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Abstract. The quality of public transportation service has signi�cant e�ects on the
quality of urban life. In the course of frequency setting and timetabling as an important
step in the public transportation planning process, synchronization gains signi�cance
and directly inuences the utility and attractiveness of the system; therefore, a great
deal of attention should be drawn to it in the whole planning process, especially in
setting frequency and timetable. To this end, the present study proposes a mixed-integer
nonlinear programming model to set timetables on a bus transit network with maximum
synchronization and minimum number of eet size. The proposed model is applicable
to both small- and large-scale transit networks and is used for setting timetables on
two samples of di�erent sizes. A simple problem in this study was solved by General
Algebraic Modeling System (GAMS) Software where the obtained timetable seemed quite
reasonable. Moreover, the proposed model was employed to set timetables through the
genetic algorithm on Tehran Bus Rapid Transit (BRT) networks as a real-life instance;
then, the NSGA-II was used to obtain the Pareto optimal solutions of the problem for �ve
di�erent scenarios. Finally, the results showed that the proposed model was e�cient in
setting timetables on transit networks of di�erent sizes.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Public transportation is fundamental to every city.
The quality of the public transportation system in a
city directly a�ects the quality of urban life. While
a reliable public transportation system can attract
a considerable number of daily passengers, a poor
public transit service can considerably reduce them [1].
Nowadays, daily commute of a signi�cant number of
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people, especially those with low income, is directly
dependent on the public transportation infrastructures.
Among di�erent modes of public transportation, buses
are the most common ones due to their exibility,
compatibility, and required investment. Therefore, fol-
lowed by urban expansion and emergence of new modes
of transportation thanks to the growing technology,
further studies should be conducted to improve urban
transportation, especially bus systems.

The process of urban bus planning is quite com-
plicated and requires making interdependent decisions.
According to [2{8], this process can be divided into four
basic steps:

1. Designing network routes;
2. Frequency setting and timetabling;
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3. Scheduling the vehicles;
4. Assigning the crew.

Each step is a complicated process and consists
of several operations; therefore, they are usually per-
formed in sequence, i.e., the output of one step will be
the input for the next one. The present paper focuses
on the second step of the urban bus planning process,
i.e., frequency setting and timetabling.

Frequency setting deals with determining an ef-
�cient service frequency for each line based on the
time of day and day of the week. In timetable
setting, the scheduler prepares a list of departure times
according to the corresponding headways of each line
and estimates the arrival time of each departure for
each stop in each line. The scheduler should also
consider available resources such as available eet size.
Timetables provide information about the departure
and arrival times of services on each line for passengers.
Having this information, passengers can make better
decisions on arriving services at the stations and adapt
themselves to the bus departure times. In other words,
while having a timetable at hand, passengers know
when they would arrive at a stop and minimize their
waiting time. Setting urban bus timetable may arise
several problems that have received much attention
because of its signi�cance in the literature.

The quality of urban bus system depends consid-
erably on the service timekeeping and arrival times of
vehicles. However, arrival times are easily a�ected by
the number of passengers who use the system, and the
bus schedule is closely related to the dynamic motion
of buses with passengers [9,10]. To present an e�cient
service, planners are responsible for synchronization of
the schedules of di�erent lines in a transit network.
Proper synchronization can be achieved by maximiz-
ing the number of simultaneous arrivals of di�erent
departures of di�erent lines at transfer points. Petersen
et al. [11] suggested that the average waiting time
for a transfer be about 9.75 minutes on weekends
in the Greater Copenhagen area. Synchronization
decreases the waiting times of passengers transferring
among lines of a network, thus leading to a higher
level of service and encouraging more people to use
public transportation. Therefore, synchronization is a
common objective that has gained much attention and
has been studied in other modes of transportation such
as urban railway networks [12,13].

Ceder et al. [14] proposed an optimization model
with the objective of maximizing the number of si-
multaneous arrivals in which the problem was formu-
lated as a mixed-integer programming problem, and a
heuristic algorithm was developed to solve it. They
de�ned simultaneous arrivals as the arrival of two
departures from di�erent lines to a transfer point at the
same time. Eranki [15] extended the model developed

by Ceder et al. [14] by adding a time window to
the simultaneity de�nition and proposed a model for
timetable setting with the same objective. The new
model was also formulated as a mixed-integer linear
programming problem solved by a heuristic algorithm.
The model proposed by Ceder et al. [14] has received
much attention and has been extended further by
other researchers [16{18]. In this regard, a number of
studies have been devoted to minimizing the transfer
time [19{24]. Gao et al. [25] proposed a bi-level
programming technique to deal with the problem of
frequency setting. The upper-level problem considers
minimizing an objective that consists of in-vehicle and
waiting time and frequency setting cost. The lower-
level problem took into account the alternative paths
for passengers. A heuristic algorithm based on the
sensitivity analysis was also developed to solve the
model and set optimal frequencies.

Bookbinder and D�esilets [26] proposed a transfer
optimization model in which travel times were regarded
stochastic and followed a truncated exponential distri-
bution. They aimed to minimize the total passenger
inconvenience. Furthermore, a heuristic algorithm was
developed by Ting and Schonfeld [27] considering slack
times to optimize the connecting lines. Knoppers
and Muller [28] studied the chances of optimized
transfer in order to minimize passenger transfer times.
Considering the probabilities and limitations of the
synchronized transfers, they suggested that optimal
synchronization could be hard to achieve in case of
high frequencies at crossing lines. The synchronization
strategy proposed in their study enables the vehicle to
handle the second part of the trip to delay its departure
if the transfer passengers are about to arrive soon;
therefore, transfer times are often increased. Yu et
al. [29] proposed an optimization model for bus transit
networks with the objective of minimizing the transfer
and maximizing the passenger ow per unit length. A
Coarse-grain Parallel Ant Colony Algorithm (CPACA)
was employed to solve the problem. The results showed
that achieving a bus transit network with optimal
transfers and shorter waiting times would not be far-
fetched. Ant colony algorithm is frequently used by
other researchers as well [30,31]. Heuristic approaches
have also been used by a number of researchers for
transfer optimization and synchronization among other
steps of the urban transportation process [32]. Fleurent
et al. [33] used the idea of weighted transfers to describe
the concepts used in Hastus commercial software for
producing synchronized timetables. Furthermore, con-
centrating on minimizing the transfer waiting times,
Castelli et al. [34] proposed a mathematical model for
scheduling problems. As one of the features of the
proposed model, the number of dispatches does not
depend on the frequency bounds, but on the service
quality and its costs. Service quality is evaluated by the
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sum of the transfer waiting times of all the passengers
whose boarding and alighting times should be available.
However, the authors approve that despite the limited
suppositions, their model cannot be used for optimizing
a large-scale network because of its numerous variables;
therefore, a Lagrangian heuristic method was also
proposed. Rapp and Gehner [35] proposed a heuristic
method for optimizing the transfer delays. The survey
describes four coordinated processes for practical tran-
sit planning. The operational tool used for optimizing
the transfer delays changes the departure times from
the terminal automatically and iteratively. The results
indicated that in comparison to manual scheduling,
the optimized timetable could e�ciently minimize the
total transfer delay times and cause no additional cost.
Chakroborty et al. [22,23] focused on the application
of Genetic Algorithms (GA) in determining the waiting
time in transit networks in order to minimize the total
passenger waiting times. The proposed mixed-integer
nonlinear model was formulated and a hybrid GA was
selected for implementation purposes. The genetic
display of a thorough timetable consists of a set of
binary numbers that represent the headways and stop
times of the successive vehicles on all lines. However,
as already mentioned, the proposed display might not
be suitable for large transit networks.

The GA has also been applied to bus scheduling
problems. Deb and Chakroborty [36] formulated an
optimization problem for a bus transit system with
the objective of minimizing the total passenger waiting
times (with or without transfers) while satisfying the
resource and service constraints. According to the
conducted studies, the GA is ideal for such prob-
lems. Chakroborty et al. [37] combined transfer
synchronization with vehicle scheduling as a mixed-
integer nonlinear problem. The problem, aimed at
determining the eet size and setting timetables to
minimize the passenger waiting times, was solved using
the GA. Of note, the problem was limited to one
transfer point, i.e., the intersection of multiple lines,
and the genetic display seemed to be not suitable for
large problems. Ngamchai and Lovell [38] presented
a new transfer optimization model for designing the
bus transit route and solved it using the GA. The bus
routes were designed in two phases. The route im-
provement algorithm employed genetic operators and
in conjunction, another heuristic approach was used
for headway synchronization in order to improve the
system e�ciency. The route improvement algorithm
reduces both transfer times and total cost. Moreover,
headway synchronization methods are generally used
for service frequency setting. Cevallos and Zhao [20]
proposed an approach based on GA at the network level
for bus transfer time optimization. The main objective
of the proposed algorithm was to �nd the best possible
solution to the problem of transfer time optimization

through timetable movements. They aimed to mini-
mize the transfer waiting times of an existing timetable
under strict evenly spaced headway constraints. The
results indicated that the proposed algorithm could
e�ciently shorten the waiting times. In conjunction
with these studies, GA are widely used for di�erent
aspects of transit planning and optimization [39{47].
Table 1 presents a summary of the aforementioned
research papers.

As stated earlier, the mathematical model devel-
oped by Ceder et al. [14] has been used as a precedent
by many researchers. The present study develops a
model to increase the simultaneous arrivals of buses
in the network as �rst developed by Ceder et al. [14].
Moreover, a di�erent de�nition of simultaneous arrivals
was suggested which is more practical, e�ective, and
realistic. The objective function of maximizing the
simultaneous arrivals and considering a time window as
an allowable deadline for simultaneity are the concepts
that have been borrowed from previous studies [14,15].
The problem of timetable setting is formulated as a
mathematical programming model whose implementa-
tion and solution methods on both small- and large-
scale networks are separately discussed and exempli-
�ed.

The rest of this paper is organized as follows.
Section 2 presents a de�nition of the timetable setting
problem with optimal synchronization. Section 3
discusses the procedure of formulating the problem as a
mathematical programming model. Section 4.1 briey
elaborates on the scale of the problem. Section 4.2
shows how to convert the proposed bi-objective prob-
lem into a single objective one. Sections 4.3 and 4.4
introduce the numerical examples of both small- and
large-scale networks, respectively. Finally, Section 5
discusses the results and concludes the paper.

2. Problem de�nition

Di�erent aspects of timetable setting problem make
one consider di�erent objectives for the problem from
di�erent angles. One of these signi�cant objectives,
according to Ceder et al. [14], is to minimize the trans-
fer waiting times that can be achieved by maximizing
the number of simultaneous arrivals. Since all of the
origins and destinations are not directly connected in
a large public transit network, several transfer points
are required to cover the utmost area. However, an
extra waiting time is imposed on the passengers who
intend to travel among di�erent lines of a network via
transfer points. A perfect timetable is set only when
the waiting time at transfer points is minimized by
the simultaneous arrival of vehicles at transfer points.
Figure 1 illustrates the signi�cance of transfer points
and simultaneous arrivals at transfer points. As shown
in Figure 1, a passenger who intends to travel from
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Table 1. Literature summary.

Ref. Year Author(s) Objective Solution approach
[14] 2001 Ceder et al. Number of simultaneous arrivals Heuristic approach

[15] 2004 Eranki Number of simultaneous arrivals,
passenger waiting time Heuristic approach

[17] 2003 Quak
Drive time, number of line runs,
detour time, overloading,
eet size, waiting time

Heuristic approach

[20] 2006 Cevallos and Zhao Transfer waiting time Evolutionary

[21] 2002 Jansen et al. Passenger transfer times Neighborhood search

[22; 23; 36] 1995/1997/1998 Chakroborty et al. Passengers total waiting time Evolutionary

[24] 1995 Daduna and VoB Transfer time Neighborhood search

[25] 2004 Gao et al. Deterrence, cost, system performance Heuristic approach

[26] 1992 Bookbinder and D�esilets Waiting time {

[29] 2005 Yu et al. Number of transfers, maximum
passenger ow per unit length {

[33] 2004 Fleurent et al. Trip synchronization, historical runs,
eet size, deadhead, layover Heuristic approach

[34] 2004 Castelli et al. Passenger transfer waiting time Heuristic approach

[35] 1976 Rapp and Gehner Transfer optimization Heuristic approach

[37] 2001 Chakroborty et al. Transfer coordination (waiting time),
eet size Evolutionary

[38] 2003 Ngamchai and Lovell Fleet size, in-vehicle and waiting time Evolutionary

Figure 1. The simultaneous arrival of two departures.

zone A to zone B should be transferred from line 2 to
line 1, since there is no direct link between these two
zones. The transfer should be made at stop 12 that
is the transfer stop of two lines. If the arrivals of the
bus on which the passenger is riding and the bus the
passenger needs to catch to continue the trip are not
much apart, the transfer waiting time would be short;
thus, the trip would remain attractive and convenient
for the passenger. However, the arrival times of the

buses on each line should also be taken into account.
For instance, in this case, when the transfer passenger
arrives at stop 12 at 8:00, a short time is required
to get o� the �rst bus, walk to the next stop point,
and get on the immediate next bus on line 1 which
arrives at stop 12 at 8:05. Therefore, the passenger has
a short time to move between the buses on the lines.
This interval between the buses arriving at the transfer
point from di�erent lines should be adjusted according
to the time of day and frequency system. Due to
the high frequency of the services over peak hours,
the time intervals should be quite short to prevent
possible delays. However, due to the low frequency of
the services during non-peak hours, a slight increase in
the waiting time would not considerably a�ect the trip
attractiveness. Furthermore, the interval also depends
highly on the overall characteristics of the intersecting
lines. For example, it should be kept in mind that if one
of the lines is in suburban areas, the service frequency
will be generally low on that line even during the peak
hours; thus, the interval should not be too short as
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it is for intersecting Central Business District (CBD)
lines. In real life, the timetable scheduler cannot expect
passengers to plan their trips so as to minimize their
transfer time. The only thing they can do is to adapt
themselves to the departure times at their origin. In
this regard, it is the scheduler's task to synchronize
the arrivals at transfer points in order to reduce the
transfer time. Besides, the scheduler should plan the
departures according to passengers' demands in the
process of setting timetables; otherwise, demands of
passengers will not be satis�ed and vehicles will be
delayed while facing longer dwell times, hence bunching
phenomenon [2].

A good timetable should be cost-e�ective; in other
words, in addition to satisfying passengers' demands,
it should take into account the bene�ts of the transit
company. Resource constraint is an important issue
for all transit companies. However, they can attract
more passengers by optimizing their current services.
If the proposed synchronization objective is considered
alone, the optimal solution will set the headways of all
lines at their minimum to maximize the service level
which will also increase the number of required vehicles.
Therefore, another important objective is to minimize
the required vehicles. The eet size is a signi�cant
factor that can greatly a�ect the costs for companies.
Headways, as the time between two successive depar-
tures, can be evenly or unevenly spaced. If they are
evenly spaced, the vehicles depart at regular and equal
intervals. In a period that headways are evenly spaced,
the number of the required vehicles on a line can be
calculated using Eq. (1):

eet size =
average round trip time

head way
: (1)

Considering the above-mentioned objectives, the
present study proposes a bi-objective mixed-integer
programming model whose mathematical formulation
is presented in the next section.

3. Problem formulation

The notations used in the mathematical model are
presented in Table 2.

The objectives of the problem are formulated
as shown in Eqs. (2) and (3). The �rst objective
maximizes the number of synchronized arrivals at
transfer points. The second objective minimizes the
number of required vehicles for the system.

maxZ1 =
X
m2Dlt

X
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X
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X
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t
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(
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0 otherwise

l; k 2 L; m 2 Dl
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t ; q 2 Clk; t; p 2 T;
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t2T (CT lt )=H

l
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t ;

q 2 Clk; t; p 2 T; l 6= k; l < k; (10)

xlt; H
l
t 2 N+; l 2 L; t 2 T: (11)

The constraints of the model are formulated as Eqs. (4)
to (11). Constraint (4) guarantees that the �rst depar-
ture would take place in a time period shorter than the
maximum allowable headway. Constraint (5) ensures
that the last departure in each period is set before the
end of the corresponding period. Constraint (6) limits
the headway of each period in order not to exceed the
allowable range. Eq. (7) calculates the arrival time
of each departed vehicle at each stop. Constraint (8)
de�nes the binary variable y introduced in Table 2. It
compares all the arrival times calculated by Constraint
(7). In case the interval between two arrivals from
di�erent lines at a transfer point is shorter than the
maximum allowable time window (�lktp), y takes 1;
otherwise, it remains equal to 0. Eq. (9) calculates the
minimum number of the required vehicles on each line
which is equal to the maximum number of the required
vehicles in each period on the same line. Constraints
(10) and (11) de�ne the mathematical characteristics
of the decision variables.
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Table 2. Table of notations.

Symbol De�nition

Sets:
T Set of time periods (indexed by t and p)
L Set of lines (indexed by l and k)
S Set of stops (indexed by i)
Sl Set of stops on line l (Sl � S)
Clk Set of transfer points on lines l and k (Clk � S) (indexed by q)
Dt Set of departures in period t (indexed by m and n)
Dl
t Set of departures on line l in period t (Dl � D)

Parameters:
U Length of the time periods (usually 1 hour)
CT lt Average round-trip time of line l in period t
H minlt Minimum headway on line l in period t
H maxlt Maximum headway on line l in period t
Dwlit Average dwell time at stop i on line l in period t
�lktp Maximum allowable time window for a synchronized arrival from line l

in period t and line k in period p at a transfer point
Rli;i+1;t Average travel time between two consecutive stops i and

i+ 1 on line l in period t
Decision variables:
xlt The interval between the beginning of period t and the �rst departure on line l in that period
Y lkmnqtp A binary variable which yields the value 1 if the mth departure of period t on line l meets

the nth departure of period p on line k at transfer point q within a time window �lk;
otherwise it yields the value 0

FSl Average number of required eet size on line l
H l
t Planned headway on line l

Alnit Arrival time of departure n to stop i on line l in period t
NDl

t The number of departures on line l in period t

Of note, to ensure the practicality of the problem,
the two following constraints should also hold:

U � (NDl
t � 1):H

l
min
t

8l 2 L; t 2 T; (12)

U � NDl
t:H

lmax
t

8l 2 L; t 2 T: (13)

According to Constraints (12) and (13), departures
that are planned for a period do not violate the cor-
responding time interval. The presented mathematical
formulation is the most comprehensive form which can
be simpli�ed for implementation purposes.

4. Solution approaches

The proposed comprehensive model is widely appli-
cable to networks with di�erent sizes; therefore, the
implementation approach is discussed in two sections
for both small and large networks.

4.1. Scale of the problem
Although binary and discrete variables complicate the
problem, they are often used in mathematical model-
ing, yielding a mixed integer programming problem.
As described in the previous section, the principal
decision variables of the proposed model, i.e., simul-
taneity and headway variables, are binary and discrete
variables, respectively. Moreover, the nonlinearity of
mathematical equations and constraints is, in some
cases, unavoidable. For example, Constraint (8) that
de�nes the simultaneity phenomenon cannot be e�-
ciently linearized without increasing the number of
constraints and variables, hence a more complicated
problem. Furthermore, dimensions of the problem
play a signi�cant role in complicating the problem and
increasing the computation time. The complexity of
the proposed mathematical model which consists of
binary and discrete variables, nonlinear constraints,
and several dimensions can be usually evaluated by the
number of integer variables of the problem. Variable
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ylkmnqtp stands for the simultaneous arrivals of the
vehicle m in period t on line l and vehicle n in period
p on line k at transfer stop q. Accordingly, there is a
binary variable for the combination of every two trips
on every two lines which intersect at stop q. Given that
L is the total number of lines on a network which, at
some points, intersect with other lines, D is the average
number of departures planned on each line in a given
period, C is the total number of transfer stops, and T is
the number of time periods; then, the number of integer
variables ylkmnqtp would be T 2�C�L2�D2. In a more
realistic approach, if C is substituted by the average
transfer stops along each of two lines, the number of
variables would be equal to T 2 � C � L2 � D2 which
would be a large number in real networks. Moreover,
the number of variables associated with eet size, FSl,
assuming H = (H maxlt�H minlt) + 1 as the number
of possible values for headways on each line in each
period, would be equal to T � L � H. Consequently,
the feasibility of e�ciently implementing the proposed
model on real-world transit networks with di�erent
sizes is quite controversial.

Furthermore, with respect to the computational
complexity theory, the basic model developed by Ceder
et al. [14] with the objective of maximizing the number
of simultaneous arrivals is proved to be an NP-hard
problem [48] whose complexity provides enough incen-
tive for the authors to consider heuristic algorithms
as a solution approach. To this end, the attempted
problem in this paper is classi�ed as in the NP-hard
class of problems.

4.2. Converting the problem to a single
objective problem

In order to solve the problem using the single-objective
solution approaches proposed in this paper, it should
be converted into a single-objective problem. To this
end, the linear Weighted Sum Method (WSM) was
employed. Eq. (14) shows the objective function of the
problem converted by the linear WSM:

maxZ =
�
C1

X
m2Dlt

X
n2Dkt

X
q2Clk

X
l2L

X
k2L;
l 6=k

X
t2T

X
p2T

ylkmnqtp � C2
X
l2L

FSl
�
: (14)

Eqs. (15){(17) show the additional constraints incor-
porated to the model using the mentioned method:

C1 + C2 = 1; (15)

C1 � 0; (16)

C2 � 0: (17)

In order to convert the bi-objective mathematical prob-
lem into a single-objective one, the relative importance
of the objectives should be assigned to their corre-
sponding function as their weights. The weight values
are quite important and delicate since they directly
a�ect the �nal solution of the problem. In this respect,
further studies are required for determining the weight
values. There are also some popular methods used in
conjunction with this purpose including brainstorming
and Delphi methods. However, the ultimate decision
should be made by the members of the management
team who are known as the most experienced decision-
makers in this �eld. In this study, considering the
monetary value of each simultaneous arrival which
saves passengers' time and the cost of each vehicle
to ensure more simultaneous arrivals, the weights are
assigned as C1 = 0:23, C2 = 0:77 only to provide
an illustrative example of using methods designed for
single-objective models.

Finally, in order to scale the objectives with
the same unit and magnitude, they are normalized
according to Eq. (18):

~Fi =
Fi(x)� Fi;min

Fi;max � Fi;min
; (18)

where Fi;min and Fi;max are the minimum and maxi-
mum values for the objective function i, respectively,
and the normalized objective function ~Fi 2 [0; 1],
i = 1; 2; :::;m has the same space design as before [49].
For more perceivable depiction, two simpli�cations
are made as shown in Eqs. (19) and (20), and using
Eq. (18), the normalized objective function is presented
in Eq. (21).X
m2Dlt

X
n2Dkt

X
q2Clk

X
l2L

X
k2L;
l 6=k

X
t2T

X
p2T

ylkmnqtp = S; (19)

X
l2L

FSl = FS; (20)

Z = C1

�
S�Smin

Smax�Smin

�
�C2

�
FS�FSmin

FSmax�FSmin

�
: (21)

The resulting Eq. (21) is used as the objective function
of the model in cases of using the single-objective
solution methods.

4.3. Small cities
In small cities with small bus networks and only a few
lines, a simpli�ed version of the proposed model can
be employed for timetable setting; however, the model
needs to be solved for each period of a day. Thus,
the variables and parameters lose the index t, and the
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Figure 2. Example network.

simpli�ed model could be e�ciently solved using classic
nonlinear mathematical methods.

In this section, a small numerical example is
presented and solved using General Algebraic Modeling
System (GAMS). Figure 2 illustrates a transit network
with 4 lines and 6 stops. The planning horizon
comprises 60 minutes (the morning peak hour) and the
travel times between successive stops are mentioned in
Figure 2. As illustrated in Figure 3, stops 1, 3, 5, and 6
are the transfer stops of at least two intersecting lines.

Table 3 presents the input data of the problem
that includes the minimum and maximum allowable
headways for each line, average dwell time of the
vehicles at each stop, and average round-trip time on
each line. Note that the dwell times of buses at the
stops of the same line are assumed equal; hence, the
parameter loses the stop index i.

Table 3. Required parameters (in minutes).

Line no. CT l Dwl Hl
min Hl

max

1 33 3 2 7

2 27 1 1 6

3 51 5 3 10

4 15 3 2 7

The maximum allowable time window for the
simultaneous arrival (�lk) at each transfer point in the
network is set equal to two minutes. The proposed
model is used to set timetables on the example network
illustrated in Figure 2 using GAMS. The problem is
coded in GAMS 23.0.2 and run using DICOPT solver
which is based on the OA/ER/AP algorithm, the
results of which are shown in Table 4.

Table 4 demonstrates the scheduled departure
times of vehicles on each line during the planning
horizon. The last column shows the number of the
required vehicles for each line. Figure 3 illustrates the
occurrence of 11 of 23 consequent simultaneous arrivals
at each transfer point at short intervals. Each line
and its buses are recognized by a di�erent geometric
shape around the bus schematic and the time above
is the arrival time of the bus at the transfer point.
The same procedure can easily illustrate the remaining
simultaneous arrivals.

As mentioned earlier, the best timetable would be
the one that e�ciently maintains the synchronization
of di�erent lines of a transit network requiring the
minimum number of vehicles. The obtained results

Figure 3. The �rst simultaneous arrivals at each transfer point.
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Table 4. Departure times of vehicles and the number of required vehicles for each line.

Line no. 1 2 3 4 5 6 7 8 9 10 11 H FS

1 5 12 19 26 33 40 47 54 { { { 7 5
2 6 11 16 21 26 31 36 41 46 51 56 5 6
3 5 15 25 35 45 55 { - { { { 10 6
4 5 12 19 26 33 40 47 54 { { { 7 3

Total 20

showed that the desired objectives could be achieved
and the model would, by this de�nition, provide the
optimal timetables under di�erent conditions. In this
regard, this model can be used for setting timetables
on a small new network and improving the timetables
of an existing one.

4.4. Large cities
Applying the proposed MINLP formulation to large
transit networks using classic methods is quite di�cult
due to the nonlinear constraints, discrete search space,
and the large size of the problem. Therefore, the
metaheuristic algorithms were employed to e�ciently
solve the proposed model.

Among the most popular metaheuristic algo-
rithms, GA have shown the highest e�ciency in several
cases in terms of transit scheduling problems [39{
47]. Therefore, both the proposed model and the
GA were employed to set timetables on a real-world
transit network with the minimum number of required
vehicles. The process of using GA for solving the
mentioned problem is described as follows.

4.4.1. Metaheuristic approaches
GA which is based on Darwin's theory of evolution is
an optimization algorithm developed by Holland [50].
While considering the nature of the GA that can handle
only problems with one objective function, the problem
is converted into a single-objective problem using the
linear weighted sum model and normalized, as shown
in Eq. (21).

Solving the problem using the proposed mathe-
matical model and GA requires several arrangements
that are a part of the GA procedure, illustrated as a
owchart in Figure 4 (presented by Amiripour et al.
[51]). As observed in the �gure, �rst, an initial popula-
tion of chromosomes is required. Finding a proper con-
�guration for the chromosomes is an essential primary
stage in implementation of GA. It not only a�ects the
coding process but also provides a simple illustration
of the problem for a better understanding. As shown
in Figure 5, the con�guration of the chromosomes is
illustrated as a matrix.

Each row of this matrix contains the main vari-
ables of timetables for each transit line. The elements
in each 1 � 2 block correspond to the time of the �rst

departure and the headway of the corresponding pe-
riod, respectively. The pattern is repeated for each line,
thus forming the chromosome. According to Figure 5,
after generating the initial population consisting of 200
chromosomes, each chromosome should be evaluated
by a �tness function. In this case, similar to the small
sample network problem, the �tness function that is the
weighted linear combination of the introduced objective
functions (Eqs. (2) and (3)) is normalized, as shown in
Eq. (21). All of the constraints are taken into account
in the process of generating the chromosomes, hence
no need for penalty function. After the evaluation
process, the algorithm starts an iterative loop that is
repeated further for a speci�c number of times until
no signi�cant improvements are observed in the �tness
value of the best chromosome.

Non-dominated Sorting Genetic Algorithm
(NSGA-II) for multi-objective optimization, �rst
proposed by Deb et al. [52] and Habibnejad-Ledari
et al. [53], was proved to be an e�cient solution
approach. A similar procedure to what was described
before was employed in the NSGA-II for a bi-objective
problem; however, instead of a �tness value for each
chromosome, there was a �tness vector consisting of
di�erent �tness values of various �tness functions.

The following section presents a real-world case
as an illustration of the applicability of the proposed
model and solution approaches in large-scale networks.

4.4.2. A Case study: BRT network of Tehran
In this section, the proposed model is applied to a large
real-world network. Tehran BRT network, as a large-
scale network, consists of 9 lines (142 km), 8 of which
have common stops between two or three lines, and
according to the 2017 statistics, it serves an average of
2.25 million travelers on a daily basis with 900 buses.
Figure 6 illustrates a plain scheme of the network. Red
lines are the urban bus lines, and blue lines are the
BRT lines. The proposed model and solution methods
were employed to set coordinated timetables on this
network.

Collecting the required data is the �rst step in
solving the problem. Since the vehicles are equipped
with Automatic Fare Collection (AFC) system and
Automatic Vehicle Location (AVL) system, which are
two main sources of data in a bus system, the required
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Figure 4. Genetic algorithm procedure owchart [51].
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Figure 5. The con�guration of the chromosomes.

Figure 6. Tehran bus network.

data collection can be done conveniently. As an
example, the AVL system records the time of opening
and closing the bus doors at each stop. The required

data includes the average travel time between two
consecutive stops (Rli;i+1;t), which can be calculated
by subtracting the time at which the doors are opened
at stop i+ 1 from the time at which the doors are last
closed at stop i. Similarly, the average round-trip time
of a line (CT lt ) can be calculated by subtracting the
time at which the bus doors are closed at the last stop
from the time at which the bus doors are opened at
the �rst stop on the corresponding line. Moreover, the
average dwelling time at each stop (dwlit) is the time
between the opening and closing times of the bus doors
at the same stop. For this purpose, the data for the �rst
two weeks of January 2016 are collected, re�ned, and
sorted according to the required input parameters of
the model. The maximum allowable time window for a
simultaneous arrival (�lktp) at each transfer point in the
network is set equal to 1 minute. The planning horizon
is divided into 17 hours and after tailoring the collected
data in this format, the problem is coded in MATLAB
2017 using the GA. Then, the program is run on a PC
with Pentiumr Dual-Core CPU E 5300 2.60 GHz and
4.00 GB RAM; the results are given in Tables 5 and 6.

Tables 4 and 5 demonstrate the obtained �rst
departure times, headways, and the eet size that are
found by GA for each line for all periods during a day.
Based on this information, a comprehensive timetable
could be built that could minimize the waiting times
for transferring passengers and synchronize the lines
while decreasing the number of required vehicles. The

Table 5. The best �rst departure times found by Genetic Algorithm (GA) in each time period.

Time per.
Line no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 2 3 1 1 3 1 1 1 2 2 3 3 3 2 1 2
2 1 3 1 4 2 3 6 1 1 4 3 1 1 4 4 6 2
3 1 3 2 4 3 1 1 3 1 2 5 1 4 4 2 4 3
4 3 4 5 2 2 3 6 2 6 2 3 3 3 2 3 4 5
5 2 3 1 3 4 3 1 5 2 1 4 1 3 4 1 4 3
7 2 1 3 4 6 7 2 5 3 5 2 1 7 3 6 3 7
8 6 7 7 2 7 7 10 1 9 2 8 7 9 3 4 11 15
10 5 1 5 2 6 1 6 3 1 3 6 2 2 1 6 4 2

Table 6. The best headways and eet sizes found by Genetic Algorithm (GA).

Time per.
Line no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Fleet size

1 2 2 2 3 2 2 2 2 2 3 2 3 3 3 2 2 4 57
2 4 3 3 3 3 4 4 6 3 4 3 4 4 5 4 5 4 45
3 3 3 3 3 4 3 3 3 5 3 4 3 3 4 4 3 5 32
4 5 4 5 6 4 5 6 5 6 6 5 5 4 5 5 8 7 36
5 3 3 3 3 5 5 4 5 6 4 6 4 4 4 5 6 9 34
7 5 4 4 4 4 4 6 5 4 6 4 6 6 7 5 6 7 30
8 10 6 7 6 10 9 10 8 10 10 8 9 9 7 8 11 11 6
10 6 5 4 5 6 4 4 5 6 5 6 5 5 5 6 4 5 17

Sum 257
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improvements and convergence trend of the GA are il-
lustrated in Figure 7. As can be seen in the illustration,
after about 8000 iterations, the algorithm converges to
the presented solution with 10628 simultaneous arrivals
and 257 vehicles. As explained before, NSGA-II is a
powerful tool to obtain a more general solution to the
bi-objective problem, especially in case the importance
weights are unknown or a �nancial analysis of the
possible solutions is necessary for the �nal decision to
be made. In this case, �ve scenarios are considered
for the current problem of Tehran BRT network (� =
1; :::; 5 minutes). For each scenario, all the Pareto
optimal solutions are obtained and the Pareto fronts
are illustrated in Figure 8. The parameter � acts as a
controlling parameter that directly a�ects simultaneous
arrivals and its value should be selected according to
the capacity of the system and the level of service. As
� decreases, simultaneity becomes di�cult to occur.
Therefore, � = 5 is the least strict scenario that o�ers
minimum level of service and � = 1 is the strictest
scenario that o�ers maximum service level. In case
of the strict scenarios, the waiting time for the trans-
ferring passengers is reduced, but this improvement

Figure 7. The GA convergence diagram.

Figure 8. The Pareto optimal fronts of the Tehran Bus
Rapid Transit (BRT) problem.

would not be possible without a decrease in headways,
demanding a higher number of vehicles and an increase
in system costs. This �nding proves that � value is
a sensitive, controversial, and impactful parameter.
It is worth noting that as � decreases, according to
the increasing diagram gradient in Figure 8, a more
signi�cant increase in eet size would be needed in
order to obtain a higher degree of synchronization.
A Pareto optimal front, as given Figure 8, can help
decision-makers analyze the relationship between the
objective values and weights closely and choose the best
objective weight values according to the company's
circumstances.

5. Conclusions

Scheduling (frequency determination and timetable
setting) is one of the most important and complicated
steps of the public transportation planning process.
Synchronization is an important issue that should be
considered during this step. It can have major e�ects
on the attractiveness of public transit networks.

In this paper, by generalizing the primary concept
of simultaneous arrivals and synchronization proposed
by Ceder et al. [14], the frequency determination
and timetable setting problem was formulated as a
mixed-integer nonlinear programming model aimed at
optimal synchronization of the timetables in a public
transit network. The applicability of the proposed
mathematical model was proved by its application to
setting timetables on networks with di�erent scales.
In case of small networks, the problem was converted
into a single-objective problem, the formulation was
simpli�ed, and the model was applied to a sample
network with 4 lines and 6 stops as a case study. The
problem was coded in General Algebraic Modeling Sys-
tem (GAMS) and a thoroughly reasonable timetable
was obtained.

Since the classic methods are not capable of solv-
ing large-scale mathematical programming problems,
two solution methods were proposed for these cases.
First, the genetic algorithm was employed to use the
single-objective problem in order to set timetables
on the BRT network of Tehran consisting of 8 lines.
Secondly, the NSGA-II was given to extract the Pareto
optimal solutions and fronts in �ve di�erent scenarios.
The overall results showed that the proposed model
could be easily used for synchronizing both small and
large bus transit networks considering the vehicle costs
by minimizing the required eet size.

The problem discussed here is a highly com-
plex problem that is under the inuence of many
correlative factors. It could be more realistic if the
stochastic nature of some parameters such as average
dwelling time at stops, average travel time between
two consecutive stops, and average round-trip time
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of lines was incorporated into the model for future
studies. Furthermore, such parameters as maximum
headways and maximum allowable time window for
synchronized arrivals that are associated with the level
of service need thorough discussion by and decisions of
the experts.
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