizers are tuned for each problem, comprehen-
sively [31{34]. Accordingly, each parameter associated
with the algorithms should be considered as a factor
accompanied by its corresponding level (suggested

Figure 2. Brushless DC (BLDC) motor structure
considered by this study [27].

values). Regarding the RDA, there are 6 factors and
for each of them, 3 levels are considered. Based
on the full-factorial calibration, there are 36 = 729
treatments for each run. According to the IRDA,
there are only 3 factors and for each of them, 4 levels
are suggested. From each run, there are 43 = 64 in
total. In addition, due to the stochastic nature of
metaheuristics and the reliability of results, for each
treatment, it is required to run the experiment for at
least 30 times. Therefore, there are many run times
for each metaheuristic in each problem. To handle
this dilemma, Taguchi experimental design method [28]
o�ers a set of orthogonal arrays to shorten the run
times and tune the algorithms in an e�cient way. Since
the Taguchi experimental design method for calibration
is a well-known methodology and it has been employed
in many papers, more explanations about this method
have not been provided for the sake of brevity; thus, for
more information, one should refer to [1,21,25,32{34].

This methodology uses a transformative regula-
tion to measure the variation of algorithms among
the best existing cases to select a robust parameter
design of the optimizers [35,36]. Overall, there are
two well-known transformation measurements in this
method: Signal-to-Noise (S=N) and Relative Percent-
age Deviation (RPD). S=N denotes the variation value
of the response variables of Taguchi. In this regard,
the higher value of S=N is more preferable. In case of
minimization, the following formula can be considered:

S=N = �10 log(Z2); (4)

where Z is the response variable adopted from the
objective function of the problem. Similarly, RPD is
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considered to specify the e�ciency of algorithms. The
lower value of RPD is more preferable. In case of
minimization, it can be formulated as follows:

RPD =
Algsol �Bestsol

Bestsol
; (5)

where Bestsol is the minimum solution ever found
during 30 run times and Algsol is the solution for each
run. Notably, the average of RPD for 30 runs will be
used for the �nal evaluation of collaborations between
the algorithms.

Overall, the parameters associated with the algo-
rithms and their candidate levels are given in Table 1.
Finally, to perform the treatments, the orthogonal
arrays should be considered in decreasing the total
number of experiments. Regarding RDA, L27 is
selected. Accordingly, the number of experiments is
reduced from 729 to 27. As such, Taguchi proposes
L16 for the IRDA. It appears that the total number of
treatments will decrease from 64 to 16. Overall, it can
be observed that the Taguchi method helps users save
time to do the tuning.

Since there are two di�erent optimization prob-
lems, both optimizers should be tuned for each prob-
lem, separately. For the case of BLDC motor deign
problem, the results of mean RPD and S=N ratio
for both of the proposed algorithms are provided in
Figures 3{6. In conclusion, the calibrated parameters
for both optimizers are given in Table 2.

4.3. Evaluation with standard benchmarked
functions

Here, a comparative study based on standard bench-
marks has been applied. As mentioned before, 12
standard benchmarks have been adopted from the

Figure 3. Mean Relative Percentage Deviation (RPD) for
Red Deer Algorithm (RDA).

Figure 4. S=N ratio for Red Deer Algorithm (RDA).

literature. This comparison has been inspired by the
work of Fathollahi-Fard et al. [2]. Accordingly, there
are a number of well-known (i.e., GA, SA, and PSO),
state-of-the-art (i.e., L-SHADE), and recent (i.e., Arti-
�cial Bee Colony (ABC), ICA, Firey Algorithm (FA),
and RDA) optimizers to make this comparison. Due
to 30 run times, the best, worst, average, and the

Table 1. The factors associated with optimizers and their levels.

Optimizer Factor Levels

1 2 3 4

RDA

A: Maximum iteration (Maxit) 150 200 300 {

B: Number of population (nPop) 100 150 200 {

C: Number of males (nMale) 15 30 50 {

D: Percentage of commander (gamma) 0.7 0.8 0.9 {

E: Percentage of mating in each harem (alpha) 0.6 0.7 0.8 {

F: Percentage of mating of commander in another harem (beta) 0.4 0.5 0.6

IRDA

A: Maximum iteration (Maxit) 100 200 300 500

B: Number of population (nPop) 50 100 150 200

C: Number of males (nMale) 20 30 50 75
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Table 2. Tuned values of optimizers.

Optimizer Calibration for standard functions Calibration for BLDC motor

RDA Maxit = 300;nPop = 150;nMale = 30;
gamma = 0:7; alpha = 0:7; beta = 0:5

Maxit = 200;nPop = 200;nMale = 30;
gamma = 0:7; alpha = 0:8; beta = 0:5

IRDA Maxit = 300;nPop = 150;nMale = 50 Maxit = 500;nPop = 200;nMale = 50

Figure 5. Mean Relative Percentage Deviation (RPD) for
Improved RDA (IRDA).

Figure 6. S=N ratio for Improved RDA (IRDA).

standard deviation employed to evaluate the robustness
of algorithms are computed. Based on these results, the
algorithms are ranked. All reports are given in Table 3.
For the �nal evaluation, a well-known transformation
metric is utilized to perform a set of statistical analyses.
Based on the standard deviation, the results of algo-

rithms are computed by the Relative Deviation Index
(RDI) utilized according to the following equation:

RDI =
jAlgsol �Bestsolj
Maxsol �Minsol

; (6)

where Maxsol and Minsol are the maximum and min-
imum values of all algorithms' solutions, respectively.
In case of minimization, Bestsolis the minimum value
among all outputs. As such, Algsol is the solution
of the applied algorithms. Notably, the lower value
of RDI ensures better performance, ranging between
zero and one. Overall, the interval plots based on
the Least Signi�cant Di�erences (LSD) for the RDI of
optimizers in both low (i.e., 30 variables) and high (i.e.,
100 variables) dimensions are given in Figure 7.

According to the results provided by Table 3, it
can be observed that the IRDA will obtain the global
solution in �ve benchmarks. Based on the �nal rank of
optimizers, IRDA shows 1.69 as the best rank. Most
of RDA outputs are shown in bold. It can be implied
that this algorithm reveals a set of robust solutions in
a majority of benchmarks. From the low-dimensional
perspective, IRDA achieved the best results; similarly,
from the high-dimensional perspective, it provided very
competitive solutions. Of note, a general RDA exhibits
the best behavior.

According to Figure 7, the statistical analyses
have been performed using RDI metric. At �rst, in
low dimensions (Figure 7(a)), there is a clear di�erence
between the performance of the proposed algorithm

Figure 7. Interval plot and Least Signi�cant Di�erences (LSD) chart based on the Relative Deviation Index (RDI) for low
(a) and high (b) dimensional evaluation.
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Table 3. Comparison of optimizers based on the benchmark functions during 30 run times (B = best, W = worst, M =
average, SD = standard deviation, D = dimension, R = rank).

Function D [2] This study
GA SA PSO ABC ICA FA RDA L-SHADE IRDA

P1

30

W 9.58E-02 2.78E-01 6.37E-03 8.37E-01 1.37E-02 4.93E-0 4 3.52E-04 1.92E-02 1.85E-05
M 8.16E-07 2.15E-02 5.78E-05 2.51E-02 5.36E-03 6.91E-05 1.73E-06 1.17E-07 4.27E-08
B 2.19E-08 4.28E-03 1.89E-06 3.16E-04 2.51E-04 3.78E-08 2.86E-11 5.48E-09 3.81E-11

SD 0.004783 0.050924 0.000972 0.46176 0.393635 0.000534 0.000136 1.20E-03 4.62E-04
R 5 9 6 7 8 4 2 3 1

100

W 1.22 4.78 3.65E-02 2.42 5.84 2.76E-01 4.28E-03 2.39E+00 3.82E-02
M 4.67E-03 0.8514 8.35E-01 0.7534 4.32 5.47E-04 5.95E-04 1.22E-01 5.27E-04
B 6.18E-04 0.0251 4.28E-03 0.4627 2.17 2.81E-05 1.53E-05 8.37E-03 5.37E-07

SD 0.01854 1.0894 0.06854 1.0325 3.2817 0.05894 0.07634 2.18E-01 6.27E-01
R 4 7 5 8 9 3 2 6 1

P2

30

W 2.57E-03 5.16E-03 5.84E-06 1.25E-04 1.87E-04 2.35E-04 2.64E-04 6.45E-04 5.81E-04
M 6.82E-07 5.32E-05 5.73E-09 2.68E-05 2.17E-06 3.18E-07 3.85E-08 8.87E-06 6.28E-09
B 2.18E-09 3.11E-06 4.35E-10 3.19E-06 3.12E-07 2.57E-08 1.25E-11 4.44E-07 5.12E-13

SD 3.17E-02 4.28E-02 3.47E-04 2.64E-03 8.53E-03 4.81E-03 5.73E-04 1.43E-02 3.82E-05
R 4 8 3 9 6 5 2 7 1

100

W 2.81E-01 5.18E-02 5.38E-04 3.18E-02 5.15E-02 1.75E-02 3.27E-01 1.73E-02 6.72E-01
M 2.57E-05 7.48E-03 8.13E-07 7.29E-03 3.59E-04 3.21E-04 4.38E-06 2.49E-03 5.73E-06
B 6.36E-07 1.94E-04 5.42E-08 5.42E-05 2.88E-05 2.72E-06 5.74E-08 2.77E-05 6.11E-10

SD 5.28E-02 6.53E-01 1.82E-03 4.18E-01 3.15E-02 3.22E-03 3.16E-03 1.31E-01 4.81E-04
R 4 9 2 8 7 5 3 6 1

P3

30

W 2.16E-02 4.17E-04 2.54E-06 3.17E-04 2.16E-03 3.15E-02 5.93E-03 7.93E-05 6.72E-06
M 3.63E-09 2.64E-10 3.72E-07 2.62E-05 3.71E-06 4.71E-06 8.15E-07 4.37E-06 6.84E-13
B 1.22E-11 3.14E-12 5.01E-10 4.83E-08 4.85E-08 1.85E-09 3.15E-12 9.66E-09 0

SD 7.52E-03 8.53E-03 2.17E-02 5.77E-03 3.15E-03 2.71E-02 8.52E-03 1.44E-03 4.37E-06
R 4 2 5 8 9 6 3 7 1

100

W 2.45E-01 2.51E-03 7.18E-05 6.43E-02 4.36E-02 2.58E-01 4.26E-02 9.19E-03 3.85E-03
M 3.81E-08 2.78E-09 3.18E-06 3.17E-04 1.27E-04 2.83E-05 4.27E-06 1.06E-04 2.86E-08
B 2.51E-09 3.22E-10 5.17E-09 1.68E-06 3.19E-06 7.12E-07 1.29E-09 2.40E-07 1.33E-10

SD 4.87E-01 2.56E-02 2.15E-04 1.25E-01 1.78E-01 2.16E-01 2.81E-02 1.56E-02 5.16E-03
R 5 2 4 8 9 6 3 7 1

P4

30

W 78.93 8.18 22.91 9.54 6.19 7.52 5.01 1.19 2.86
M 10.53 1.2794 5.73 0.8659 0.8134 0.5894 4.82E-04 1.08E-01 2.79E-03
B 3.8217 2.81E-02 3.91E-02 1.29E-02 5.28E-03 2.71E-05 2.77E-06 3.23E-03 2.85E-05

SD 9.4521 3.62 8.61 4.28 3.994 2.71E-00 3.82E-01 1.43E+00 3.44E-02
R 9 7 8 6 5 2 1 4 3

100

W 95.62 10.64 34.17 15.85 12.95 11.37 7.83 3.19E+01 8.943
M 11.84 4.26 7.95 3.1854 5.8728 0.8623 3.61E-02 5.92 2.81E-02
B 6.842 3.81E-01 2.18 1.6809 0.7854 3.72E-03 5.87E-05 1.14 5.81E-03

SD 24.81 3.72 2.0823 1.7905 2.6847 3.78 1.9923 8.27 3.85E-01
R 9 4 8 6 5 2 1 7 3

P5

30

W 98.47 95.27 99.15 114.46 119.76 102.54 87.54 39.9 48.6
M 28.65 25.94 44.75 98.72 91.45 82.18 29.58 35.7 38.76
B 19.75 18.75 32.15 30.99 31.58 30.85 24.61 15.8 25.67

SD 44.87 30.98 486.74 1845.62 6254.91 1392.57 196.74 2.08E+03 89.71
R 3 2 9 6 8 7 4 1 5

100

W 123.25 105.89 114.95 156.75 142.68 116.75 95.47 57.5 59.86
M 32.67 29.81 52.68 115.63 99.74 86.53 31.47 37.6 44.52
B 20.64 19.41 36.27 32.16 34.82 33.81 26.91 15.1 38.93

SD 56.14 32.8162 549.62 1974.25 754.38 1473.89 215.48 215.3 162.37
R 3 2 8 5 7 6 4 1 9

P6

30

W 3 3 1 3 7 0 0 0 0
M 0.0008 1.89E-03 8.24E-18 2.35E-09 2.57E-01 0 0 0 0
B 0 0 0 0 0 0 0 0 0

SD 0 6.045955 7.348469 62.7283 18.54724 5.95219 1.06066 0 0
R 3 6 7 9 8 5 4 1 1

100

W 24 21 57 87 23 13 21 1.90E+01 7
M 2.65E-02 1.75E-01 2.64E-04 2.19E-05 2.16E-00 1.75E-15 3.72E-10 8.80E-05 7.83E-08
B 1 1 1 1 3 0 1 0 0

SD 1.65E-01 2.85E-02 1.87E-01 3.28E-02 1.57E-01 3.82E-02 3.16E-02 6.23E-02 5.71E-06
R 8 6 9 4 7 2 5 3 1

The best values are shown in bold.
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Table 3. Comparison of optimizers based on the benchmark functions during 30 run times (B = best, W = worst, M =
average, SD = standard deviation, D = dimension, R = rank) (continued).

Function D [2] This study
GA SA PSO ABC ICA FA RDA L-SHADE IRDA

P7

30

W 13.87 14.56 13.87 13.69 12.54 9.76 9.81 11.75 4.78
M 7.89 10.25 10.57 10.86 10.25 8.46 8.26 9.86 1.75
B 6.54 7.81 7.89 6.47 8.92 7.15 6.38 7.65 2.75E-01

SD 1.584 2.71 1.47 1.5843 1.3672 1.91 2.685 1.36 0.89
R 4 7 8 3 9 5 2 6 1

100

W 18.95 17.24 15.49 15.86 14.74 12.85 10.86 12.85 10.93
M 8.918 11.1288 11.92 11.63 10.54 9.86 9.24 11.76 6.82
B 8.25 8.25 9.63 8.25 8.18 8.82 8.10 10.22 1.85

SD 1.67 2.86 1.75 1.79 1.64 2.56 2.89 3.11 1.52
R 4 6 8 5 3 7 2 9 1

P8

30

W 1.86E-04 1.47E-02 1.68E-03 5.42E-02 1.67E-02 2.72E-04 3.81E-03 4.90E-03 5.82E-05
M 3.72E-05 1.46E-04 5.37E-06 1.48E-04 5.78E-04 6.24E-07 5.87E-05 7.30E-05 3.81E-08
B 2.76E-07 5.81E-06 2.14E-08 3.27E-09 3.11E-08 6.82E-11 5.46E-09 2.91E-06 0

SD 2.81E-03 8.26E-02 3.81E-02 2.64E-02 4.18E-02 1.82E-03 7.53E-04 4.13E-02 3.17E-05
R 7 9 5 3 6 2 4 8 1

100

W 1.53E-02 8.53E-01 2.84E-02 4.17E-01 5.83E-01 8.42E-03 5.17E-02 2.92E-01 3.82E-03
M 1.23E-04 3.32E-06 6.54E-06 1.54E-02 4.83E-02 1.28E-04 4.37E-07 2.42E-02 1.58E-05
B 5.92E-04 1.48E-08 4.79E-07 5.38E-05 5.92E-04 6.19E-05 8.29E-08 2.96E-04 0.84E-12

SD 0.000564 1.03E-05 0.000109 0.284115 0.088928 0.036815 0.000181 2.96E-02 5.82E-06
R 7 2 4 5 8 9 3 6 1

P9

30

W 43.82 42.81 39.81 38.29 43.81 35.92 32.18 19.1 20.85
M 18.36 30.92 22.59 28.11 17.85 29.32 16.931 14.1 12.64
B 17.4938 17.4938 12.4821 22.5918 16.3917 16.3917 8.5474 7.51 5.87

SD 9.461557 4.940765 12.68426 10.67775 18.2485 25.73 20.563 3.56 4.56
R 8 7 4 8 5 6 3 2 1

100

W 52.86 59.15 48.72 51.23 52.19 43.64 42.58 29.6 32.57
M 28.71 34.82 27.91 30.82 24.71 32.81 19.76 17.4 19.84
B 16.83 20.73 18.91 18.16 12.76 14.83 11.56 10.4 10.27

SD 8.745 9.15 7.84 6.32 8.182 7.93 6.15 3.05 8.39
R 6 9 8 7 4 5 3 2 1

P10

30

W 3.82E-02 0.8126 6.81E-01 2.71 1.28 3.88E-03 8.53E-04 9.03E-01 5.82E-06
M 6.32E-04 1.86E-02 4.82E-02 7.81E-02 4.82E-02 5.82E-05 6.26E-07 3.91E-02 6.82E-10
B 1.54E-06 3.66E-04 5.77E-04 2.97E-02 8.31E-02 5.88E-08 1.43E-09 9.90E-03 0

SD 2.78E-02 1.66E-01 3.22E-02 4.37E-01 2.36E-01 6.82E-02 3.82E-03 1.46E-01 4.82E-04
R 4 5 6 8 9 3 2 7 1

100

W 2.867 7.84 2.78 6.34 3.91 0.684 0.523 2.61E+00 1.86E-03
M 2.91E-02 3.82E-01 3.82E-02 4.71E-02 5.81E-02 1.57E-04 5.81E-06 1.91E-01 4.86E-05
B 2.84E-04 1.94E-02 8.24E-03 3.66E-04 2.55E-05 9.51E-06 8.94E-07 9.70E-03 3.86E-07

SD 3.71E-01 4.14E-01 5.11E-02 3.81E-01 2.48E-02 1.753-03 2.51E-02 2.07E-01 4.61E-03
R 5 9 7 6 4 3 2 8 1

P11

30

W 0.85 0.85 0.81 0.43 0.875 0.36 0.89 4.05E-01 5.92E-03
M 5.92E-03 2.81E-03 5.72E-03 6.81E-03 1.92E-04 6.42E-04 8.92E-03 2.86E-03 6.81E-09
B 7.83E-05 6.83E-05 5.82E-04 7.22E-05 7.61E-06 4.91E-06 7.61E-06 1.94E-04 0

SD 0.0438 0.025072 0.001411 0.0619 0.08662 0.071474 0.027377 7.06E-04 5.16E-05
R 7 5 9 6 3 2 4 8 1

100

W 4.81 2.75 7.84 4.92 5.37 2.81 3.97 2.69 5.28E-01
M 2.67E-01 8.43E-01 8.53E-01 5.76E-01 6.89E-01 4.76E-02 1.85E-02 3.45E-01 3.82E-06
B 4.82E-04 4.82E-03 4.11E-03 5.92E-03 3.88E-04 5.82E-04 6.11E-04 1.29E-04 2.66E-10

SD 0.83 0.57 0.0411 0.2119 0.366 0.274 0.377 1.83E-01 4.82E-02
R 4 8 7 9 3 5 6 2 1

P12

30

W 2.51 1.45 8.29E-01 1.25 1.45 1.25 5.82E-02 7.25E-01 5.83E-02
M 5.62E-07 3.78E-02 7.88E-05 3.82E-03 7.82E-05 5.83E-02 6.84E-09 3.91E-05 6.18E-09
B 8.99E-09 5.86E-05 7.81E-06 5.18E-04 4.29E-04 6.23E-04 2.84E-11 2.15E-04 0

SD 0.0048 12.647 1.575753 52.6121 21.88676 26.9302 0.899861 7.30E+00 4.81E-03
R 3 5 4 8 7 9 2 6 1

100

W 18.74 8.95 4.73 9.12 10.96 2.85 0.9372 2.98E+00 1.86
M 1.62E-06 0.3447 2.38E-04 1.54E-02 5.66E-01 9.79E-01 1.26E-07 1.72E-01 5.27E-05
B 6.39E-08 0.0083 7.38E-05 6.38E-04 4.29E-04 6.19E-03 6.39E-08 2.77E-03 2.44E-09

SD 0.138 18.447 11.5753 59.21 45.86 34.02 0.9861 6.15E+00 0.3982
R 2 9 4 6 5 8 3 7 1

Average of Rank 5.130435 6 6.086957 6.73913 6.304348 4.869565 2.956522 5.130435 1.695652
The best values are shown in bold.
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and those of other optimizers. The other algorithms
reveal a set of similarities between their performances.
Among them, L-SHADE functions generally better
than others except IRDA. In this case, ABC is the
worst optimizer. According to high dimensions (Fig-
ure 7(b)), there are some similarities concerning the
e�ciency of optimizers. Although the proposed IRDA
outperforms the others, each of the other algorithms
achieved a comparable result. Followed by IRDA, PSO
achieved the best result. GA exhibited the weakest
behavior, too. Taken together, the proposed IRDA is
completely better than its original idea in both of the
low- and high-dimensional assessments.

In conclusion, the proposed IRDA not only is of
the best rank but also �nds the global optimum in
most of the cases. The statistical analyses con�rm that
the developed methodology is generally better than all
algorithms from the literature.

4.4. Comparison of applied optimizers in the
BLDC motor design problem

To assess the proposed IRDA in a real-world engineer-
ing design problem, a comparative study based on the
BLDC motor was employed. In this subsection, based
on GA and PSO applied by Rahideh et al. [27] and
the COA employed by Azari et al. [19], both of the
proposed RDA and IRDA were considered in making
this comparison. Hence, the design factors associated
with the BLDC motor were benchmarked to evaluate
the best optimal solution found by RDA and IRDA
in this study. A feasible range of designs is given
in Appendix D. Similar to previous treatments, each
optimizer was run 30 times to ensure the reliability of
algorithm results. The �nal results of design factors
are given in Table 4. In all factors except F1, F2,

and F9, the lower value ensures a better capability
for the algorithm. Otherwise, regarding these three
factors, the higher value is more preferable. From
the best optimal results provided, a statistical analysis
based on RDI metric similar to the last subsection was
conducted, too. Hence, the behaviors of all optimizers,
i.e., GA, PSO, COA, RDA, and IRDA, are given in
Figure 8.

Table 4 shows that the proposed optimizers
clearly outperform the previous ones existing in the
literature. Except GA in two factors, RDA and IRDA
achieved the best values among other algorithms.

Figure 8 indicates a set of clear di�erences be-
tween the performance of two considered optimizers
and other algorithms. The behaviors of GA, PSO,
and COA share a set of similarities among them.
However, the PSO is slightly better than GA and COA.

Figure 8. Interval plot for comparing the algorithms for
Brushless DC (BLDC) motor based on Relative Deviation
Index (RDI).

Table 4. Comparison of optimal values of Brushless DC (BLDC) design factors.

No. of factors [27] [19] This study

GA PSO COA RDA IRDA

F1 5 5 5 5.255 5.1566

F2 2 1.9982 1.9551 1.9982 2

F3 0.7 0.6950 0.6912 0.6944 0.6855

F4 0.0130 0.0124 0.0120 0.0116 0.0110

F5 0.0060 0.0058 0.0081 0.002 0.0054

F6 0.0035 0.0034 0.0033 0.002 0.0018

F7 0.001 0.001 0.001 0.001 0.001

F8 0.0595 0.059 0.0592 0.049 0.021

F9 5800000 5784573 5819800 5673183 5800000

F10 0.0756 0.0732 0.0730 0.05 0.068

The best values are shown in bold.
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As such, the behaviors of RDA and IRDA are the
same. However, it can be observed that the developed
IRDA is clearly better than its general idea in this
comparison, too.

5. Conclusion and future remarks

The present paper proposed an enhanced version of
the recently developed Red Deer Algorithm (RDA).
The main contribution here was to introduce a set of
adaptive strategies for the main parameters of RDA
to facilitate the calibration of parameters and ensure
a better interaction between the search phases, i.e.,
exploration and exploitation, in metaheuristics. To
compare the e�ciency of the proposed optimizers, not
only 12 standard benchmarked functions were utilized
but also a real engineering design issue concerning
Brushless DC (BLDC) motor was applied. After
introducing the general idea of RDA and its litera-
ture, the proposed improvement based on adaptive
strategies was detailed. To ensure a fair comparison,
the algorithms' calibration was addressed by Taguchi
method. A comparative study of the best existing re-
sults from the literature and a comprehensive statistical
analysis were carried out to highlight the e�ciency of
the proposed Improved RDA (IRDA). The developed
methodology achieved global solutions in the majority
of previous studies. It can reduce the time consumption
and provide better e�ciency than other algorithms.
According to the results, discussion, and the main
�ndings of this paper, it can be concluded that the
proposed IRDA signi�cantly outperforms its original
idea and other existing algorithms in the literature.

This study can open several new directions for
future works. It is worth employing the proposed IRDA
in di�erent other standard functions and additional
real-world engineering design problems. The proposed
IRDA may be hybridized with other traditional and
recent optimizers to improve its e�ciency. It is
required to test the calibration of parameters for other
engineering applications. Considering the e�ect of
tuning of IRDA in other cases would be interesting as
a continuation of this study.
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Appendix A

The Pseudo-code of RDA is shown in Figure A.1.

Appendix B

The Pseudo-code of IRDA is shown in Figure B.1.

Appendix C

The standard benchmarked functions as shown in Table
C.1.

Appendix D

The Variables of BLDC motor as shown in Table D.1.
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Figure A.1. Pseudo-code of RDA.

Figure B.1. Pseudo-code of IRDA.



A.M. Fathollahi-Fard et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1750{1764 1763

Figure B.1. Pseudo-code of IRDA (continued).

Table C.1. Standard benchmarked problems [5].

No. of
problems

Function Formulation C Range D

P1 Sphere f(x) =
nP
i=1

x2
i U,S [�100; 100] n = 30; 100

P2 Schewfel 2.22 f(x) =
nP
i=1
jxij+ nQ

i=1
jxij U,N [�10; 10] n = 30; 100

P3 Schwefel 1.2 f(x) =
nP
i=1

(
iP
j=1

xj)2 U,N [�100; 100] n = 30; 100

P4 Schwefel 2.21 f(x) = maxfjxij; i = 1; :::; ng U,N [�100; 100] n = 30; 100

P5 Rosenbrock f(x) =
n�1P
i=1

(100(xi+1 � x2
i )

2 + (xi � 1)2) U,N [�30; 30] n = 30; 100

P6 Step f(x) =
nP
i=1

(bxi + 0:5c)2 U,S [�100; 100] n = 30; 100

P7 Quratic f(x) =
nP
i=1

i� x4
i + random[0; 1) U,S [�1:28; 1:28] n = 30; 100

P8 Greiwank f(x) = 1
4000

nP
i=1

x2
i �

nQ
i=1

cos( xip
i
) + 1 M,N [�600; 600] n = 30; 100

P9 Rastrigin f(x) = x2
i � 10 cos(2�xi) + 10 M,S [�5:12; 5:12] n = 30; 100

P10 Ackley f(x) = �20 exp(�0:2

s
nP
i=1

x2
i

1
n )� exp( 1

n

nP
i=1

cos(2�xi)) + 20 + e M,N [�32; 32] n = 30; 100

P11 Penalised function 1

f(x) = �
nf10sin2(�y1) +

n�1P
i=1

(yi � 1)2

�[1 + 10sin2(�yi+1)]g+
nP
i=1

u(xi; 10; 1000; 4)

s.t.

yi = 1 + (xi + 1)=4

u(xi; a; k;m) =

(k(xi � a)m i > a

0 �a � xi � a
k(�xi � a)m xi < a

)
M,N [�50; 50] n = 30; 100

P12 Penalised function 2
f(x) = 0:1fsin2(3�x1) +

n�1P
i=1

(xi � 1)2[1 + sin2(3�xi+1)]

+(xn � 1)2 � [1 + sin2(2�xn)]g+
nP
i=1

u(xi; 5; 100; 4)

M,N [�50; 50] n = 30; 100

Note: C = Characteristic, U = Unimodal, M = Multimodal, S = Separable, N = Non-Separable, D = Dimension.
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Table D.1. Design factors of BLDC motor [19].

No. of factors Notation De�nitions Range

F1 P Number of pole pairs [1, 6]
F2 Ac (mm2) Cross partitioning zone of winding [0.1, 2]
F3 � Pole-arc per pole-pitch ratio [0.5, 1]
F4 lm (m) Magnet thickness [0.001, 0.015]
F5 ly (m) Stator main thickness [0.002, 0.01]
F6 lw (m) Winding thickness [0.001, 0.0055]
F7 lg (m) Mechanical air gap [0.001, 0.004]
F8 rr (m) Rotor radius [0.005, 0.1]
F9 Jcu (Am�2) Current density [3� 106; 6� 106]
F10 ls (m) Wire gauge and stator axial length [0.3, 2]

Biographies

Amir Mohammad Fathollahi-Fard was born and
raised in Sari, Iran. He received his BSc degree (2016)
and MSc degree (2018) in Industrial Engineering from
University of Science & Technology of Mazandaran,
Behshahr, Iran. He is currently a PhD candidate
in Industrial Engineering in Amirkabir University of
Technology, Tehran, Iran. He developed two novel
metaheuristics, namely, Red Deer Algorithm (RDA)
and Social Engineering Optimizer (SEO) in the early
days of his bachelor and master degree. In addition
to metaheuristics and optimization algorithms, the
main focus of his research is in the area of healthcare
management, supply chain management, green and
sustainable logistics. He has published more than 50
scienti�c papers in high-ranked journals such as ASOC,
JCLP, ANOR, EAAI, CAIE, INS and NCAA etc.

Milad Niaz Azari was born in Babol, Iran, in 1984.
He received his BS degree in Electrical Engineering
from Noshirvani University of Technology, Babol, Iran
in 2007. He graduated with MS degree in the de-
partment of Electrical Engineering, Amirkabir Univer-
sity of Technology, Tehran, Iran in 2009. Also, he
graduated with PhD degree of Electrical Engineering
at Amirkabir University of Technology, Tehran, Iran

in 2013. Since 2015, he has been at University of
Science and Technology of Mazandaran, Behshahr,
Iran, as an Assistant Professor in the department
of Electrical Engineering. His areas of interest are
electrical machines design and power electronics as well
as metaheuristic algorithms.

Mostafa Hajiaghaei-Keshteli was born and raised
in Babol, Iran. He earned his BSc degree from
Iran University of Science & Technology, Tehran,
Iran (2004), MSc degree from University of Science
& Culture, Tehran, Iran (2006), and PhD degree
from Amirkabir University of Technology, Tehran, Iran
(2012), all in Industrial Engineering. He is currently
an Associate Professor in Industrial Engineering at
University of Science & Technology of Mazandaran,
Behshar, Iran. He has over 10 years of experience
in Business Development, System Analysis, Inventory
and Project Management. He also has worked for
many corporations in Iran and has held the positions
of consulter, planning and project manager and VP.
The main focus of his research is in the area of in-
ventory control, supply chain network, transportation
and meta-heuristics. He has published more than 100
scienti�c papers in high-ranked journals such as ESWA,
CAIE, KNOSYS, JCLP, INS, NCAA, IEEE and ASOC
etc.




