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Abstract. Microgrids (MGs) are designed to serve their hosting critical load in an
island mode in case of major events. However, in normal conditions when MGs are in
a grid-connected mode, they may face an opportunity to achieve �nancial pro�ts through
optimization of the operation of energy resources and proper participation in wholesale
markets. This paper proposes a model to optimize the participation of MGs in the markets
and operation of energy resources. Since MGs usually host renewable energy resources,
making decisions without considering uncertainties may put MGs at risk. Therefore, the
model considers uncertainties associated with the generation of renewable Distributed
Generation (DGs), demand, and market prices via robust optimization technique. The
model is formulated as a bi-level max-min optimization problem. The problem is solved in
two iterative steps. In the �rst step, a Genetic Algorithm (GA) �nds the worst situation
of uncertain parameters such that MG pro�t is minimized. Then, a mixed-integer linear
problem is solved to maximize the pro�t over MG decision variables considering the values
determined in the �rst step. The steps are iterated to reach convergence to the best solution.
To con�rm the performance of the approach, it is applied to a typical MG and the results
are reported.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Microgrid (MG) is de�ned as a group of interconnected
loads, renewable and/or non-renewable Distributed
Generation (DG) units, and Energy Storage Systems
(ESSs), and it can be employed in both island and
grid-connected modes [1]. Since MGs are usually
designed to be able to serve their hosting critical load
during major events, they may have an opportunity
to participate in wholesale markets in the hope of
achieving pro�ts in normal conditions. However, the
pro�t is subject to risk by volatile market prices, output
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power of intermittent renewable DGs, and uncertain
demand. The aim of this article is to present a
decision model for a private MG owner who optimizes
decisions on participating in the wholesale market,
Load Curtailment (LC), and DG units' schedules.

So far, several research studies have discussed MG
scheduling and its interactions with wholesale markets.
A comprehensive review of the literature on MG
operational activities was presented in [2]. Generally,
the works presented in this area can be classi�ed into
two groups: articles focusing on operational issues and
those focusing on market actions. In the former group,
the MG scheduling problem minimizes operation costs
of local DGs and power exchange with the main grid
such that forecasted load is served [2{5]. In [4], a
multi-objective optimization problem was developed to
minimize fuel costs, changes in power output of diesel
generators, and cost of battery life degradation as well
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as to maximize wind power production while maintain-
ing the real-time power balance during operations. In
the latter group, the objective is to optimize market
activities such that MG owner's pro�t is maximized.
Since MGs usually host a great share of renewable
generation, the pro�t is prone to risk. Therefore, the
risk imposed by volatile market prices, intermittent
and uncertain renewable generations, and uncertain
demand is needed to be considered.

So far, many studies have targeted modeling
uncertainties in power systems. In [6], a thorough
review of the techniques used to model uncertainties
in power system studies was reported. According
to the review, stochastic programming and Robust
Optimization (RO) are the most popular methods for
modeling uncertainties in optimization problems. In
[7], a model was developed to optimize MG market ac-
tivities so that the pro�t could be maximized. However,
uncertainties and their impacts were overlooked in the
reported work. In [8], an optimal scheduling model
for recon�gurable smart renewable MGs was presented
so that the operator's pro�t could be maximized. In
the paper, the wind speed and price of selling and
purchasing power to/from the main grid were consid-
ered as uncertain parameters, which were modeled by
de�ning scenarios. The obtained optimization problem
was solved using a new heuristic method to determine
the best combination of MG switches and generation
of each DG. Researchers in [9] employed a stochastic
bidding strategy for an MG participating in joint
energy and reserve markets. The work considered the
uncertainty associated with load and renewable DG
generation. In this study, the problem was solved
in two steps. In the �rst step, Latin Hypercube
Sampling (LHS) method is employed to generate a
set of scenarios for MG net demand. Then, bidding
strategy is devised such that the expected pro�t over
the generated scenarios is maximized. In [10], a two-
stage stochastic model was developed to maximize the
expected pro�t in the wholesale markets and to min-
imize the MG operation cost based on users' thermal
comfort and system technical constraints. In the work,
the uncertainties of renewable DGs' generation, load,
ambient temperature, and market prices were captured
using Monte Carlo simulation approach.

Generally, stochastic programming method is ex-
tensively employed to model the uncertainties within
the operation research �eld. This method is, however,
heavily dependent on the availability of historical data
for modeling uncertainties as random variables with
known Probability Distribution Functions (PDFs),
which are often unavailable [11]. In contrast, RO tech-
nique is usually easier to understand and does not need
much information about such uncertain parameters as
PDFs, etc. This method models uncertainties by de�n-
ing parametric sets based on scant information, such as

the lower and upper bounds of uncertain parameters,
and helps make the best decision in response to the
worst uncertain situation at a prede�ned interval [11].
Therefore, RO method is widely used for optimization
under uncertainty.

Recently, RO has been successfully applied in
di�erent power system studies such as unit commit-
ment problem [12{15], transmission expansion plan-
ning [11,16{19], and bidding strategy problems [20{28].
In [20] and [23], RO was used to model market price un-
certainty in retailers' decision-making. In [24], an RO-
based model was proposed for optimal self-scheduling
of a price-taker hydro-thermal generating company. In
[21], a robust bidding strategy was developed for a wind
farm equipped with storage devices considering the
uncertainties associated with price and wind power. In
[22], an optimal bidding strategy was proposed wherein
the uncertainty associated with renewable generation
and market prices was modeled via stochastic opti-
mization and RO techniques. In the above research,
the uncertain output of intermittent DG and day-
ahead market price were modeled in scenarios based
on forecast results, while an RO-based model was
proposed to limit the unbalanced power in the real-time
market considering the uncertainty of real-time market
prices. In [25], a multi-objective scheduling approach
for MGs was proposed to minimize both operation
costs and environmental issues under the worst-case
situation of renewable energy production and demand
uncertainties, which are captured by robust sets. In
[26], an energy management procedure for a residential
MG was developed in a day-ahead manner. In this
study, a hybrid method based on two-stage stochastic
programming and worst-case conditional value-at-risk
theory was presented to model the uncertainties in re-
newable energy production, demand, and energy price.
In [27], a RO approach was developed for short-term
scheduling of an MG under demand response program
and uncertainty of the main grid prices. Moreover,
in the paper, the uncertainties in local demand and
production of renewable energy sources were modeled
by a scenario analysis technique. The study in [28]
developed an adaptive robust self-scheduling model
for a joint wind farm and compressed air ESS in the
day-ahead energy market. This research utilized the
max-min-max optimization framework and considered
uncertainties in wind output power and market price.

The current study develops a mathematical model
to optimize the participation of an MG owner in the
wholesale market. The model maximizes the pro�t of
the MG owner; accordingly, RO technique is applied
to capture the risk caused by volatile market price,
uncertain demand, and intermittent and uncertain
renewable generation. The problem is modeled as a
bi-level optimization problem which is solved in two
iterative steps [29]. In the �rst step, Genetic Algorithm
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(GA) determines the worst situation of uncertainties.
Then, a deterministic optimization problem is solved
such that MG pro�t is maximized considering the
values determined for uncertain parameters in the �rst
step. The two steps are iterated to reach convergence
to the best solution. The problem solved in the second
step is in a Mixed Integer Linear Programming (MILP)
fashion and can be easily solved via available solvers.

The main contributions of this paper are as
follows:

� A robust model is developed to optimize the par-
ticipation of an MG owner in the wholesale market
considering renewable energy subsidies;

� The uncertainty associated with market prices, re-
newables output power, and demand is captured in
the model;

� The model is in the bi-level format which is solved
in two iterative steps where a GA is used to �nd the
worst-case scenario and an MILP problem is solved
to �nd the best strategy in the worst case scenario
found.

The remainder of the paper is organized in the follow-
ing. Section 2 presents problem formulation for optimal
scheduling of an MG owner in the wholesale market.
The methodology to solve the problem is also described
in this section. Section 3 provides the numerical results
and discussions for a case study. Finally, relevant
concluding remarks are drawn in Section 4.

2. Proposed methodology

The proposed methodology is presented in this section.
In this respect, at �rst, a deterministic model is
described. The model is then extended to consider
uncertainties via an RO method. Finally, the solution
methodology is explained.

2.1. Deterministic model
2.1.1. Objective function
Generally, MG owners participate in wholesale markets
in the hope of achieving maximum pro�t. Therefore,
the objective function of the model is to maximize the
pro�t as follows:

max
�S

Profit = Revenue � Cost; (1)

where:

�S =
�
PGDAt ; PGridt ; PDGi;t ; PChb;t ; P

Dis
b;t ; P

LC
j;t ;

SOCb;t;Wi;t; Ii;t; Fi;t; ZChb;t ; Z
Dis
b;t

�
;

are the problem decision variables. The MG revenue
is the total income of the MG due to selling energy

to its customers and to the main grid. It should be
mentioned that the selling price of renewable DG power
usually contains subsidies in electricity markets and it
is higher than the market price. The revenue earned
by the MG owner is formulated as follows:

Revenue =
X
t2NT

�Discot :PDDA
t +

X
t2NT

�Market
t :PGDAt

+
X
t2NT

X
i2RE

�REt :
�
PWind
i;t +PPVi;t

�
: (2)

In Eq. (2), the �rst term is the revenue achieved
by selling electricity to customers. The second term
represents the revenue earned by participating in the
day-ahead market, while the last term is the revenue
of selling the electricity generated by renewable DGs.
The cost in Eq. (1) is the total MG cost that is
mathematically formulated as follows:

Cost =
X
t2NT

�
�Market
t :PGridt

+
X

i2NDG

� �
Ai:Wi;t +Bi:PDGi;t

�
+ li;t:CSi

+Fi;t:CDi
	

+
X

b2BAT

�
�b+�b:

�
PChb;t +PDisb;t

�	
+
X
j2NB

�LCj;t :P
LC
j;t
	
: (3)

In Eq. (3), the �rst term denotes the cost of purchasing
electricity from the main grid. The second term
represents all the costs associated with DGs. The third
and fourth terms are ESS and LC costs, respectively.
It should be mentioned that the ESS cost depicts a
general form of maintenance cost (see [30]).

2.1.2. Constraints
Technical constraints including power balance con-
straint, DG unit constraints, energy storage con-
straints, and LC limits are presented hereinafter
[31,32].

Power balance constraint. This constraint ensures
that the power purchases from the main grid, charg-
ing/discharging power of ESSs, and the power pro-
vided by DG units (both renewable and non-renewable
DGs) can meet the hourly forecasted demand. This
constraint is mathematically written as follows:

PDDA
t +PExt +

X
b2BAT

PChb;t =
X

i2NDG
PDGi;t +

X
b2BAT

PDisb;t

+
X
i2RE

�
PWind
i;t + PPVi;t

�
+
X
j2NB

PLCj;t ; (4)

where PExt is a free variable as PExt = PGDAt �PGridt ,
which is positive/negative when the MG sells/buys
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energy to/from the main grid, to ensure that PGridt
and PGDAt are not nonzero at the same time.

DG constraints. The operation of a non-renewable
DG unit is subject to some technical limits including
generation limits, minimum down/up time, and ramp-
down/ramp-up constraints:

(i) Generation limits: These constraints ensure
that the power generated by each DG unit is bounded
by the corresponding upper and lower generation
limits as follows:

PDGi;min:Wi;t � PDGi;t � PDGi;max:Wi;t: (5)

(ii) Ramp-down/up constraints: The generation
of DG units should adhere to the ramp-down/up
constraints as follows:

PDGi;t+1 � PDGi;t � RUPi ; 8i 2 NDG; t 2 NT;
PDGi;t � PDGi;t+1 � RDNi ; 8i 2 NDG; t 2 NT;
PDGi;t jt=0 = 0: (6)

(iii) Minimum down/up time constraints:
These constraints guarantee that the operating status
of DG units adheres to the minimum down/up time
limits as follows:

t0+TUPi �1X
t=t0

Wi;t � TUPi :Ii;t;

8t0 = UFi + 1; :::; 24� TUPi + 1; (7)

UFiX
t=1

Wi;t � UFi; (8)

t0+TDNi �1X
t=t0

(1�Wi;t) � TDNi :Fi;t;

8t0 = DFi + 1; :::; 24� TDNi + 1; (9)

DFiX
t=1

Wi;t � 0: (10)

(iv) Coordinating constraints: These constraints
ensure that there is no con
ict between the model
binary variables (i.e., W , I, F ), which represent the
status of DG units. These constraints are as follows:

24X
t=t0

Wi;t � Ii;t0 � 0;

8t0 = 24� TUPi + 2; � � � ; 24; (11)

24X
t=t0

(1�Wi;t � Fi;t0) � 0;

8t0 = 24� TDNi + 2; :::; 24; (12)

Wi;t�1 �Wi;t + Ii;t � Fi;t = 0;

8i 2 NDG; t 2 NT: (13)

ESSs constraints. ESSs should satisfy the stored
energy equation, maximum charge and discharge power
limits, and the minimum and maximum allowable
amounts of stored energy. These constraints are
written as follows:

0 � PChb;t � PChb;max:Z
Ch
b;t ;

0 � PDisb;t � PDisb;max:Z
Dis
b;t ; (14)

ZChb;t + ZDisb;t � 1; (15)

SOCb;t+1 =SOCb;t+
�Ch:PChb;t :dT
EBATmax

� PDisb;t :dT
�Dis:EBATmax

SOCmin
b � SOCb;t � SOCmax

b : (16)

Limit on available LC. This constraint limits the
amount of LC by the MG owner as follows:

0 � PLCj;t � PLCj;max: (17)

The above-described model is in MILP format and
can be easily solved via available commercial solvers.
It, however, does not consider uncertainties associated
with market price, customers load, and renewable
output power. The next subsection extends the model
to �ll the gap.

2.2. Robust model
In this work, the wind and PV output powers, demand,
and market prices are assumed to be uncertain. Here,
it is assumed that the forecasted wind and PV pow-
ers, demand, and market prices denoted by PWind

i;t ,
PPVi;t , PDDA

t , and �Market
t , respectively, are available.

According to the uncertainty modeling method, a
set of intervals is considered for the uncertainties as
follows [16]:

PWind
i;t 2 [(1 + �min

w;t )PWind
i;t ; (1 + �max

w;t )PWind
i;t ];

PPVi;t 2 [(1 + �min
pv;t)PPVi;t ; (1 + �max

pv;t )PPVi;t ];

PDDA
t 2 [(1 + �min

PD;t)PDDA
t ; (1 + �max

PD;t)PDDA
t ];

�Market
t 2 [(1 + �min

�;t )�Market
t ; (1 + �max

�;t )�Market
t ]:

(18)
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By applying RO method, the deterministic problem
described in the previous subsection is solved, while
the worst case is considered according to the above
parameters and the respective ranges. To do so, the
problem is considered as a bi-level model where pro�t
is maximized over the scheduling decisions in the Lower
Level (LL) problem and is minimized over the uncertain
parameters in the Upper Level (UL) problem. The
problem is formulated as follows. The optimal solution
of this model provides MG owners with a robust
schedule including the power traded in the day-ahead
market, DGs commitment and production schedules
(renewable/non-renewable DGs and storage devices),
and optimal contracts for LCs.

2.2.1. LL problem
The LL optimization problem is:

ObjLL = max
�S

Profit (19)

s.t.:

Eqs:(4)� (16); (20)

where Pro�t in Eq. (19) is determined by Eqs. (1) to
(3) in which the output power of renewable DG units,
demand, and market prices can be calculated as follows:

PWind
i;t = (1 + �w;t)PWind

i;t ;

P pvi;t = (1 + �pv;t)P pvi;t ;

PDDA
t = (1 + �PD;t)PDAt ;

�Market
t = (1 + ��;t)�Market

t : (21)

2.2.2. UL problem
The UL optimization problem is:

ObjUL = min
�U

ObjLL; (22)

st.

�min
w;t � �w;t � �max

w;t ; (23)

�min
pv;t � �pv;t � �max

pv;t ; (24)

�min
PD;t � �PD;t � �max

PD;t; (25)

�min
�;t � ��;t � �max

�;t ; (26)

where �U =
�
PWind
i;t ; P pvi;t ; PDDA

t ; �Market
t

	
are the

variables associated with uncertain parameters.

2.3. Solution technique
Generally, bi-level problems are di�cult to solve and
there is no general step-by-step solution process to
ensure �nding an optimal solution. Also, due to non-

convexities in the LL objective function and DG and
storage constraints with binary variables, the presented
bi-level robust model is a non-convex optimization
problem. Hence, it cannot be solved by using analytical
methods like converting the bi-level formulation into
its equivalent single-level formulation derived from
Karush-Kuhn-Tucker (KKT) conditions or duality-
based technique [33]. Moreover, in this problem, there
are identical uncertainties in both objective function
and constraints that cannot be reformulated and solved
by commercial solvers; this is similar to the condition
that many studies existing in the literature have expe-
rienced [34].

Here, a robust model is solved via an iterative
two-stage approach wherein GA and MILP are used.
In this approach, the GA determines a set of values for
uncertain parameters that minimize the total pro�t of
the MG owner. Then, LL problem is solved using the
values of uncertainties generated by the GA. Figure 1
shows the 
owchart of the approach to solving the
optimization problem.

According to Figure 1, at �rst, the input data
including forecasted data for uncertain parameters
PWind
i;t , P pvi;t , PDDA

t , and �Market
t are captured by the

algorithm. Then, an initial population is randomly
generated for PWind

i;t , P pvi;t , PDDA
t , and �Market

t based
on Relations (21), (23){(26) for t 2 NT . Then, for
each individual of the population, the LL problem is
solved by an available solver. After that, the obtained
results are employed to determine �tness evaluations
of individuals in the population and to generate a new
population using crossover, mutation, and selection

Figure 1. Flowchart of the proposed solution algorithm.
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operators. Finally, this process is repeated until the
GA's termination criterion is satis�ed.

3. Case study

In this section, numerical results of the implementation
of the proposed robust model on a typical low-voltage
MG [7] are presented. The MG is shown in Figure 2.
This MG consists of four dispatchable DGs (two micro-
turbines and two fuel cells), one ESS unit, three
wind turbines and two solar units, and several local

loads. Detailed data of the dispatchable DG, ESS, and
renewable wind and solar units can be found in [9,35].

In addition, the MG can exchange power with the
main grid under the market rules and has a centralized
control system. This system collects the operational
information of DG units and decides to participate in
the power market sending set points to DG units via
communication systems.

The hourly forecasted wind speed, demand, solar
radiation, and market prices, which are based on
Nordic power market, are shown in Figure 3. Also,

Figure 2. A typical low voltage Microgrid (MG).

Figure 3. The hourly forecasts: (a) Wind speed, (b) solar irradiation, (c) load, and (d) electricity market price.
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Table 1. The results of deterministic scheduling strategy.

Hour MT1 MT2 FC1 FC2 BAT Main grid LC Wind PV
1 0 0 0 0 0 235.9 0 64.09 0
2 0 0 0 0 0 210.1 0 59.9 0
3 0 0 0 0 0 195.9 0 54.1 0
4 0 0 0 0 {88.9 264.8 0 54.1 0
5 0 0 0 0 0 171.3 0 48.7 0
6 0 0 0 0 0 179.7 0 45.3 0
7 0 0 0 0 0 191.3 0 48.7 15
8 0 0 0 0 0 242.2 0 80.3 37.5
9 150 150 100 100 0 {112.3 0 102.3 60
10 150 150 100 100 0 {324.6 0 139.1 112.5
11 150 150 100 100 0 {343.1 0 162.6 142.5
12 150 150 100 100 72 {366.6 0 162.6 150
13 150 150 100 100 {88.9 {22.5 183 188.9 142.5
14 150 150 100 100 72 -382.7 198 198.2 120
15 150 150 100 100 0 {68.2 222 198.2 90
16 150 150 100 100 0 {76.4 0 188.9 67.5
17 150 150 100 100 0 {35.4 217.5 175.4 30
18 0 0 0 0 0 534.5 0 150.5 15
19 0 0 0 0 {88.9 770.9 0 118 0
20 0 0 0 0 0 661.9 0 88.1 0
21 150 150 100 100 72 45.2 0 82.8 0
22 150 150 100 100 0 55.9 0 64.1 0
23 0 0 0 0 0 445.9 0 54.1 0
24 0 0 0 0 18 336.7 0 45.3 0

Figure 4. The retail energy price for end-users based on
TOU program.

power conversion models and parameters of wind and
PV resources were adopted from [9]. In addition, the
retail price for local consumers of the MG is shown
in Figure 4. It should be mentioned that only 30%
of the load can be curtailed with interruption cost at
30 cents/kWh, and the selling price of renewable DGs
output power consists of 20% subsidies, i.e., 20% higher
than market prices.

3.1. Deterministic model
In this section, the scheduling problem is solved using
the forecasted values of uncertain parameters for the
afore-mentioned case study. To this end, the optimiza-

tion problems (Relations (1){(17)) are solved using
CPLEX solver in GAMS environment. The expected
pro�t of the MG owner based on the forecasted values
is equal to k$139. Table 1 shows the results of the
deterministic model in detail. As can be seen, during
the hours 9{17, 21, and 22 when the price of energy
market is high, the DG units operate at their maximum
level for selling as much power as possible to the energy
market. Also, during hours 13{17, the MG prefers to
reduce its demand and sell greater power to the market.
Another observation is that during hours 18{20, the
demand of the MG is at the highest level and renewable
DGs produce less power, but non-renewable DGs are
o� due to lower market prices.

3.2. Robust model
In this section, the bi-level problems (Relations (19){
(26)) are solved by the method described in Section
2.3 considering the input parameter data and uncer-
tainties. The allowable changing ranges of uncertain
parameters are considered identical and equal to 5%,
i.e., �0:05 � �w;t; �pv;t; �PD;t; ��;t � 0:05 for t = 1 :
24 hour.

The obtained results for the robust and determin-
istic models are provided in Figure 5 and Table 2. As
can be observed from Figure 5, the worst case occurs
when the wind and PV output powers are close to the
LL and the demand is close to the UL for peak hours
and to the LL for o�-peak hours. Also, in the worst
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Figure 5. The result of deterministic and robust models: (a) Wind output power, (b) PV output power, (c) load, and (d)
electricity market price.

Table 2. The results of robust scheduling strategy and
percent of load procurement.

Deterministic
model

Robust
model

Utility (%) 22.15 23.78
Non-renewable DG (%) 43.35 43.65
Renewable DG (%) 28.03 25.94
Load curtailment (%) 6.47 6.63
MG's pro�t (103$) 138.98 125.15
MG's cost (103$) 5.36 17.16
MG's revenue (103$) 144.33 142.31

case, the electricity market prices are almost at a LL
during peak periods and at a higher level during o�-
peak hours. Also, a deeper observation indicates that
the uncertainties are not exactly located within the
boundaries for the worst case and they are changing
during the 24 hours.

On the other hand, according to the table, the
minimum pro�t of the MG for the robust model is
k$125, which is guaranteed if none of the uncertain
parameters is deviated by more than 5%. In other
words, if the actual wind and PV output powers,

demand, and market prices deviate by no more than 5%
of their forecasted values, the pro�t gained by the MG's
owner will be at least k$125. In addition, by comparing
the results of deterministic and robust models, the
revenue of both of the models is almost equal; however,
the cost of the robust model is higher than that of the
deterministic one. This situation occurs because the
production of renewable DGs in the robust model is
reduced due to uncertainties and the MG must increase
the LC invocation and utility share. This indicates
that having a level of robustness in scheduling increases
the costs of the MG and, consequently, leads to lower
pro�ts in the worst situation.

3.3. Sensitivity analysis
In this section, the e�ects of uncertainties on the pro�t
and scheduling of the MG are investigated. In this
regard, four cases are considered in which the allowable
changing ranges of uncertain parameters are considered
identical and equal to 5%, except for one which is
considered 15%, as depicted in Table 3.

Table 4 shows the results of the sensitivity analy-
sis based on the above scenarios. As can be observed,
the minimum pro�ts of the MG for Scenarios 1, 2, 3,
and 4 are k$111, k$119, k$112, and k$115, respectively.
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Table 3. The allowable changing range of uncertain parameters.

Scenario 1 �pv;t; �PD;t; ��;t 2 [�0:05; 0:05] and �w;t 2 [�0:15; 0:15] ; 8t = 1 : 24

Scenario 2 �w;t; �PD;t; ��;t 2 [�0:05; 0:05] and �pv;t 2 [�0:15; 0:15] ; 8t = 1 : 24

Scenario 3 �w;t; �pv;t; ��;t 2 [�0:05; 0:05] and �PD;t 2 [�0:15; 0:15] ; 8t = 1 : 24

Scenario 4 �w;t; �pv;t; �PD;t 2 [�0:05; 0:05] and ��;t 2 [�0:15; 0:15] ; 8t = 1 : 24

Table 4. Sensitivity analysis results.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Utility (%) 28.40 24.68 23.12 25.67
Non-renewable DG (%) 43.41 43.56 43.65 41.93
Renewable DG (%) 21.40 24.96 25.84 26.62
Load curtailment (%) 6.79 6.80 7.39 6.78
MG's pro�t (103 $) 111.46 119.57 112.18 115.44
MG's cost (103$) 29.94 22.50 31.99 26.27
MG's revenue (103$) 141.41 142.07 144.17 141.71

This indicates that PV uncertainty is of lower signi�-
cance than the others. This makes sense since no solar
power is available during night times. Besides, it can be
because of lower PV capacity in the MG. Also, the wind
and load uncertainties are almost the same and have
the greatest e�ect on pro�t and scheduling of the MG.
Unexpectedly, the bound of market price uncertainty
has less e�ect than wind and load and the revenue
obtained in Scenarios 1 and 4 is equal, but the cost
of Scenario 1 is higher than that of Scenario 4. This
could be due to the lack of wind power at some hours
and use of conventional DGs or buying greater power
from the upstream grid to cover the load.

4. Conclusion

In this paper, a robust scheduling approach was pre-
sented from the viewpoint of Microgrids (MG) owners
with emphasis on uncertainties. The uncertainties in
demand, market price, and output power of renewable
Distributed Generation (DG) units were modeled using
an Robust Optimization (RO)-based method. The
problem was formulated as a bi-level Mixed Integer
Linear Programming (MILP) optimization problem
and was solved using an iterative two-step approach.
The approach was applied to a typical MG to illustrate
its performance. As demonstrated by the obtained
results, when the MG owner decides to reduce his/her
own risks, the expected pro�t is reduced. Therefore,
having a level of robustness in scheduling increased
the MG costs and, consequently, led to lower pro�ts
in the worst situation. In addition, it was shown that
the worst case was related to the situation in which
the wind and PV output powers were lower. The load
and market prices were higher and lower during peak

periods and lower and higher during o�-peak hours,
respectively. Also, it was found that the uncertainties
were not exactly located on the boundaries for the
worst case and they were changing during the 24
hours. Moreover, it was shown that the wind and load
uncertainties had the highest e�ect on MG pro�t and
scheduling and the PV was of lower signi�cance.

Nomenclature

Set and indices
t; t0; NT Indices and set of operating hours
i;NDG Index and set of DG units in the MG
RE Set of renewable DG units in the MG
b;BAT Index and set of energy storages in the

MG

Parameters and Constants
�Discot Price of power for end-use customers

at hour t
�REt Price of renewable DG unit i at hour t

in electricity market

�LCt Price of power decreased by load
curtailment at hour t

A;B Cost function parameters of DG units
CS;CD Start-up and shut-down costs of DG

units
�b; �b Cost function parameters of energy

storage b

PDGi;max; P
DG
i;min Maximum and minimum output of DG

unit i
RUPi ; RDNi Ramp-up/down limits for DG unit i
UFi; DFi Minimum up/down times of DG unit i
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TUPi ; TDNi Required up/down times of DG unit i
at the beginning of the time horizon,
respectively

PChb;max; P
Dis
b;max Upper limit on charge and discharge of

ESS b
SOCmax

b Maximum of state of charge of ESS b

SOCmin
b Minimum of state of charge of ESS b

�Ch; �Dis Charge and discharge e�ciency of ESS
EBATmax Installed capacity of ESS
dt Duration time of bidding interval, e.g.

1 hour
PLCmax Maximum allowable power decreased

by load curtailment

PWind
i;t Forecasted wind power output of unit

i at hour t
P pvi;t Forecasted solar power output of unit i

at hour t
PDDA

t Forecasted consumer active power
demand at hour t

�Market
t Forecasted electricity market price at

hour t
�max
w;t ; �

min
w;t Upper and lower bound of �w;t at hour

t
�max
pv;t ; �

min
pv;t Upper and lower bound of �pv;t at

hour t
�max
PD;t; �

min
PD;t Upper and lower bound of �PD;t at

hour t
�max
�;t ; �

min
�;t Upper and lower bound of ��;t at hour

t
Variables
�Market
t Electricity market price at hour t.

PDDA
t End-use active power demand at hour

t.
PGDAt ; PGridt Active power sold/purchased to the

market at hour t.
PExt Active power exchanged with the main

grid at hour t.

PWind
i;t ; P pvi;t Wind and solar power output of unit i

at hour t.
W; I; F Binary variables denoting DG

units' commitment status, start-up,
shut-down decisions, respectively.

PDGi;t Active power generated from DG unit
i at hour t.

PChb;t ; P
Dis
b;t Charge and discharge power energy

storage b at hour t.
SOCb;t State of charge of battery energy

storage b at hour t.

ZChb;t ; Z
Dis
b;t Binary variables denoting status of

ESS unit b at hour t.

PLCt Active power decreased by load
curtailment at hour t.

�w;t; �pv;t Decision variable to model wind and
PV output power uncertainty at hour
t.

�PD;t Decision variable to model demand
uncertainty at hour t.

��;t Decision variable to model market
price uncertainty at hour t.
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