
Scientia Iranica D (2020) 27(3), 1333{1351

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Constructing automated test oracle for low observable
software

M. Valueian1, N. Attar, H. Haghighi, and M. Vahidi-Asl�

Faculty of Computer Science and Engineering, Shahid Beheshti University, G.C, Tehran, P.O. Box 1983963113, Iran.

Received 27 July 2018; received in revised form 26 January 2019; accepted 10 August 2019

KEYWORDS
Software testing;
Test oracle;
Machine learning;
Arti�cial neural
network;
Software observability.

Abstract. The application of machine learning techniques for constructing automated
test oracles has been successful in recent years. However, existing machine learning based
oracles are characterized by a number of de�ciencies when applied to software systems with
low observability, such as embedded software, cyber-physical systems, multimedia software
programs, and computer games. This paper proposes a new black box approach to construct
automated oracles that can be applied to software systems with low observability. The
proposed approach employs an Arti�cial Neural Network algorithm that uses input values
and corresponding pass/fail outcomes of the program under test as the training set. To
evaluate the performance of the proposed approach, extensive experiments were carried out
on several benchmarks. The results manifest the applicability of the proposed approach to
software systems with low observability and its higher accuracy than a well-known machine
learning based method. This study also assessed the e�ect of di�erent parameters on the
accuracy of the proposed approach.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Due to the considerable size, complexity, distribu-
tion, pervasiveness, and criticality of recent software
systems, producing faultless software seems to be
an unattainable dream. Furthermore, the increasing
demand for software programs and competition in
software industry lead to short time to market, which
increases the likelihood of shipping faulty software.
These facts highlight the signi�cance of quality as-
surance activities in improving software quality and

1. Present address: Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran.

*. Corresponding author. Tel.: +98 21 29904131
E-mail addresses: valueian@ce.sharif.edu (M. Valueian);
n attar@sbu.ac.ir (N. Attar); h haghighi@sbu.ac.ir (H.
Haghighi); mo vahidi@sbu.ac.ir (M. Vahidi-Asl)

doi: 10.24200/sci.2019.51494.2219

reliability, among which software testing plays a vital
role.

Software testing is known as a labor-intensive and
expensive task. The huge cost, di�culty, and inaccu-
racy of manual testing have motivated researchers to
seek for automated approaches, which aim to improve
the accuracy and e�ciency of the task. As a con-
sequence, there has been a burgeoning emergence of
software testing methodologies, techniques, and tools
to support testing automation in recent years.

Among di�erent testing activities, test data gen-
eration is one of the most e�ective generations that
aims to create an appropriate subset of input val-
ues to determine whether a program produces the
intended outputs. The input values should satisfy
some testing criteria such that the testers have a
dependable estimation of the program reliability [1]. To
reduce laboriousness, inaccuracy, and intolerable costs
of manual test data generation, a signi�cant amount of



1334 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

research has been dedicated to automating the process
of test data generation [2,3].

Despite great advances in di�erent software test-
ing domains, e.g., test data generation, one impor-
tant challenge has been overlooked by academia and
industry. The question arises, \who will evaluate
the correctness of the outcome/behavior of a software
program according to the given test input data?" The
mechanism of labeling program outcomes, as pass or
fail, subjected to speci�c input values is referred to as
\test oracle" [4].

Providing an accurate and precise test oracle is
the main prerequisite for achieving robust and realistic
software testing techniques and tools. This essential
aspect of software testing, left as an open problem in
many works, is facing serious challenges. Typically,
in real world applications, there might be no common
test oracle except human assessment on pass or fail
outcome of a program run [5]. One primary challenge
of manual test oracles is the diversity and complexity
of software systems and platforms, each of which has
various types of input parameters and output data.
Moreover, due to demanding business expansion and
thanks to advances in communications technologies,
software components may be produced simultaneously
by numerous developers, perhaps located in far apart
places. This makes the manual judgment on the
correctness of diverse and complicated components
inaccurate, incomplete, and expensive.

The mentioned challenges emphasize the need for
automatic test oracles. A typical automatic test oracle
contains a model or speci�cation by which the outcome
of a Software Under Test (SUT) could be assessed.
Figure 1 illustrates the structure of a conventional
automated test oracle. As shown in the �gure, the
test inputs are given to both SUT and automated
test oracle. Their outputs are compared with an
appropriate comparator, which decides whether the
outcome of the SUT, subjected to the given test inputs,
is correct.

An automated test oracle can be derived from the
formal speci�cation of the SUT. Usually, there is a lack
of the full formal speci�cation of the SUT features.
In these situations, this can use a partial test oracle
that can assess the program behavior with respect to
a subset of test inputs [4]. One approach to producing

Figure 1. The overall view of a conventional test oracle.

a partial oracle is the application of metamorphic
testing, i.e., building the test oracle based on known
relationships between expected behaviors of the SUT.

Recently, Machine Learning (ML) methods have
been employed to build test oracles. A typical ML-
based test oracle involves two main steps: choosing
an appropriate learning algorithm for constructing a
learning model and preparing an appropriate training
dataset from SUT's historical behavior, represented as
input-output pairs; this process is illustrated in Fig-
ure 2. According to the �gure, the constructed model
re
ects the correct behavior of the SUT assuming that
the model is of 100% precision.

Most of ML-based approaches model the rela-
tionships between a limited number of inputs and the
corresponding output values as the training set. The
idea behind these approaches is that the ML-based
oracles generalize the limited relationships, involved
in the training set, to the whole behavior of the
SUT according to its input space. In other words,
they produce expected results for the remaining inputs
based on what they learned in the training phase.
In the testing phase, the inputs of a test set are
given to both SUT and test oracle. The expected
results, generated by the oracle, are compared with the
actual outputs of the SUT. If the results are similar or
close together (based on a prede�ned threshold), the
outcome is labeled passed; otherwise, the execution is
considered to be failed. The choice of the ML method
may a�ect the precision of the test oracle.

Some of ML-based works are based on classifying
the software behavior by using input/output pairs [6]
and, sometimes, along with execution traces [6{8]
as input features of the classi�er. Neither of the
mentioned methods is applicable to low observable
software systems. The reason is that, in these systems,
the expected results and actual outputs are not easily
representable. To be more precise, it is not easy to
observe and understand the behavior of low observable
systems in terms of their outputs, e�ects on the
environment, and other hardware and software compo-
nents. Sometimes, even if the outputs are observable,
their precise encoding or representation, which is a
prerequisite for comparison, is di�cult. Therefore, in
the cases categorized below, comparing the expected
and actual results is inaccurate or even impossible:

1. Embedded software testing, in which the software
has a direct e�ect on a hardware device(s) that
limits the observability of the software [9]. In these

Figure 2. A block diagram of a Machine Learning (ML)
based test oracle.



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1335

situations, assuming that the hardware works
correctly, most of the testers prefer to evaluate
embedded software by observing the behavior of
the hardware;

2. Multimedia software programs, e.g., image editors,
audio and video players, and computer games,
where typically there is no scalar (and even
structured) output. In these programs, the
types of outputs are commonly unstructured or
semi-structured [10]. Therefore, encoding these
outputs is mainly di�cult, inaccurate, or even
infeasible, while labeling them with pass/fail is
usually feasible;

3. Graphical User Interface (GUI) based programs, in
which users are faced with various graphical �elds
instead of neat values. Unlike the previous case,
these programs have structured outputs. However,
their encoding to numerical values is a challenging
process. In these situations, testers usually label
the outputs with pass/fail by taking the opinion of
domain experts;

4. Compatibility testing: In this case, the goal is to
evaluate the compatibility of the SUT's behavior
on di�erent platforms [11]. For example, the
compatibility testing of web-based applications
involves evaluating the rendered web pages on
di�erent browsers. Encoding, representing, and
comparing actual results on di�erent platforms
are too di�cult and labor-intensive, while labeling
them with pass/fail is much simpler.

There are also some other situations where the
existing methods are not applicable. For instance,
consider the cases in which explicit historical data,
represented as input-output pairs, are not available,
while there are documents that inform us about failure-
inducing inputs or scenarios. The failure-inducing
inputs refer to a subset of input values that cause
the program to behave incorrectly. Similarly, failure-
inducing scenarios address those conditions in which
the program generates unexpected results. In many
industrial software projects, there exist test reports
related to previous iterations of the test execution
that indicate pass/fail scenarios. These reports involve
historical information and, therefore, can be useful to
construct appropriate test oracles, although they do
not include input-output pairs. As another example,
consider documents produced by end users during the
beta testing process of a software product, containing
valuable pass/fail scenarios.

As an idea, in all of the mentioned situations,
the relationships between inputs and corresponding
pass/fail behaviors (instead of the corresponding
outputs) of the program can be modeled. In this way,
without using concrete output values, this study may

achieve a test oracle to predict the pass/fail behavior
of the program for the given test inputs during the
testing phase.

Based on the above idea, in a conference pa-
per [12], a learning based approach is employed, which
merely requires input values and the corresponding
pass/fail outcomes/behaviors as the training set. The
training set is used to train a binary classi�er that
serves as the program's test oracle. Later, during the
testing phase, several input parameters for which the
corresponding execution outcome is unknown are given
to the classi�er. The classi�er labels the outcome as
pass or fail. Figure 3 illustrates an overview of our
approach using Arti�cial Neural Network (ANN) as the
binary classi�er.

Besides solving the mentioned problems, the pre-
sented approach in [12] is characterized by the following
advantages:

� It is based on black-box testing. This means that
one needs neither the program source code nor
the design documents of the SUT to generate an
automated oracle;

� Regarding the testing phase of the proposed ap-
proach, shown in Figure 3, there is no need to
execute the SUT to compare its output with the
oracle's output; as mentioned earlier, only the input
data is required in the testing phase. This is
advantageous speci�cally when there is no access to
the SUT or when software execution is a time and
cost consuming or risky work. These considerations
are usually seen in many low observable and safety-
critical systems;

� The test oracles presented in [1,13] are approxima-
tors rather than classi�ers. They assume that each
of the output components in the input output pairs
given to the SUT in the training phase is correct
with respect to the corresponding input, or in other
words, the oracle model constructed by the given
inputs in the test set re
ects the intended behavior
of the SUT. However, this assumption introduces
a considerable limitation when preparing historical
data for the training phase since those input values
inducing unexpected results must be discarded. In

Figure 3. The process of building and using an
automated test oracle based on the proposed approach.



1336 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

contrast, since the proposed approach considers
both passing and failure-inducing inputs for model
construction, it does not su�er from this limitation.

It should be mentioned that this paper is an extended
version of [12], and some parts of this paper have
already been presented in [12]. In comparison to [12],
the extensions in this paper are given below:

� This study conducts various experiments to evaluate
the proposed approach in terms of the following
parameters: percentage of passing test cases in the
training dataset, Code Coverage Percentage (CCP)
of the training dataset, training dataset size, and
con�guration parameters of ANN. According to the
experiments, these parameters have major impacts
on the accuracy of the constructed oracle;

� In [12], benchmarks are only considered with integer
input values. However, there are many situations
where low observable systems (e.g., embedded soft-
ware and cyber-physical systems) accept signals
instead of ordinary input values such as integers.
In these situations, binary �les play the role of
inputs for the embedded software. These kinds of
inputs are not suitable for the classi�er and make
it unreasonably complex with respect to the ANN
size. In this paper, this complexity decreases by
reducing the size of binary �les for the classi�er. In
order to demonstrate the capability of the proposed
approach to programs with input signals, three
related programs are added to our benchmarks;

� Literature review is updated according to the studies
that have been done in recent years.

The remaining parts of the paper are organized as
follows. Section 2 presents a review of related works
and a brief background of neural networks needed to
read the paper. Section 3 describes the details of the
proposed approach. Section 4 gives the experimental
results and analysis. Section 5 includes conclusion and
some directions for future work.

2. Literature review

2.1. Related works
Di�erent approaches have been proposed for automat-
ing test oracles based on available software artifacts.
Formal oracles use the existing formal speci�cation of
the systems' behavior, typically based on the mathe-
matical logic. Formal speci�cation languages can be
roughly categorized into two groups:

1. Model-based speci�cation languages, which include
states and operations where pre-conditions and
post-conditions constrain the operations. Each
operation may limit an input state by some pre-
conditions, while postconditions de�ne e�ects of

the operation on the program state. Peters and
Parnas proposed an algorithm to generate a test
oracle from program documentation [14]. In their
approach, the documentation is written in fully
formal tabular expressions;

2. State transition systems, which have graphical
syntax including states and transitions between
them. Here, states include abstract sets of
concrete states of the modeled system. Gargantini
and Riccobene applied Abstract State Machines
(ASMs) as an oracle model to predict the expected
outputs of the SUT [15].

Although, formal speci�cation-based oracles are highly
accurate and precise, their applicability is limited.
Generally, for most of the software products, there
exists no formal speci�cation to construct an adequate
and complete test oracle. Furthermore, in most situa-
tions, it is costly and di�cult to write documentations
of an SUT in a formal way.

Implicit oracles are generated using some implicit
knowledge to evaluate the behavior of the SUT. Im-
plicit oracles can be used to detect anomalies such
as bu�er over
ow, segmentation fault, etc. that may
cause programs to crash or show execution failure [16{
18]. Therefore, there is no need for any formal speci�-
cation to generate this kind of oracle, and it can be used
for almost all programs. For example, Walsh et al. [19]
proposed an automated technique to detect some types
of layout failures in responsive web pages using the
implicit knowledge of common responsive failure types.
In this approach, they distinguished between intended
and incorrect behaviors of a layout by checking ele-
ments' positions relative to each other in di�erent view-
port widths. For example, if two elements of a layout
always overlap in di�erent viewports, the e�ect is con-
sidered intended. If the elements overlap infrequently,
it may produce a responsive layout failure. According
to the empirical study in [19], their approach detected
33 distinct failures in 16 out of 26 real-world web pages.

There are some approaches that use semi-formal
or non-formal documents, data sets collected during
system executions, properties of SUT, etc. to produce
an oracle model. Carver and Lei [20] proposed a
test oracle for message-passing concurrent programs
using Labeled Transition Systems (LTSs). The main
challenge of using stateful techniques to generate an
oracle for these kinds of programs is the state explosion
problem. Therefore Carver and Lei [20] proposed a
stateless technique for generating global and local test
oracles from LTS speci�cation models. Local oracles
are used to test individual threads without testing the
system as a whole. However, a global test oracle tests
a global relation between the model of the system and
its implementation using test inputs generated from a
global LTS model of the complete system. Therefore,



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1337

using local test oracles decreases the number of global,
executed test sequences.

Metamorphic testing is used through some ap-
proaches to produce a partial oracle. This method
utilizes metamorphic relations. For instance, if func-
tion f(x) = sin(x) is implemented as a part of the
SUT, a metamorphic relation would be sin(� � x) =
sin(x) that must be held across multiple executions.
The metamorphic relations are not necessarily limited
to arithmetic equations. For example, Zhou et al.
proposed an approach for testing search engines, e.g.,
Google and Yahoo!, using metamorphic relations [21].
They built metamorphic relations in terms of the
consistency of search results. Discovering metamorphic
relations is an important step to construct a test oracle.
Automating this step is the most challenging part of
the metamorphic testing. Simons has constructed a
lazy systematic unit-testing tool called JWALK [22],
in which the speci�cation of a system is lazy and
eventually learned by the interaction between JWALK
and the developer. This might be a convenient tool to
extract metamorphic relations.

Go� proposed a white-box method to evaluate
software behavior in his thesis [23]. Moreover, he
and his colleagues proposed two approaches to gen-
erate test oracles [24{27]. In the �rst work, oracle is
generated from software redundancy [24,26,27], which
is considered as a speci�c application of metamorphic
testing [28]. They used the notion of cross-checking
oracle. The idea behind this oracle is that two similar
sequences of method calls are supposed to behave
equivalently; however, their actual behaviors might be
di�erent because of a faulty implementation. There-
fore, if an equivalent check of two similar sequences
fails, it is concluded that there is a fault in the code.
In order to �nd identical sequences in the level of
method calls, they proposed a search-based technique
to synthesize sequences of method invocations that
were equivalent to a target method within a �nite set of
execution scenarios [29]. Considering 47 methods of 7
classes taken from the Stack Java Standard Library and
the Graphstream library, they automatically synthe-
sized 123 equivalent method sequences of 141 manually
identi�ed sequences. It is implied that their approach
generates 87% of equivalent method sequences, au-
tomatically. They improved their previous work by
synthesizing more equivalent method calls for relevant
components of the Google Guava library [30].

In the second approach, Go� et al. [25] proposed
a technique that automatically creates test oracles for
exceptional behaviors from Javadoc comments. This
method utilizes natural language processing and run-
time instrumentation and is supported by a tool called
`Toradocu'.

Some of program behaviors can be automatically
evaluated against the extracted/detected invariants.

Program invariants are properties that must be held
during program execution. For example, a loop invari-
ant is a condition that is true at the beginning and
end and in each iteration of the loop. Invariants can
be included in test oracles considering that invariant
detection is an essential part of this method. Ernst
et al. proposed a ML-based technique to detect invari-
ants [31]. They implemented the Daikon tool for this
purpose [32].

Elyasov et al. [33] proposed a new type of auto-
mated test oracles, called Execution Equivalence (EE)
invariants. These invariants can be extracted from
software logs, which include events and states of the
software. They presented a tool called LOPI (LOg-
based Pattern Inferencer) for mining EE-invariants.
They also compared Daikon with LOPI on some bench-
marks. According to the experiments, the e�ectiveness
of EE-invariants is compared to the ones found by
Daikon.

N-version programming can be applied to produce
an oracle model, where software is implemented in
di�erent ways by di�erent development teams, but with
the same functionality. Each of the software versions
may be seen as a test oracle for the others. This
solution is expensive because each version must be
implemented by a di�erent development team. Fur-
thermore, there is no guarantee for one implementation
to be fault-free to be a reference oracle model for
the other versions. In order to decrease the cost of
N-version programming, Feldt proposed a method to
generate multiple software versions automatically using
genetic programming [34].

As another solution to the oracle problem, the
notion of decision table was used in [35] just for Web
Applications (WAs). In this work, a WA is considered
composed of pages as a test model for both client
and server side. Decision table is a representation of
WA behavior. It contains two main parts: Condition
Section (which is the list of combinational conditions
according to inputs) and Action Section (which is the
list of responses to be produced when corresponding
conditions are true). Table 1 illustrates a decision table
template. In this table, the Input Section demonstrates
conditions related to Input Variables, Input Actions,
and State Before Test, while, in the Output Section, the
actions associated with each condition are described
by Expected Results, Expected Output Sections, and
Expected State After Test. At the end of the execution
of each test case, a comparator compares the actual
results against the expected values of output variables,
output actions, exceptions, and the environment state
obtained after the test execution.

Memon et al. applied automated planning to gen-
erate oracle models for GUIs [36]. Their models include
two parts: Expected-state generator and veri�er. In
order to generate expected-state, they used a formal



1338 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

Table 1. Decision table template [55].

Variant

Input section Output section
Input

variables
Input

actions
State

before test
Expected

results
Expected

output sections
Expected

state after test

... ...

model of GUI, which is composed of GUI elements and
actions, in which actions are displayed by preconditions
and e�ects. This model is derived from speci�cations.
Therefore, this approach is feasible if there exist ap-
propriate speci�cations. When a test case runs, the
actual values of properties for an element or elements
are known. At this moment, the veri�er can compare
these values against the expected values to determine
if they are equal. Therefore, the veri�er is a process
that compares the expected state of the GUI with the
actual state and returns a verdict of equal or not equal.

Last et al. demonstrated that data mining models
could be employed for recovering system requirements
and evaluating software outputs [37]. To prove the
feasibility of the approach, they applied Info Fuzzy
Network (IFN) as a data mining algorithm.

Zheng et al. proposed a method to construct
an oracle model for web search engines [38]. They
collected item sets that include queries and search
results. Then, they applied the association analysis
technique to extract rules from the items. The derived
rules play the role of a pseudo test oracle, which
means that by giving new search results, the mentioned
approach detects the search results that violate the
mined rules and presents them to testers for manual
judging.

Singhal et al. employed the decision tree algo-
rithm to create oracle models [39]. They utilized
code predicates to recognize input features to construct
a decision tree. They applied this approach to the
triangle benchmark program, where the leaves of the
tree are labeled with the triangle classes (equilateral
triangles, isosceles triangles, scalene triangles, and
invalid triangles).

Wang et al. utilized Support Vector Machine
(SVM) as a supervised machine learning algorithm
to train an oracle model [40]. They annotated the
program code of SUTs by Intelligent Test Oracle
Library (InTOL) to collect test traces according to
procedure calls. They extracted features from each test
trace as an input for the SVM algorithm and, then,
used the constructed SVM model as the test oracle.

Vanmali et al. proposed an oracle using ANN to
test a new version of software [41]. Their methodology
is based on black-box testing. It is assumed that the
functions existing in the previous version are still pre-
served in the new version. Their training set includes

input-output mappings from the previous version of the
software. They used prede�ned thresholds to compare
the actual result of the new version and the estimated
expected output of the ANN.

Zhang et al. proposed an oracle to test SUTs
that work as classi�ers [42]. For example, the PRIME
program, which is used in their evaluations, is a pro-
gram that works as a classi�er. It determines whether
the input number is a prime number. Therefore,
the output of the program is a member of the set
fPRIM;NOT PRIMg. They used a probabilistic
neural network as an oracle to test these kinds of
SUTs. It is worth mentioning that they limited SUT to
classi�cation problems, while the method can be used
for di�erent types of software.

Almaghairbe and his colleagues [43] proposed test
oracles by clustering failures. They utilized anomaly
detection techniques using software's input/output
pairs. They did the experiments based on the assump-
tion that failures tended to be in small clusters. In
the next work [44], they extracted dynamic execution
traces using Daikon and used them along with related
input/output pairs in order to improve the accuracy
of the approach. Moreover, Almaghairbe and Roper
applied classi�cation methods to evaluate the behavior
of the software [6]. In another work, LO et al. [7]
proposed a method to classify software behavior by
extracting iterative patterns from execution traces. In
addition, Yilmaz and Porter [8] proposed a hybrid
instrumentation approach that uses hardware counters
for collecting program spectra to train a decision tree
classi�er in order to classify the software behavior.

Shahamiri et al. exerted single neural network to
build oracle models aiming to test a program's decision-
making structures [45] and verify logical modules [46].
Both decision rules and logical modules were modeled
using the neural network technique.

In [13], an idea was presented to use multi
neural networks for constructing test oracles. The
proposed scheme includes an I/O relationship analysis
to create the training dataset, train ANNs, and test
the constructed ANN as an automated oracle. In [1],
Shahamiri et al. [46] showed how multi neural network
could improve the performance of a test oracle on more
complicated software, with multiple outputs, compared
to their previous work. To this end, a separate
ANN was constructed for each output. Therefore, the



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1339

complexity of the SUT was distributed over several
ANNs, and the ultimate oracle was composed of these
ANNs.

The main di�erence between the idea in [1] and
ours is the approach of composing the elements of
datasets, an essential issue that has a signi�cant impact
on the ANN learning process and its precision. In
our approach, there is no need to employ multi neural
networks because the software's concrete output values
are not included in our datasets. For each input vector,
a single value is assigned, which is the passing or failing
state of the software after running the SUT with that
input vector.

Some of the existing ML-based oracles such
as [1,13] are constructed based on test sets containing
a large number of test cases, each of which includes
inputs and expected outputs. The oracle learns how
to produce the desired outputs. The next step is
comparing the desired outputs with the actual out-
puts, generated by the SUT, according to prede�ned
thresholds. If the di�erence is less than the prede�ned
threshold, the actual output will be considered to be
correct. Otherwise, it would be labeled as failure.
In addition, some of the existing approaches, such
as [6{8], consider outputs as input features of the ML
method to classify the software behavior. Although
these proposed oracles can work on speci�c programs,
they su�er from the following weak points:

� These methods cannot be applied to systems with
low observability;

� Some works such as [1,13] that generate actual
outputs and compare them with expected results
cannot guarantee that the prede�ned thresholds
are appropriate. This limitation highly a�ects the
assessment of the constructed test oracle;

� Most existing approaches assume that the data
samples given in the training phase are all correct.
Based on this assumption, the constructed oracle
only re
ects the correct behavior of the SUT. Since
they do not consider failing test cases, they have no
idea about failing patterns of the code. Therefore,
due to the lack of failing patterns, their model's
approximations are likely to be imprecise;

� The mentioned approaches have to execute the SUT
in order to achieve outputs required for evaluat-
ing the software behavior; however, the proposed-
method in this paper does not need to execute the
SUT at least in the testing phase.

The proposed approach overcomes these de�cien-
cies: It applies to systems that have low observabil-
ity and/or produce unstructured or semi-structured
outputs. Furthermore, since we considered pass/fail
outcome/behavior of an SUT rather than its expected
output values to train a binary classi�er, there would

be no need for thresholds or comparators. This
signi�cantly increases the accuracy of the constructed
test oracle. In addition, we do not use outputs of the
SUT in order to evaluate it. Therefore, there is no
need to perform the software, which is a costly and
sometimes risky operation. Moreover, the proposed
test oracle is built according to both the correct and
incorrect behaviors of the SUT.

2.2. Arti�cial Neural Network (ANN)
In recent years, a wide variety of ML methods have
been proposed that can be used to discover hidden
knowledge from data. Among many categories of
industrial-strength ML algorithms, ANN has attracted
much attention over past few years. According to [47],
an ANN is a computational system that consists of
elements, called units or nodes, whose functionality is
based on biological neurons. As illustrated in Figure 4,
each neural cell consists of two important elements:

1. Cell body, which includes the neuron's nucleus. It
is worth noting that the computational tasks take
place in this element;

2. Axon, which can be seen as a wire that passes an
activity from one neuron to another.

Furthermore, each neuron receives thousands of signals
from other neurons. Eventually, these incoming signals
reach the cell body. They are integrated together in
the cell body. If the resulting signal is more than a
threshold, this neuron will �re and send signal to the
forward neurons [47].

The main idea of the ANN algorithm is inspired
by biological neural systems. Each unit or node
in ANN is equivalent to a biological neuron. Each
node receives inputs from other nodes or external
resources. Moreover, each input is associated with
some weight, which indicates the importance of that
input. The node applies a function to the weighted
sum of its inputs. This function is called \Activation
Function", the result of which is the output of the node.
The structure of each node in ANN is illustrated in
Figure 5. The purpose of the activation function is
to add a non-linearity feature to the node's output.
Since most of the real-world data are non-linear and
we intend to learn these non-linear representations,

Figure 4. A biological neural cell.



1340 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

Figure 5. Node structure in Arti�cial Neural Network (ANN).

activation functions are applied. Figure 6 illustrates
some activation functions that are useful in practice.

ANN can solve complex mathematical problems
such as stochastic and nonlinear problems using simple
computational operations. Another feature of ANN
is its self-organizing capability. This feature enables
ANN to use the knowledge of previous solutions in
order to solve current problems. The ability of ANN in
comparison with old mathematical methods are:

1. Parallel and high speed processing;

2. Learning and adapting with the environment of the
problem [48].

Therefore, ANN is used as our classi�er in the
rest of this paper. In the following subsection, the

Figure 6. Commonly used activation functions.

type of the neural network used in the experiments is
described.

2.2.1. Feed-forward neural network
The feed-forward neural network is the simplest type of
ANNs. It contains multiple nodes arranged in di�erent
layers. The nodes in each layer are fully connected
to the nodes in the next layer. All connections are
associated with some weights. Figure 7 illustrates an
example of a feed-forward neural network. A feed-
forward neural network consists of three types of layers:

� Input layer, which includes nodes whose inputs are
provided from outside resources;

� Hidden layer, which includes nodes that perform
computational tasks on the outputs of the input
layer. A feed-forward neural network has a single
input and a single output layer, but zero or more
hidden layers;

� Output layer, which includes nodes that are re-
sponsible for computational tasks and transferring
information from the network to the outside world.

It is worth noting that feed-forward neural networks
with no hidden layers and at least one hidden layer

Figure 7. An example of feed-forward neural network.



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1341

are called single layer perceptron and multi layer
perceptron, respectively.

As mentioned in the previous section, the weights
that are associated with inputs of a speci�c node
illustrate the importance of each input to that node.
Therefore, the main challenge of using ANN is how to
calculate optimal weights of connections between nodes
in order to produce the desired output. The process of
assigning optimal weights to the connections is called
the training phase of ANN. In the next subsection, the
algorithm that is utilized to train ANN is introduced
in this paper.

2.2.2. Back-propagation algorithm
Back-propagation is one of the several ways to train
ANN. It falls in the category of supervised learning al-
gorithms, meaning that it learns from labeled training
data. This means that we know the expected labels for
some input data.

Initially, the weights of all edges are randomly
assigned. Then, for each input vector in the training
dataset, ANN calculates the corresponding output.
This output is compared with the desired label in the
training set and the error is propagated back to the
previous layer. The weights are adjusted according to
the propagated error. This process is repeated until
the error is less than the prede�ned threshold. When
the algorithm terminates, the ANN is learned. At this
point, ANN is ready to produce output labels for new
inputs.

3. The proposed method

To resolve the de�ciencies of the existing ML-based
test oracles, a binary classi�er has been applied to two
classes of passing and failing input test data. The
constructed oracle models the relationships between
the inputs and the corresponding pass/fail outcomes
of a given program.

Our training data can be provided from di�er-
ent resources that have already labeled a subset of
program inputs as pass/fail according to the program
outcome/behavior. For example, these resources could
be human oracles, and documents or reports indicating
passing/failing scenarios in the previous software ver-
sions. Since the cost of some of these resources could
be non-trivial, attempt is made to train the model with
as small as possible dataset.

To provide an appropriate dataset, we seek for the
available training resources. For example, we may build
the dataset from both the available regression test suite
and human oracles. For the latter case, we run SUT
with some random input data and ask human oracle(s)
or domain experts to label the outcomes as pass/fail.
Typically, in real-world systems, the number of failing
runs is less than the passing ones. Nevertheless, in

our experiments, various datasets are considered with
various ratios of passing and failing test data to analyze
the sensitivity of the proposed approach in terms of
di�erent ratios.

The proposed approach has three main phases
that are detailed in the remaining parts of this section.
The 
owchart of the approach is shown in Figure 8.

3.1. Data preparation
The collected dataset includes inputs and the corre-
sponding execution outcomes. Suppose that the SUT
has n input parameters. The inputs can be organized
as an input vector X, shown by Eq. (1), where feature
xi represents the ith input parameter of the SUT with
n input parameters:

X =< x1; x2; x3; � � � ; xn > : (1)

The set of all possible input vectors, represented
by T in Eq. (2), can be shown as a Cartesian product
of every input parameter domain, D(xi) (for i: 1 � � �n):

T = D(x1)�D(x2)� � � � �D(xn): (2)

The number of possible input vectors is the product of
the domain size of the input parameters as:

jT j= jD(x1)j�jD(x2)j�� � ��jD(xn)j=
nY
i=1

jD(xi)j:
(3)

The SUT is executed by each input vector, and
the resulting outcomes/behaviors of the execution are
labeled with the members of set C as:

C = fFail;Passg: (4)

The training dataset is de�ned as a partial func-
tion from T to C. For an SUT with n input parameters
and m input vectors, the dataset includes two matrices:

1. An m � n input data matrix, where xij , 1 � i � n
and 1 � j � m, is the value of input parameter i
from input vector j, as shown below:0BBB@

x1
1 x2

1 � � � xn1
x1

2 x2
2 � � � xn2

...
...

. . .
...

x1
m x2

m � � � xnm

1CCCA :

2. An m � 1 outcome vector, where ck 2 f0; 1g,
1 � k � m, and ck = 1, indicates that the result
of the SUT subjected to the input data vector
< x1

k; x2
k; � � � ; xnk > is failure; otherwise, it is a pass.

The vector is given as follows:0BBB@
c1
c2
...
cm

1CCCA :



1342 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

Figure 8. The 
owchart of the proposed approach.

3.2. Training a binary classi�er with the
training dataset

We have utilized a multilayer perceptron neural net-
work for generating the oracle model. The output
of each layer is fed into the next layer as input. In
multilayer perceptron neural networks, the neurons are
fully-connected, meaning that the output from each
neuron is distributed to all of the neurons of the layer.
At the beginning of the training phase, each connection
is initialized with a random weight. As mentioned in
Section 3.1, we have produced a set of inputs and their
corresponding pass/fail labels as the training dataset
in order to apply it to this network. A multilayer
perceptron ANN has three types of layers:

� Input layer: The inputs of the SUT are mapped to
neurons of the input layer. Therefore, the number
of neurons in this layer equals the number of SUT's
inputs;

� Hidden layer: Outputs of the input layer are fully-
connected to the hidden layer as inputs. We applied
`tan-sigmoid', as an activation function, to this
layer;

� Output layer: Outputs of the hidden layer are
fully-connected to inputs of this layer. We applied
`sigmoid', as an activation function, to this layer.
Outputs of this layer are considered as the outputs
of the created oracle model.



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1343

There are various parameters that determine how
much the ANN should be trained. One of the most im-
portant parameters is called `epoch', which is the num-
ber of iterations that training samples pass through
the learning algorithm. In other words, epoch is the
number of times that all of the training data are used
once to update the weights of ANN. We considered the
constant number of 1000, parameter Max in Figure 8,
for the epoch value in our experiments. The other
parameter is `error', which means that training will
continue as long as the error of the training phase
falls below this parameter value. In our experiments, if
during the training process, the error rate is less than
1%, the prede�ned value in Figure 8, then the training
phase will be stopped. Otherwise, it will continue until
the number of iterations meet the epoch number. As
illustrated in Figure 8, in order to reduce the error
of the model, the ANN's iterative algorithm gradually
changes the weights of connections between neurons
based on the epoch value. For this purpose, a random
weight is assigned to each connection at the beginning
of the training phase. Afterward, the training dataset
is applied to ANN. At the end of each iteration,
the algorithm compares the output of the network to
SUT's corresponding pass/fail labels, which exist in the
training dataset. If the error in the comparison process
is less than a default value or the number of iterations
becomes more than a speci�c threshold, the algorithm
stops and the network is considered as the oracle
model. Otherwise, in order to improve the model,
the algorithm uses the back-propagation method and
changes the weight of connections between neurons.

3.3. Evaluating the accuracy of the
constructed model

To assess the accuracy of the constructed model, we
have carried out various experiments by giving inputs
from the parameters' domain of the SUT, which are
not included in the training set. To this end, the
training dataset is divided into several groups. Each
group is selected such that the ratio of pass/fail input
data in that group is di�erent from other groups. This
di�erence is required for the sensitivity analysis of
the constructed model. The sensitivity analysis was
done such that, in each experiment, the impact of
a particular parameter on the accuracy of the oracle

was examined, while the remaining parameters were
unchanged. In addition to the pass/fail ratio in the
training dataset, the studied parameters are the CCP
of the training dataset, the size of the training dataset,
and con�guration parameters of ANN.

4. Evaluation

In this section, we have evaluated the proposed method
on di�erent types of software programs, especially
embedded software. In the following, �rst, the experi-
mental setup is described and, then, the results of the
experiments are presented and analyzed.

4.1. Experiment setup
To evaluate the proposed method, this study used the
neural network toolbox of MATLAB software version
R2018a+update3 for building the neural network
model [49]. Experiments were conducted on \Intel(R)
Core i7-7500U CPU 2.70 GHz up-to 2.90 GHz, 8.0 GB
RAM", and the operating system was \Windows 10
Pro 64-bit".

Five benchmarks with di�erent features and char-
acteristics have been considered. For each benchmark,
several faulty versions were generated. Three of �ve
benchmarks, so called DES [50], ITU-T G718.0 [51],
and GSAD [52], fall into the category of embedded
software. The reason these benchmarks have been
considered as embedded programs is according to the
de�nition presented by Lee [53]. According to this
de�nition, embedded programs could have interactions
with physical devices. They are not necessarily ex-
ecuted on computers and can be executed on cars,
airplanes, telephones, audio devices, robots, etc. The
aim of choosing these three benchmarks is to show the
applicability of the proposed method to programs with
low observability and to programs with unstructured
or semi-structured outputs. Two other benchmarks,
namely Scan and TCAS [54], have numerical inputs and
outputs. These two benchmarks have been chosen to
compare the proposed method with a known ML-based
method, proposed in [1]. From this point forward, we
call the method in [1] the baseline method. It is worth
noting that the baseline method is not applicable to low
observable programs and programs with non-numerical
outputs. Table 2 illustrates the features of the selected

Table 2. Features of benchmarks.

Benchmark Number of
inputs

Number of
lines

Programming
language

Scan 8 70 Java
TCAS 12 173 C
DES 2 330 C++

ITU-T G718.0 1 356 C and VHDL
GSAD 1 411 C, Verilog and VHDL



1344 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

benchmarks. The application of each benchmark is as
follows:

� Scan benchmark is a scheduling program for an
operating system;

� TCAS benchmark, which is an abbreviated form of
Tra�c alert and Collision Avoidance System, is used
for aircraft tra�c controlling to prevent aircrafts
from any midair collision;

� DES benchmark, which is an abbreviated form of
Data Encryption Standard, is a block cipher (a form
of shared secret encryption) that was selected by
the National Bureau of Standards as an o�cial
Federal Information Processing Standard (FIPS) for
the United States in 1976 [50]. It is based on a
symmetric-key algorithm that uses a 56-bit key;

� ITU-T is one of the three sectors of the International
Telecommunication Union (ITU); it coordinates
standards for telecommunications. ITU-T G718.0 is
a lossless voice signal compression software, which
is used to compress G.711 bitstream. The purpose
of the compression is mainly for transmission over
IP (e.g., VoIP). The input and output of the bench
mark represent a binary �le that indicates the orig-
inal and compressed voice signals, respectively [51];

� GSAD benchmark, which is an abbreviated form of
Generic Sound Activity Detector, is an independent
front-end processing module that can be used to
detect whether a transmission voice line is busy or
not. In other words, it indicates whether the input
frame is a silence or an audible noise frame. The
input format of this benchmark is also a binary
�le [52].

In order to evaluate the constructed model and
compare the results with a similar approach, the
Accuracy criterion is used, which is calculated through
Eq. (5), where TP, TN, FP, and FN are True Positive,
True Negative, False Positive, and False Negative,
respectively:

Accuracy =
TP + TN

TP + FP + FN + TN
� 100: (5)

4.2. Experiment results and discussion
In this section, the impact of di�erent parameters on
the accuracy of the constructed oracles is investigated.
These parameters include the percentage of passing
test cases in the training dataset, the CCP of the
training dataset, the size of the training dataset, and
the con�guration parameters of ANN. Samples of input
data, the related outcomes as training set, and the
results of the algorithm can be accessed from the link:
(http://ticksoft.sbu.ac.ir/ upload/samples.zip).

4.2.1. Percentage of passing test cases in training
dataset

The training dataset in our approach contains input
values and the corresponding pass/fail outcome of the
SUT, which is used to train the ANN classi�er. The
number of passing test cases in comparison to the
number of all test cases of the training dataset may
a�ect the accuracy of the classi�er during the testing
phase. The term `ratio', de�ned in Eq. (6), is used as
the under study parameter in this section.

ratio =
No. of passing test cases

No. of test cases
� 100: (6)

In order to carry out the experiment for each bench-
mark, di�erent training datasets with di�erent ratios
have been generated. Then, for each benchmark, ANN
classi�ers using the existing training datasets have been
constructed. In the testing phase, new test cases are
randomly generated to evaluate the accuracy of the
classi�er as a test oracle. Figure 9 illustrates the
accuracy of the test oracle for each benchmark over
training datasets with di�erent ratios.

According to the diagrams of Figure 9, the highest
accuracy belongs to the training datasets at a ratio
of 50%, which means that half of the training dataset
contains pass labels. It could be seen that if the portion
of passing test cases in the training dataset is more than
failing ones, or vice versa, the accuracy decreases. The
reason is that when the pass test cases are more than
the fail ones, TP has a high value, but TN has a small
value in Eq. (5). Therefore, the accuracy decreases
overall. The same occurs when the failing test cases
are more than the passing ones.

In real-world systems, more test cases are typi-
cally labeled as pass rather than fail. Therefore, in
order to show the usefulness of the proposed approach
in real-world systems, the rest of the experiments have
been carried out using training datasets that contain
90% pass labels.

Figure 9. The accuracy of the constructed oracle over
di�erent ratios of the training dataset.



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1345

4.2.2. Code Coverage Percentage (CCP) of training
dataset

CCP is a measure that shows the percentage of the
executed code when a particular set of test data is given
to the program. In test data generation, which is one
of the main activities in the software testing process,
CCP is a criterion for assessing the adequacy of the
generated test data. In this paper, CCP is de�ned as
the percentage of visited statements to all statements
(see Eq. (7)). Since generating our classi�er-based
oracle severely depends on the test input dataset,
it is expected that the CCP of the training dataset
is an appropriate indicator of the adequacy of the
constructed oracle. In this section, the impact of
CCP of the training dataset on the accuracy of the
constructed oracles is investigated.

CCP =
No. of visited statements

No. of all statements
� 100: (7)

In order to do the experiment for each benchmark,
di�erent training datasets with di�erent CCPs have
been generated. Then, for each benchmark, ANN
classi�ers are created using training datasets. In the
testing phase, test data are generated randomly to
evaluate the accuracy of the classi�er as a test oracle.
Figure 10 illustrates the accuracy of test oracle for each
benchmark over training dataset CCP.

It is worth noting that we are not able to
have arbitrary CCP for the training dataset, because
some statements of the code are always executed and,
consequently, for each benchmark in Figure 10, the
diagrams start at di�erent points. By applying training
dataset with CCP of 20% to 40%, the accuracy of the
proposed oracle ranges between 65% and 80%, which
is reasonably acceptable.

Nevertheless, as is clear in Figure 10, the higher
the CCP of the training dataset is, the more accurate
the test oracle will be. This is because the training
dataset covers more parts of the SUT and, conse-
quently, the oracle can model more parts of the SUT.

Figure 10. The accuracy of the constructed oracle over
Code Coverage Percentage (CCP) of the training dataset.

Therefore, training datasets with maximum possible
CCP measure for each benchmark are applied to the
rest of the experiments. This decision is acceptable
because, in the test data generation phase of real-
world projects, it is tried to generate test data with
the maximum code coverage.

4.2.3. The size of training dataset
One of the other factors that has impact on the
accuracy of the test oracle is the training dataset size,
which means the number of test cases used in the
training dataset.

In order to carry out the experiment for each
benchmark, we have generated di�erent training
datasets of di�erent sizes, but with a �xed ratio
and coverage according to the consequences in Sec-
tions 4.2.1 and 4.2.2. The ratio has been set to 90%
for all training datasets, and the CCP measure has
been set to 98.8%, 100%, 100%, 100%, and 100%
for benchmarks Scan, TCAS [54], DES [50], ITU-T
G718.0 [51], and GSAD [52], respectively. Then, for
each benchmark, ANN classi�ers are created using
training datasets.

In the testing phase, test cases are generated
randomly to evaluate the accuracy of the classi�er as
a test oracle. Figure 11 illustrates the accuracy of
the test oracle for each benchmark over the training
dataset sizes. According to the diagrams, the higher
the number of test cases is in the training dataset, the
more accurate the oracle will be, because the weights of
the ANN edges are adjusted more precisely. It is worth
mentioning that when the size of the training dataset
becomes larger than a speci�c value, the accuracy of the
constructed oracle will decrease. This is because the
model is biased to the training dataset and, therefore,
the testing dataset is classi�ed in a wrong way, which
is usually called `over�tting'.

4.2.4. Con�guration parameters of ANN
Oracles constructed by the proposed approach are
ANN, which model the behavior of SUTs. Therefore,
the topology of ANNs has a remarkable impact on the
accuracy of the constructed oracles. The number of
hidden layers and the number of neurons in each layer
are the most important parameters of ANN, which are
studied in our experiments. Choosing larger values
for these parameters, by considering appropriate epoch
value, may lead to more accurate ANN. However, the
training time will increase in this condition. Therefore,
it is necessary to select appropriate values for these pa-
rameters in order to save time and cost while achieving
the best accuracy at the same time. Nevertheless, it is
obvious that, for a more complex SUT, a larger ANN is
required (in terms of the number of hidden layers and
the number of neurons in each layer).

By �xing the other parameters based on the



1346 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

Figure 11. The impact of the size of the training dataset on the accuracy of the constructed oracle for each benchmark:
(a) SCAN, (b) TCAS, (c) DES, (d) ITU-T G718.0, and (e) GSAD.

results obtained in Sections 4.2.1, 4.2.2, and 4.2.3, the
experiments with di�erent numbers of hidden layers
and various number of neurons in each layer have been
conducted.

Figure 12(a) and (b) illustrate the accuracy of the
constructed oracle for each benchmark over the number
of hidden layers and the number of neurons in each
layer, respectively. As is clear in both �gures, when
the value of each parameter is low, the accuracy is low,
because the size of the ANN is not large enough to
model the complexity of the SUT as required; when
the value of each parameter exceeds a speci�c point,

the accuracy approaches a certain value, which is not
necessarily maximum.

Generally, when the number of hidden layers and
the number of neurons in each layer increase, the
weights of network edges do not change signi�cantly
with the epoch of 1000 (according to Section 3.2).
Therefore, the accuracy decreases. This is a kind of
trade-o� between time and accuracy, as mentioned
above. The con�guration of ANN for each benchmark
is illustrated in Table 3.

It is worth mentioning that the input type of the
GSAD and ITU-T G718.0 benchmarks is a binary �le.

Table 3. Con�guration of Arti�cial Neural Network (ANN) for each benchmark.

Benchmark Number of neurons
in the input layer

Number of
hidden layers

Number of neurons
in each hidden layer

Number of neurons
in the output layer

Scan 8 9 7 1
TCAS 12 13 7 1
DES 2 5 8 1
ITU-T 121 4 11 1
GSAD 145 4 11 1



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1347

Figure 12. The impact of the parameters of Arti�cial
Neural Network (ANN) con�guration on the accuracy: (a)
The accuracy of the constructed oracle for each benchmark
over the number of hidden layers and (b) the accuracy of
the constructed oracle for each benchmark over the
number of neurons in each layer of the constructed oracle.

Therefore, each binary character is considered as a
single input. In order to reduce the number of neurons
in the input layer of the ANN, the binary values are
separated 4 by 4 bytes. To this end, the binary �le is
converted into a set of integer inputs. These inputs
were fed to the ANN instead of binary characters,
which consequently reduced the size of the constructed
models.

4.2.5. Comparison with the baseline method
This section compares the accuracy of the oracles
generated by the proposed approach with those con-
structed by a known approximation-based method,
suggested by Shahamiri et al. [1], that generates oracles
by modeling the relationship between program inputs
and output values using neural networks. These oracles
are only appropriate for particular types of software
that produce concrete numerical outputs.

To compare these two types of oracles, the experi-
ments were conducted on Scan and TCAS benchmarks.
The accuracy of the two types of oracles were compared
over di�erent sizes of the training dataset. Figure 13
illustrates the e�ect of the dataset size on the accuracy
of the two oracle types.

Figure 13. The comparison between our approach and
the method of Shahamiri et al. [1]: (a) The accuracy for
the Scan benchmark and (b) the accuracy for the TCAS
benchmark.

In this �gure, the gray lines show the accuracy of
our oracles when we have the best training dataset (in
terms of the pass ratio and CCP), and the blue lines
show the accuracy of our oracles when the training
dataset is the same as the one used in [1]. The blue
line in Figure 13(a) shows the accuracy of oracles
constructed by our approach when the CCP measure
and the pass ratio of the training dataset are 61% and
90%, respectively. The gray line is considered when
the CCP measure and the pass ratio of the training
dataset are 98.8% and 50%, respectively. The blue
line in Figure 13(b) shows the accuracy of oracles
constructed by our approach when the CCP measure
and the pass ratio of the training dataset are 50% and
90%, respectively. The gray line is considered when the
CCP measure and the pass ratio of the training dataset
are 100% and 50%, respectively.

The decrement of accuracy in our oracles from
a speci�c point is because of the over�tting prob-
lem. Nevertheless, in general, the accuracy of oracles
generated by the method in [1] is less than ours
according to Figure 13. In addition, when the size



1348 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

of the training dataset is zero (which means without
having the training phase), the proposed approach
works randomly with the accuracy about 50%, because
we have two classes of pass and fail. In contrast, the
accuracy of the method in [1] is zero, since it is an
approximator rather than a classi�er, which means that
it is not able to produce any result even randomly.

5. Conclusion and future work

Building automated oracles is challenging for embed-
ded software with low observability and/or produces
un-structured or semi-structured outputs. In this
paper, a classi�er based method using Arti�cial Neural
Networks (ANNs) was proposed, which addressed the
mentioned issue. In the proposed approach, oracles
need input data tagged with two labels of \pass"
and \fail" rather than outputs and any execution
trace. Moreover, unlike some oracles such as [1,13],
the comparison between expected results and actual
outputs is not required in our approach. Therefore, it
can be applied to a wide range of software systems, in-
cluding embedded software. The experimental results
of �ve benchmarks, three of which are categorized in
embedded software systems, manifest the capability of
the proposed approach in constructing accurate oracles
for such systems.

As the other results of the experiments, the
following items are achieved:

� When the percentage of pass labels in the training
dataset is 50%, the accuracy of the constructed
oracle reaches its highest value in comparison with
other percentages. Since having training datasets at
a pass ratio of 50% is unreasonable for real-world
systems, then this study considered a pass ratio of
90%. It is worth noting that, in this situation, the
constructed oracles indicated acceptable accuracy,
as well;

� When the Code Coverage Percentage (CCP) of
the training dataset is high, a more accurate test
oracle is generated. The reason is that the training
dataset covers more parts of the Software Under
Test (SUT). Fortunately, in the test data generation
phase of real-world projects, it is tried to generate
test data with maximum code coverage. Therefore,
the results of achieving an acceptable accuracy in
real situations are promising;

� When the size of the training dataset increases, the
accuracy of the constructed oracle also increases
because the weights of the edges in the ANN become
more accurate by using a larger dataset. However,
when the size becomes more than a speci�c value,
the accuracy will decrease because the model is
biased to the training dataset, or in other words,
over�tting occurs;

� The con�guration parameters of ANN depend
on the code complexity of the SUT. The larger
the ANN is, the longer the time is needed for
its convergence. Thus, selecting parameters is a
tradeo� between time and the accuracy of the
oracle. This study used the method of `try and
error' to achieve appropriate values for the ANN
parameters per benchmark program.

The proposed approach is based on the black-box test-
ing. Therefore, this study does not require the program
source code, execution traces or design documents of
the SUT to generate an automated oracle. In addition,
unlike the mentioned oracles in Section 2, there is no
need to execute the SUT in order to achieve its outputs,
which is advantageous, especially in testing embedded
software and safety-critical applications. Moreover,
unlike the majority of machine learning-based oracles,
which do not consider the failing patterns of the code
during model construction, the proposed approach
considers both passing and failure-inducing inputs for
model construction. In this way, the proposed model
re
ects the whole behavior of the SUT and, thus, shows
greater accuracy. At last, the experimental results of
the comparison between our approach and the machine
learning based oracle proposed in [1] revealed the fact
that this approach is at least as good as the approach
in [1] in common cases, although our method is appli-
cable to some cases to which the method in [1] is not.

In the proposed black-box approach, it was as-
sumed that there was no access to the program code.
Assuming that we have access to the software code, we
can construct more robust oracles. For future works,
we are planning to study the impact of the analysis of
the source code on the accuracy of the oracle. We would
also intend to investigate the e�ect of di�erent machine
learning techniques on the precision of the constructed
oracle. As another future work, we will consider
di�erent metrics of code complexity to examine the
e�ect of this complexity on the topology of ANN.

References

1. Shahamiri, S.R., Wan-Kadir, W.M., Ibrahim, S., and
Hashim, S.Z.M. \Arti�cial neural networks as multi-
networks automated test oracle", Automated Software
Engineering, 19(3), pp. 303{334 (2012).

2. Valizadeh, M., Tadayon, M., and Bagheri, A. \Making
problem: A new approach to reachability assurance
in digraphs", Scientia Iranica, 25(3), pp. 1441{1455
(2018).

3. Rezaee, A. and Zamani, B. \A novel approach to
automatic model-based test case generation", Scientia
Iranica, 24(6), pp. 3132{3147 (2017).

4. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M.,
and Yoo, S. \The oracle problem in software testing: A



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1349

survey", IEEE Transactions on Software Engineering,
41(5), pp. 507{525 (2015).

5. Ammann, P. and O�utt, J., Introduction to Software
Testing, Cambridge University Press (2016).

6. Almaghairbe, R. and Roper, M. \Automatically classi-
fying test results by semi-supervised learning", In 27th
IEEE Int. Symp. on Software Reliability Engineering,
pp. 116{126 (2016).

7. Lo, D., Cheng, H., Han, J., Khoo, S.-C., and Sun,
C. \Classi�cation of software behaviors for failure
detection: a discriminative pattern mining approach",
In 15th ACM SIGKDD int. Conf. on Knowledge Dis-
covery and Data Mining, pp. 557{566 (2009).

8. Yilmaz, C. and Porter, A. \Combining hardware and
software instrumentation to classify program execu-
tions", In 18th ACM SIGSOFT Int. Symp. on Foun-
dations of Software Engineering, pp. 67{76 (2010).

9. Freedman, R.S. \Testability of software components",
IEEE Transactions on Software Engineering, 17(6),
pp. 553{564 (1991).

10. Vliegendhart, R., Dolstra, E., and Pouwelse, J.
\Crowdsourced user interface testing for multimedia
applications", In ACM Multimedia 2012 Workshop on
Crowdsourcing for Multimedia, pp. 21{22 (2012).

11. Jan, S.R., Shah, S.T.U., Johar, Z.U., Shah, Y.,
and Khan, F. \An innovative approach to investigate
various software testing techniques and strategies",
International Journal of Scienti�c Research in Sci-
ence, Engineering and Technology, 2(2), pp. 2395{1990
(2016).

12. Gholami, F., Attar, N., Haghighi, H., Vahidi-Asl, M.,
Valueian, M., and Mohamadyari, S. \A classi�er-based
test oracle for embedded software", In 2018 IEEE Real-
Time and Embedded Systems and Technologies, pp.
104{111 (2018).

13. Shahamiri, S.R., Kadir, W.M.N.W., Ibrahim, S., and
Hashim, S.Z.M. \An automated framework for soft-
ware test oracle", Information and Software Technol-
ogy, 53(7), pp. 774{788 (2011).

14. Peters, D.K. and Parnas, D.L. \Using test oracles gen-
erated from program documentation", IEEE Trans-
actions on Software Engineering, 24(3), pp. 161{173
(1998).

15. Gargantini, A. and Riccobene, E. \Asm-based testing:
Coverage criteria and automatic test sequence genera-
tion", Journal of Universal Computer Science, 7(11),
pp. 1050{1067 (2001).

16. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L.,
and Engler, D.R. \Exe: automatically generating in-
puts of death", ACM Transactions on Information and
System Security, 12(2), p. 10 (2008).

17. Shrestha, K. and Rutherford, M.J. \An empirical
evaluation of assertions as oracles", In 4th IEEE
Fourth Int. Conf. on Software Testing, Veri�cation and
Validation, pp. 110{119 (2011).

18. Ricca, F. and Tonella, P. \Detecting anomaly and
failure in web applications", IEEE MultiMedia, 13(2),
pp. 44{51 (2006).

19. Walsh, T.A., Kapfhammer, G.M., and McMinn, P.
\Automated layout failure detection for responsive web
pages without an explicit oracle", In 26th ACM SIG-
SOFT Int. Symp. on Software Testing and Analysis,
pp. 192{202 (2017).

20. Carver, R. and Lei, Y. \Stateless techniques for
generating global and local test oracles for message-
passing concurrent programs", Journal of Systems and
Software, 136, pp. 237{265 (2018).

21. Zhou, Z.Q., Zhang, S., Hagenbuchner, M., Tse, T.,
Kuo, F.C., and Chen, T.Y. \Automated functional
testing of online search services", Software Testing,
Veri�cation and Reliability, 22(4), pp. 221{243 (2012).

22. Simons, A.J. \Jwalk: a tool for lazy, systematic testing
of java classes by design introspection and user inter-
action", Automated Software Engineering, 14(4), pp.
369{418 (2007).

23. Go�, A. \Automating test oracles generation", Ph.D.
Thesis, Universit`a della Svizzera italiana (2018).

24. Carzaniga, A., Go�, A., Gorla, A., Mattavelli, A.,
and Pezz�e, M. \Crosschecking oracles from intrinsic
software redundancy", In 36th Int. Conf. on Software
Engineering, pp. 931{942 (2014).

25. Go�, A., Gorla, A., Ernst, M.D., and Pezz�e, M.
\Automatic generation of oracles for exceptional be-
haviors", In 25th Int. Symp. on Software Testing and
Analysis, pp. 213{224 (2016).

26. Pezz�e, M. \Towards cost-e�ective oracles", In 10th
IEEE/ACM Int. Workshop on Automation of Software
Test, pp. 1{2 (2015).

27. Go�, A. \Automatic generation of cost-e�ective test
oracles", In 36th ACM Int. Conf. on Software Engi-
neering, pp. 678{681 (2014).

28. Segura, S., Fraser, G., Sanchez, A.B., and Ruiz-
Cort�es, A. \A survey on metamorphic testing", IEEE
Transactions on Software Engineering, 42(9), pp. 805{
824 (2016).

29. Go�, A., Gorla, A., Mattavelli, A., Pezz�e, M.,
and Tonella, P. \Searchbased synthesis of equivalent
method sequences", In 22nd ACM SIGSOFT Int.
Symp. on Foundations of Software Engineering, pp.
366{376 (2014).

30. Mattavelli, A., Go�, A., and Gorla, A. \Synthesis
of equivalent method calls in guava", In Int. Symp.
on Search Based Software Engineering, pp. 248{254
(2015).



1350 M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351

31. Ernst, M.D., Cockrell, J., Griswold, W.G., and Notkin,
D. \Dynamically discovering likely program invariants
to support program evolution", IEEE Transactions on
Software Engineering, 27(2), pp. 99{123 (2001).

32. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S.,
Pacheco, C., Tschantz, M.S., and Xiao, C. \The daikon
system for dynamic detection of likely invariants",
Science of Computer Programming, 69(1{3), pp. 35{45
(2007).

33. Elyasov, A., Prasetya, W., Hage, J., Rueda, U., Vos,
T., and Condori-Fern�andez, N. \Ab = ba: execution
equivalence as a new type of testing oracle", In 30th
Annual ACM Symp. on Applied Computing, pp. 1559{
1566 (2015).

34. Feldt, R. \Generating diverse software versions with
genetic programming: an experimental study", IEE
Proceedings-Software, 145(6), pp. 228{236 (1998).

35. Di Lucca, G.A., Fasolino, A.R., Faralli, F., and De
Carlini, U. \Testing web applications", In Int. IEEE
Conf. on Software Maintenance, pp. 310{319 (2002).

36. Memon, A.M., Pollack, M.E., and So�a, M.L. \Auto-
mated test oracles for GUIs", In 8th ACM SIGSOFT
Int. Symp. on Foundations of Software Engineering:
Twenty-First Century Applications, pp. 30{39 (2000).

37. Last, M., Friedman, M., and Kandel, A. \Using data
mining for automated software testing", International
Journal of Software Engineering and Knowledge Engi-
neering, 14(4), pp. 369{393 (2004).

38. Zheng, W., Ma, H., Lyu, M.R., Xie, T., and King,
I. \Mining test oracles of web search engines", In
26th IEEE/ACM Int. Conf. on Automated Software
Engineering, pp. 408{411 (2011).

39. Vineeta, Abhishek Singhal, Abhay Bansal \Generation
of test oracles using neural network and decision
tree model", In 5th Int. Conf.- Con
uence The Next
Generation Information Technology Summit, pp. 313{
318 (2014).

40. Wang, F., Yao, L.-W., and Wu, J.-H. \Intelligent
test oracle construction for reactive systems without
explicit speci�cations", In 9th IEEE Int. Conf. on
Dependable, Autonomic and Secure Computing, pp.
89{96 (2011).

41. Vanmali, M., Last, M., and Kandel, A. \Using a
neural network in the software testing process", In-
ternational Journal of Intelligent Systems, 17(1), pp.
45{62 (2002).

42. Zhang, R., Wang, Y.-W., and Zhang, M.-Z. \Auto-
matic test oracle based on probabilistic neural net-
works", In Recent Developments in Intelligent Comput-
ing, Communication and Devices, pp. 437{445 (2019).

43. Almaghairbe, R. and Roper, M. \Building test oracles
by clustering failures", In 10th IEEE Int. Workshop on
Automation of Software Test, pp. 3{7 (2015).

44. Almaghairbe, R. and Roper, M. \Separating passing
and failing test executions by clustering anomalies",
Software Quality Journal, 25(3), pp. 803{840 (2017).

45. Shahamiri, S.R., Kadir, W.M.N.W., and bin Ibrahim,
S. \An automated oracle approach to test decision-
making structures", In 3rd IEEE Int. Conf. on Com-
puter Science and Information Technology, pp. 30{34
(2010).

46. Shahamiri, S.R., Kadir, W.M.W., and Ibrahim, S. \A
single-network annbased oracle to verify logical soft-
ware modules", In 2nd IEEE Int. Conf. on Software
Technology and Engineering, pp. 272{276 (2010).

47. Gurney, K., An Introduction to Neural Networks, CRC
press (2014).

48. Graupe, D., Principles of Arti�cial Neural Networks,
World Scienti�c (2013).

49. \Mathworks", https://www.mathworks.com/ (2018).

50. Standard, D.E., Federal Information Processing Stan-
dards Publication, National Bureau of Standards, US
Department of Commerce, 4 (1977).

51. \Itu-t technical paper telecommunication standardiza-
tion sector of ITU", Technical report, Transmission
Systems and Media, Digital Systems and Networks
Digital Sections and Digital Line System (2010).

52. \Generic sound activity detector (GSAD)", https://
www.itu.int/pub/T-REC-USB-2020.

53. Lee, E., Embedded Software, University of California
at Berkeley, Berkeley (2001).

54. Livadas, L.J.C. and Lynch, N.A. \High-level modeling
and analysis of tcas", In 20th IEEE Real-Time Systems
Symp., pp. 115{125 (1999).

55. Shahamiri, S.R., Kadir, W.M.N.W., and Mohd-
Hashim, S.Z. \A comparative study on automated
software test oracle methods", In 4th Int. Conf. on
Software Engineering Advances, pp. 140{145 (2009).

Biographies

Meysam Valueian is a PhD student at the Depart-
ment of Computer Engineering in Sharif University of
Technology, Tehran, Iran. He received his BS and
MS degrees from Faculty of Computer Science and
Engineering at Shahid Beheshti University, Tehran,
Iran. Software testing and repair are among his
research interests.

Niousha Attar received her BS and MS degrees
from Faculty of Computer Science and Engineering
at Shahid Beheshti University, Tehran, Iran. She is
currently a PhD student in that faculty. Her research
interests are complex networks and software testing.

Hassan Haghighi received his PhD degree in Com-
puter Engineering-Software from Sharif University of
Technology, Tehran, Iran in 2009 and is currently



M. Valueian et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1333{1351 1351

an Associate Professor in the Faculty of Computer
Science and Engineering at Shahid Beheshti University,
Tehran, Iran. His main research interests include
formal methods in the software development life cycle,
software testing, and software architecture.

Mojtaba Vahidi-Asl is an Assistant Professor in

the Faculty of Computer Science and Engineering at
Shahid Beheshti University, Tehran, Iran. He received
his BS in Computer Engineering from Amirkabir Uni-
versity of Technology and MS and PhD degrees in Soft-
ware Engineering from Iran University of Science and
Technology. His research area includes software testing
and debugging and human computer interaction.




