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Abstract. A supply chain network system was regarded as a serial-parallel multistage
process and the application of a change-point control chart based on likelihood ratio was
explored to monitor this system. First, state-space modeling was used to characterize
complexities of the supply chain network system. Second, a change-point control chart
based on likelihood ratio was used to trigger potential tardy orders in the system. Third,
a case study was carried out to prove that the change-point control chart could e�ectively
signal mean shift in completion time of one order in one stage and could accurately estimate
the change point and the out-of-control stage in terms of performance indices. In detail,
when the mean shift was relatively small, the change-point control chart could e�ectively
identify it and more accurately detect the change point and the out-of-control stage than
the traditional Shewhart control chart did. We also investigated the e�ect of misspeci�ed
parameters of state space equations on performance of the change-point control chart. The
results showed that the performance of the change-point control chart could still remain
relatively stable. In general, the change-point control could e�ectively monitor the supply
chain network system and the monitoring e�ect was relatively stable.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

A supply chain network system is full of uncertainties
and variations, e.g., demand uncertainty, lead time
variability, and supplier fault, which in turn cause
degradation of the system performance [1,2]. If these
variations and uncertainties accumulate up to a certain
point, the supply chain network system may fail. A col-
lapse of supply chain network system will signi�cantly
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a�ect quality performance of the system [3]. Heydari
[4] contended that the control of lead time variability
was a motivation for persuading retailers to take part
in cooperation programs. Especially in Make-To-Order
(MTO) production mode, variability in response time
is more signi�cant. It would cause response time to
go out of control. The response time is the interval
from the time one customer places an order to the
time the products/service is delivered to the customer.
In the customized production environment, it is the
order completion time. Due to many uncertainties
in the order completion process, the response time
must be monitored in real time in order to achieve a
predetermined level of customer service.

Statistical Process Control (SPC) is a good tech-
nique for monitoring a supply chain network system.
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Figure 1. A supply chain network system viewed as a serial-parallel system.

As one of the tools, control charts can e�ectively detect
assignable causes in the process to ensure stability of
a system [5,6]. Wang [7] utilized the individual and
moving range control charts on the basis of �nite state
machine theory to monitor order completion of each
echelon (stage) in a supply chain network. An Expo-
nentially Weighted Moving Average (EWMA) control
chart was adopted by Chen et al. to detect variations
in temperature of the cold chain [8]. Wang et al. [9]
proposed a control chart using Kalman �ltering to issue
potential assignable events in a supply chain network.
Faraz et al. [10] utilized a multivariate control chart to
monitor delivery chain. Lu and Tsai [11] employed non-
parametric generalized EWMA control chart in green
supply chain management to constantly upgrade cus-
tomer satisfaction of the stability of suppliers. Zhong et
al. [12] used the control chart based on the maximum
likelihood ratio to monitor supply chain systems and
implemented the corresponding maintenance behaviors
according to alarm signals.

In this study, a supply chain network system is
put forward as a series or series-parallel multi-stage
process (see Figure 1). Therefore, when using SPC to
monitor this system, we must consider the correlation
between stages [13]. Zolfaghari and Amiri [14] used a
discriminant analysis control chart to monitor a two-
stage system with correlated variable-attribute quality
characteristics. Furthermore, Amiri and Zolfaghari [15]
extended this method to monitor a multi-stage sys-
tem with clustering and indicated its e�ectiveness in
estimating the change point. A change-point control
chart can identify abnormal variation in the process
and timely track process changes by measuring the dif-
ference between observation points [16]. Furthermore,
the change-point control chart can estimate speci�c
change points and the corresponding stages. The
change-point control chart has widely been used in
multistage processes (e.g., [17]). In addition, variation
propagation is another important feature of the multi-
stage process. Pirhooshyaran and Niaki [18] proposed
a double-max multivariate EWMA control chart to
jointly monitor the parameters of a multivariate multi-
stage auto-correlated process with prior knowledge of
variation propagation. Bazdar et al. [19] put forward
a within-stage fault diagnosis approach on the basis of
variation propagation modeling. Also, with respect to
dynamic networks, Zou and Li [20] presented a Network

State Space Model (NSSM) to describe evolution of a
dynamic network and integrated the NSSM with SPC
for change detection.

In our study, we deal with a supply chain network
system as a serial-parallel multistage process and ex-
plore the application of the change-point chart based on
likelihood ratio to monitor the supply chain network.
In detail, our monitoring object is the status (the time
spent on various tasks or completion time) of each order
at di�erent stages in the supply chain network system.
State-space model is used to characterize complexities
of this system. Then, a change-point control chart
based on likelihood ratio is used to trigger potential
tardy orders in the system. Finally, a case study
and a sensitivity analysis are provided to demonstrate
e�ectiveness of the change-point control chart.

2. Modeling of a supply chain network system

A supply chain network system is a cross-
organizational, cross-sectional composite system.
Manufacturers, as the core business, may face multiple
suppliers and distributors. The case that multiple
suppliers provide parts or raw materials for one
core business can be summarized a as many-to-one
relationship and the case that one core business sales
its products to multiple distributors or retailers can
be summarized as a one-to-many relationship.

State-space modeling (see Eq. (1)) is used to
quantitatively describe the system state of a supply
chain network by transition equation as well as the
relationship between measurement and the system
state by measure equation.

xk = Ak�1Xk�1 + Uk + !k; k = 1; 2; : : : ; N;

yk = CkXk + vk: (1)

In fact, state space equations contain two types of
quality information, namely state variables xk and
measurement values yk. These two types of quality
information are present through all stages. We assume
that the quality characteristics in this paper follow
normal distribution. Ak�1 means how much quality
information from stage k � 1 is transferred to stage
k and Ck represents the relationship between quality
measurement yk and state vector xk. Both Ak�1
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and Ck can be acquired by engineering knowledge
and supply chain network information. Uk denotes
a process fault or an out-of-control condition, e.g., a
tardy order. If the supply chain network system is in-
control, then Uk = 0. In this paper, we assume that
only step shifts of order completion time in one stage
occur in the system, hence, Uk is constant. !k denotes
process noise, e.g., background disturbance and un-
modeled errors. Finally, vk denotes measurement error.

For a speci�c order, the order completion time is
the sum of the times spent on various tasks. Let xi;k be
the state variable, which denotes the time that for order
i (i = 1; 2; :::) all the tasks are �nished at stage k (k =
1; 2; :::; N), including the waiting time for the available
resources before start of the processing task and the
time spent on value-added processing task. We also
assume the start time of the �rst task of the respective
order equal to 0, i.e., xi;0 = 0. When order i (i =
1; 2; :::) is completed at stage k, the time is measured
and denoted by yi;k.

As shown in Figure 1, a supply chain network can
be decomposed into three scenarios. Scenario 1 plays
out serial processes (i.e. from stage k+1 to stage k+3)
in which both upstream and downstream stages have
only one stream and the same propagation pattern. In
Scenario 2, the output of stage k � 1 is separated at
stage k; that is, the downstream stage has more than
one workstation with the same input source. Scenario 3
merges the output of stage k into stage k + 1, i.e., the
input has multiple sources while the output has only
one stream.

According to [21], Scenario 1 (from stage k + 1
to stage k + 3) has a single propagation pattern.
Therefore, Eq. (1) can be directly used in this case:

xi;k+2 = Ak+1xi;k+1 + Ui;k+2 + !k+2;

i = 1; 2; : : : ; k = 1; 2; : : : ; N;

yi;k+2 = Ck+2xi;k+2 + �k+2: (2)

Hence, when the supply chain network system is in-
control, observation yn is maintained:

yi;n =
nX
j=1

Cn�n;j!j + �n; (3)

where �n;j = An�1An�2:::Aj . Therefore, E(yi;n) = 0,

V ar(yi;n) =
nP
i=1

C2
n�2

n;j�2
!j + �2

�n .

Assume a mean shift occurs at stage k+ 1. Then,
if n < k, observation yn holds; otherwise, i.e. n � k, it
becomes:

yi;n =
nX
j=1

Cn�n;j!j + �n + Cn�n;k+1Ui;k+1: (4)

Therefore:

E(yi;n) = Cn�n;k+1Ui;k+1;

V ar(yi;n) =
nX
i=1

C2
n�

2
n;j�

2
!j + �2

�n :

In this case, once mean shifts occur at the up-
stream stage, only the means in the downstream stages
are a�ected while their variances remain unchanged.

In Scenario 2 (from stage k � 1 to stage k in
Figure 1), we have one stream at stage k � 1 and two
streams at stage k. Two dummy variables of quality
characteristics, namely ~xi;k�1;1 and ~xi;k�1;2, are used
to model this case, as shown in Eq. (5) [21]:�

xi;k;1
xi;k;2

�
= Ak�1xi;k�1 + Ui;k + !k

=
�
Ak�1~xi;k�1;1 + Ui;k;1 + !k;1
Ak�1~xi;k�1;2 + Ui;k;2 + !k;2

�
;�

yi;k;1
yi;k;2

�
=
�
Ckxi;k;1 + �k;1
Ckxi;k;2 + �k;2

�
; (5)

where ~xi;k�1;1 and ~xi;k�1;2 represent the virtual quality
characteristics at stage k � 1 transformed to the two
workstations at stage k. We assume that the two
workstations at stage k are identical. Hence, ~xi;k�1;1
and ~xi;k�1;2 follow the same distribution and xk�1 is
their combination. Also, !k;1 and !k;2 follow the same
distribution of N(0; �2

wk). Therefore, a mean shift that
occurs at stage k � 1 will a�ect both workstations
at stage k and the e�ect is the same. Thus, the
propagation pattern of mean shifts in this case can be
modeled as that in Scenario 1, i.e. the mean shifts but
the variance remains unchanged.

In Scenario 3 (from stage k to stage k + 1),
two workstations are at stage k. Hence, two dummy
variables, namely ~xi;k+1;1 and ~xi;k+1;2, are used to
model this case, as shown in Eq. (6):

xi;k+1 =
�

~xi;k+1;1
~xi;k+1;2

�
=
�
Akxi;k;1 + Ui;k+1;1 + !k+1;1
Akxi;k;2 + Ui;k+1;2 + !k+1;2

�
;

yi;k+1 = Ck+1xi;k+1 + �k+1; (6)

where ~xi;k+1;1 and ~xi;k+1;2 denote the transformed
quality characteristics from xi;k;1 and xi;k;2, respec-
tively. xi;k+1 is a combination of ~xi;k+1;1 and ~xi;k+1;2.
If no mean shifts occur at the upstream stages, ~xi;k+1;1
and ~xi;k+1;2 will have the same distribution. Thus,
the combined distribution of xi;k+1 is the same as the
distribution of ~xi;k+1;1 and ~xi;k+1;2.

We suppose that the portions of input to stage k+
1 from workstation 1 and to stage k from workstation
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xi;k+1 =
�

~xi;k+1;1
~xi;k+1;2

�
=
�
AkAk�1~xi;k�1;1+AkUi;k;1 +Ak!k;1+!k+1;1
AkAk�1~xi;k�1;2+AkUi;k;2 +Ak!k;2+!k+1;2

�
;

yi;k+1 =
�

~yk+1;1
~yk+1;2

�
=
�
Ck+1AkAk�1~xi;k�1;1 + Ck+1Ak!k;1 + Ck+1!k+1;1 + �k+1;1 + Ck+1AkUi;k;1
Ck+1AkAk�1~xi;k�1;2 + Ck+1Ak!k;2 + Ck+1!k+1;2 + �k+1;2 + Ck+1AkUi;k;2

�
: (7)

Box I

2 are pk and 1 � pk, respectively. Combining Eqs. (5)
and (6) (i.e. from stage k�1 to stage k+1 in Figure 1),
the state space model of stage k + 1 yields Eqs. (7) as
shown in Box I.

On the basis of the combination of normal dis-
tribution, we have the mean (�i;k+1;0) and variance
(�2
i;k+1;0) of observation yi;k+1 of order i when the

system is in-control:

�i;k+1;0 = 0;

�2
i;k+1;0 =

k+1X
j=1

C2
k+1�

2
k+1;j�

2
!i + �2

�: (8)

Also, the mean (�i;k+1;1) and variance (�2
i;k+1;1) of

observation yi;k+1 of order i when mean shifts of Ui;k;1
and Ui;k;2 occur are:

�i;k+1;1 = pkCk+1AkUi;k;

�2
i;k+1;1 =

k+1X
j=1

C2
k+1�

2
k+1;j�

2
!i + �2

�

+ pk(1� pk)(Ck+1AkUi;k)2: (9)

From Eq. (9), we can infer that the mean shift at the
upstream stage impacts both means and variances of
the downstream stages in scenario 3. Hence, a control
chart, which is designed to monitor the supply chain
network system, should be able to detect and distin-
guish mean shift and variance change, and identify
variation source at the upstream stages or the current
stage.

3. A change-point control chart based on
likelihood ratio

A change-point control chart based on likelihood ratio
is adopted from Sullivan and Woodall [22]. Suppose
that sample size is m and a change point � occurs at the
(m1 + 1)th sample point. Hence, the �rst m1 samples
follow normal distribution N(�a; �2

a) and the remaining
samples m2 (m2 = m�m1) follow normal distribution
N(�b; �2

b ). The log-likelihood function for the ith (i =
1; 2; ::: m) sample can be expressed as:

�1
2

log(2��2)� 1
2

(yi � �)2

�2 : (10)

When the system is in-control, the log-likelihood func-
tion for population sample can be expressed as:

l0 = �m
2

log(2�)� m
2

log �2 � m
2
; (11)

where �y =

mP
i=1

yi

m and �2 =

mP
i=1

(yi��y)2

m denote the mean
and variance of the maximum likelihood estimate for
m samples, respectively.

If a change point occurs, the log-likelihood func-
tion for the �rst m1 samples can be expressed as:

�m1

2
log(2��2)� m1�2

a
2�2 � m1(�y1 � �)2

2�2 ; (12)

where �y1 =

m1P
i=1

yi

m1
and �2

a =

m1P
i=1

(yi��y1)2

m1
denote mean

and variance of the maximum likelihood estimate for
the �rst m1 samples, respectively. Hence, the maxi-
mum log-likelihood function for the �rst m1 samples is
expressed as:

l1 = �m1

2
log(2�)� m1

2
log �2

a � m1

2
: (13)

Similarly, the maximum log-likelihood function for the
remaining m2 samples can be expressed as:

l2 = �m2

2
log(2�)� m2

2
log �2

b � m2

2
; (14)

where �y2 =

mP
i=m1+1

yi

m2
and �2

b =

mP
i=m1+1

(yi��y2)2

m2
denote

mean and variance of the maximum likelihood estimate
for m2 samples, respectively.

Based on the test statistic for the above-
mentioned likelihood ratio, Sullivan and Woodall [22]
proposed the following test statistic,

rt[m1;m2] = �2[l0 � (l1 + l2)]

= m log
�
�̂2(�̂2

a)�m1=m(�̂2
b )�m2=m

�
; (15)

when the test statistic is larger than a pre-speci�ed
critical value, we can obtain an estimator of � , i.e.

�̂ = arg
1�m1<m�1

max(lrt[m1;m2]): (16)

In order to explore whether the out-of-control state is
caused by mean shift, variance change, or both, an
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estimator of process variance for m samples can be
rewritten as:

�̂2 =
m1�̂2

a +m2�̂2
b

m
+
m1m2

m2 (�y1 � �y2)2: (17)

Hence, the test statistic can be given as:

lrt[m1;m2] = Mlrt + Vlrt;

Vlrt = m log
�m1

m
r2m2=m +

m2

m
r�2m1=m

�
= m log

�
1 + c(r2 � 1)

r2c

�
;

Mlrt = m log
�

1 +
m1m2

m(m1�̂2
a +m2�̂2

b )
(�y1 � �y2)2

�
= m log

�
1 +

c(1� c)
1 + c(r2 � 1)

d2
�
; (18)

where:

c =
m1

m
; d =

�y1 � �y2

�̂b
; and r =

�̂a
�̂b
:

Mlrt and Vlrt represent mean shift and variance change,
respectively. In Eq. (18), since Mlrt � 0, we achieve the
minimum when the mean of the �rst m1 samples equals
that of m2 samples and since Vlrt � 0, we achieve the
minimum when the variance of the �rst m1 samples
equals that of m2 samples.

The test statistic lrt[m1;m2] asymptotically fol-
lows gamma distribution x2(2) [22]. However, ex-
pectations of lrt[m1;m2] are di�erent for di�erent
m1. Hence, the test statistic is modi�ed to make
expectations of lrt[m1;m2] the same for di�erent m1.

Nlrt[m1;m2] =
lrt[m1;m2]

E(lrt[m1;m2])
: (19)

Then control limits (UCL) and expectation E(lrt[m1;
m2]) can be obtained by the following simulation:

UCL � 1
1:7

F�1
�

(1� �)1=k�
�
; (20)

E (lrt[m1;m2]) � 2
�

m1 +m2 � 2
(m1 � 1)(m2 � 1)

+ 1
�
; (21)

where:

k� = �4:76 + 3:18 log (m):

� denotes probability of Type-I error and F (�) is
cumulative distribution function of �2(2).

4. Case study

We take the production of computer server as an
example. A server ful�llment supply chain network
(as shown in Figure 2 [9]) is complicated, including
customer, server ful�llment production, packing, ship-
ping, etc. It is a typical series-parallel process. From
the perspective of end customers, good service means
on-time receipt of the server ordered. However, on-
time delivery is not always met due to internal and
external variations (e.g., machine downtime and loss of
the quality of integrated circuits on the supplier side).

For simplicity, we focus on key elements of order
ful�llment stages to verify the performance of the
change-point control chart in detection of order tar-
diness. The average time spent on an order at each
stage is shown in Table 1 when the system reaches a
steady state. Standard deviation of the measurement
error is 6 hours.

We consider only the case of probability of Type-I
error when � = 0:05 and �x the number of observations

Table 1. Processing time at each stage (in hours).

A B1=B2 C D E F Total

Mean 10.33 55.00 48.33 56.67 12.67 40.00 223

Std 2.39 9.35 15.82 10.27 1.84 8.16

Figure 2. Six-stage serial-parallel process of simpli�ed production.
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Table 2. Control limit of the traditional Shewhart control
chart for each stage (in hours).

A B1=B2 C D E F

UCL 22.99 76.77 81.49 79.98 24.97 59.85

Table 3. Control limit of the change-point control chart
for each stage (in hours).

A B1=B2 C D E F

UCL 4.07 3.02 4.07 4.07 4.07 4.07

at m = 100. Without loss of generality, we suppose
(Ck; Ak) = (1; 1), �2

w = �2
v = 1, and pB1 = pB2 = 0:5

according to engineering knowledge.
We �rst use the traditional Shewhart control chart

to detect tardy orders at the end of each stage. Hence,
yk is the variable for monitoring the system states
x. Given the probability of Type-I error � = 0:05,
the control limit of the Shewhart control chart can be
calculated by:

UCLs(k) = E(yk) + r
p
V aryk ;

where r denotes control limit parameters. Here, the
control limit for each stage can be calculated by
simulation, as shown in Table 2. If the order completion
time exceeds the control limit, the control chart signals
a true alarm. Thus, we can conclude that a tardy order
has occurred at the current stage.

Now, we employ the change-point control chart
based on the likelihood ratio introduced in Section 3.
The control limit for each stage can be calculated
according to Eq. (20). The results are given in Table 3.

We choose the following performance indices to
judge the performance of the change-point control
chart [23]: power of detection (the detection perfor-
mance of the control chart when the order has been
delayed, denoted by pd, for the change-point control
chart), accuracy of estimation of the change point �
(��̂ and ��̂ ) and initial out-of-control stage (P (�̂ = �)),
and judgment about the mean shift or variance change
(Mlrt and Vlrt). We also compare the two methods in
terms of the power of detection (the power of detection
for Shewhart control chart is denoted by pds).

As we known, detecting change points in a mul-
tistage process depends on the parameters Ak and
Ck, the initial out-of-control stage �, magnitude of
the mean shifts in completion time at one stage �
(unexpected order delays), and the change point � .
Hence, we consider the situation, as shown in Table 4,
in which B1 and B2 denote two workstations at the
parallel stage. Table 5 gives the performance for 10,000
replications by MATLAB.

Apparently, the change-point control chart is
superior to the Shewhart control chart in detecting

Table 4. Combination of the values of (�; �; �).

� (�; �)

20 (30, 2 (B1)) (20, 2 (B2)) (40, 3)

30 (30, 2 (B1)) (20, 2 (B2)) (40, 3)

40 (30, 2 (B1)) (20, 2 (B2)) (40, 3)

mean shift in terms of the power of detection. With the
change-point control chart, estimation of the process
change point is more accurate and the accuracy is
gradually improved when mean shift increases in the
cases of mean shifts at 20, 30, and 40 (as shown
in Column 4 of Table 5). We also considered other
magnitudes of mean shift and found that the power
of detection equaled 1. The estimations of change
point and initial out-of-control stage were close to the
true values, especially with � � 45. Furthermore,
considering the mean and standard deviation of the
change point estimates (as shown in Columns 5 and
6 of Table 5), �̂ performs uniformly better for any
magnitude of mean shift. The probabilities P (�̂ = �)
also indicate that estimation of out-of-control stage is
fairly accurate, especially for large mean shifts. In
addition, as shown in the last two columns of Table 5,
the values of �Mlrt are much larger than the values
of �Vlrt, which indicate that the system is out-of-
control because of the mean shifts in the completion
time. In a word, the change-point control chart can
identify the change point and the out-of-control stage,
and distinguish the source of variation (mean shift or
variance change).

5. Sensitivity analysis

The parameters Ak and Ck in state-space equations
are usually estimated by sample data or derived by
engineering knowledge. In practice, we may reach an
inaccurate estimation of these parameters, especially
for a large number of stages. Hence, we check the
e�ectiveness and robustness of the change-point control
chart in case of misspeci�cation of the values of Ak; Ck.

We consider only � = 0:05 and m = 100 and
suppose that the true values of Ak and Ck are 1.0. Let
Ak� and Ck� denote the incorrect values for stage k�.
We consider two situations: (1) k� = 2 and (2) k� =
1; 3; 5. We also assume the change point at the serial
stage � = 3, � = 40 and at the parallel stage � = 2,
� = 30 (B1). For each situation, the following values of
(Ak; Ck) are considered (see Table 6). Table 7 presents
the power of detection, accuracy of estimation of the
change point � (��̂ and ��̂ ), and judgment about mean
or variance change (Mlrt and Vlrt), which is obtained
by 10000 replications in MATLAB. The values in the
fourth column of Table 7 are obtained when the values
of Ak and Ck are pre-speci�ed correctly.
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Table 5. Performance comparison.

�
Shewhart Change point

pds pd ��̂ ��̂ P (�̂ = �) �Mlrt �Vlrt

� = 30

� = 2(B1)

20 0.77 0.99 29.95 1.89 0.95 13.89 0.54

30 0.95 1.00 29.95 0.83 0.96 23.17 0.49

40 0.99 1.00 30.00 0.32 0.97 31.89 0.48

� = 20

� = 2(B2)

20 0.77 0.99 29.95 1.89 0.95 13.89 0.52

30 0.95 1.00 29.95 0.83 0.96 23.17 0.46

40 0.99 1.00 30.00 0.32 0.97 31.89 0.42

� = 40

� = 3

20 0.79 0.99 19.99 1.95 0.99 13.78 0.55

30 0.95 1.00 20.07 0.66 0.99 22.97 0.46

40 0.99 1.00 20.02 0.36 0.99 31.64 0.45

Table 6. Combination of the values of (Ck� ; Ak�).

(Ck� ; Ak�)

a (0.8, 1.0)

b (1.0, 0.8)

c (0.8, 0.8)

d (1.2, 1.0)

e (1.0, 1.2)

f (1.2, 1.2)

g (1.2, 0.8)

h (0.8, 1.2)

For the case of serial sub-process, we can see that
in situation (1) of underestimation, the change-point
control chart still performs better except at the very
small mean shifts, e.g. � = 20. In this case, the power
of detection changes slightly, ranging from 0.89 to 0.95.
Similarly, in situation (2), while many parameters are
estimated incorrectly, the change-point control chart
performs better except at very small mean shifts � in
terms of the power of detection.

For the case of the parallel sub-process, as shown
in Table 8, the change-point control chart also performs
better and even in the case of very small mean shifts,
the power of detection remains almost unchanged.

The results show that the change-point control
chart can still maintain a relatively stable monitor-
ing e�ect when values of the parameters Ak; Ck are
misspeci�ed. (Ak� ; Ck�) is a scalar greater than zero
and the system is one-dimensional. Therefore, there

are few changes in monitoring e�ect. In addition,
the change-point control chart does not require any
assumptions about process parameters. Moreover, the
change-point control chart is applicable to processes
with unknown process parameters and small numbers
of in-control samples [23]. The sensitivity analysis
veri�ed this advantage. However, if (Ak� ; Ck�) is
a high-dimensional matrix, the results may not be
quite favorable. Of course, it is crucial to estimate
Ak, and Ck accurately when using a model-based
method.

6. Conclusion and suggestions for future
research

In this study, a supply chain network system was
viewed as a serial-parallel multistage process and then,
state-space technique was used to model this system.
On this basis, we explored the application of the
change-point control chart based on likelihood ratio
under step shift in the mean of completion time at one
stage. A case study was conducted to indicate that
the change-point control chart could e�ectively signal
process mean shifts and estimate the change point and
the out-of-control stage. Finally, sensitivity analysis
illustrated that there was no signi�cant changes in the
performance of the change-point control chart with
misspeci�ed parameters Ak� and Ck� . In a word, the
change-point control chart could e�ectively monitor the
supply chain network system and the monitoring e�ect
was relatively stable.

In this study, the case in which only one change
point occurs in the supply chain network system has
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Table 7. Performance with misspeci�ed values of the parameters Ak� and Ck� (� = 40, � = 3).

k� � Indicator True a b c d e f g h

2 20 pd 0.93 0.93 0.91 0.89 0.93 0.95 0.95 0.92 0.94

��̂ 40.27 40.19 40.01 40.45 40.23 40.45 39.96 40.26 40.36

��̂ 4.00 4.02 5.38 5.21 4.01 4.66 3.99 4.99 4.37

�Vlrt 0.55 0.52 0.58 0.55 0.48 0.49 0.56 0.49 0.51

�Mlrt 14.30 14.49 13.50 13.18 14.30 14.90 14.36 13.82 14.86

30 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

��̂ 40.08 40.16 40.05 39.99 40.06 40.07 40.10 40.05 40.00

��̂ 1.67 1.76 2.11 2.08 1.81 1.67 1.67 1.87 1.69

�Vlrt 0.46 0.49 0.45 0.47 0.46 0.48 0.46 0.44 0.48

�Mlrt 25.39 25.20 24.26 23.37 25.51 26.13 25.69 24.26 26.37

40 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

��̂ 39.94 39.99 40.01 40.04 39.93 40.01 39.96 40.02 40.04

��̂ 0.95 0.89 0.96 1.15 0.95 0.89 0.94 0.99 0.92

�Vlrt 0.45 0.49 0.44 0.43 0.48 0.42 0.48 0.49 0.50

�Mlrt 38.19 37.92 36.01 35.24 37.67 38.87 37.85 36.23 39.18

1, 3, 5 20 pd 0.93 0.94 0.92 0.90 0.93 0.95 0.95 0.91 0.95

��̂ 40.27 40.04 40.41 40.24 40.11 40.07 40.21 40.02 39.95

��̂ 4.00 4.50 5.61 4.05 3.54 4.00 3.88 4.88 3.96

�Vlrt 0.55 0.52 0.60 0.56 0.52 0.51 0.48 0.55 0.55

�Mlrt 14.30 14.53 13.59 13.71 13.71 14.29 14.89 13.88 14.81

30 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

��̂ 40.08 40.10 40.03 40.05 40.05 40.08 40.09 40.02 40.13

��̂ 1.67 1.70 1.88 1.87 1.87 1.67 1.83 2.09 2.00

�Vlrt 0.46 0.45 0.46 0.44 0.44 0.44 0.48 0.51 0.44

�Mlrt 25.39 25.63 24.57 24.26 24.26 26.37 26.30 24.31 26.72

40 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

��̂ 39.94 40.02 40.01 40.01 40.02 40.03 39.96 40.02 40.00

��̂ 0.95 0.99 1.08 0.92 0.89 0.94 0.91 0.92 0.80

�Vlrt 0.45 0.45 0.45 0.48 0.45 0.45 0.45 0.43 0.47

�Mlrt 38.19 38.33 36.36 36.56 39.93 39.32 39.02 36.46 38.99

been discussed. However, in practice, several change
points usually occur in the supply chain network and
how to design control charts for monitoring this case
deserves further research. Furthermore, performance
of the change-point control chart should be evaluated
under di�erent shifts, e.g., in drifts and outliers, as well.
This may also deserve further research.
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Table 8. Performance with misspeci�ed values of the parameters Ak� and Ck� (� = 30, � = 2).

k� � Indicator True a b c d e f g h

2 20 pd 0.99 0.99 0.97 0.97 0.99 0.99 0.99 0.97 0.99
��̂ 29.95 29.98 29.87 29.96 29.97 28.91 29.93 29.72 30.00
��̂ 1.89 2.05 2.26 2.30 2.04 1.96 1.89 2.71 1.68
�Vlrt 0.54 0.54 0.60 0.54 0.54 0.52 0.56 0.62 0.52
�Mlrt 13.89 13.81 12.54 12.64 13.81 14.65 14.72 12.69 14.47

30 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
��̂ 29.95 30.01 29.98 29.98 30.01 29.95 29.98 29.98 29.96
��̂ 0.83 0.71 0.80 0.91 0.79 0.74 0.68 0.82 0.71
�Vlrt 0.49 0.49 0.53 0.50 0.45 0.54 0.48 0.53 0.48
�Mlrt 23.17 22.94 20.85 20.88 23.15 24.39 29.55 21.14 24.60

40 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
��̂ 30.00 30.00 30.00 29.98 29.99 30.00 30.02 29.98 30.00
��̂ 0.32 0.33 0.47 0.44 0.35 0.31 0.29 0.49 0.32
�Vlrt 0.48 0.47 0.49 0.46 0.48 0.45 0.49 0.53 0.51
�Mlrt 31.89 32.05 29.27 29.29 31.81 33.56 33.42 29.34 33.31

1, 3, 5 20 pd 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
��̂ 29.95 29.92 29.92 29.96 29.87 29.86 29.89 29.84 29.91
��̂ 1.89 1.94 1.93 1.86 2.03 2.10 2.00 2.21 2.10
�Vlrt 0.54 0.49 0.53 0.50 0.53 0.59 0.54 0.52 0.52
�Mlrt 13.89 13.69 13.74 13.84 13.89 13.85 13.69 13.95 13.86

30 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
��̂ 29.95 29.92 29.99 29.95 29.98 29.96 29.94 29.98 29.98
��̂ 0.83 0.76 0.79 0.72 0.64 0.73 0.84 0.76 0.81
�Vlrt 0.49 0.49 0.49 0.51 0.48 0.52 0.48 0.52 0.50
�Mlrt 23.17 23.14 23.07 23.21 23.28 23.09 23.12 23.03 22.90

40 pd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
��̂ 30.00 29.98 29.99 29.99 30.00 29.99 30.01 29.99 29.98
��̂ 0.32 0.36 0.42 0.32 0.36 0.39 0.31 0.37 0.35
�Vlrt 0.48 0.45 0.53 0.47 0.50 0.47 0.48 0.48 0.46
�Mlrt 31.89 31.85 31.81 31.95 31.96 31.86 31.67 31.74 31.76
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