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Abstract. Finding the most suitable transport project is one of the most important tasks
of transport planning. This task becomes much more complicated as sustainable criteria
get involved. In this paper, a new method of multi-criteria group decision-making with
an unknown attribute and expert weights is proposed to address the sustainable transport
investment selection problem. To make the method more powerful in dealing with uncertain
elements, an Interval-Valued Pythagorean Fuzzy (IVPF) set is used as a useful tool to
handle uncertainty. First, a generalized entropy measure under an IVPF environment is
introduced, which enables the method to determine the fuzziness of the attribute values,
expressed by Interval-Valued Pythagorean Fuzzy Numbers (IVPFNs). To determine the
fuzziness of IVPFNs with identical membership and non-membership degrees, a generalized
knowledge measure of IVPFNs is also introduced. Based on this measure and considering
the deviation among attribute assessments, a new optimization model is presented to obtain
unknown attribute weights. In addition, based on the extension of the VIKOR method, a
novel algorithm is introduced to determine the unknown expert weights. Finally, to prove
the e�ciency of the proposed methods, a real case study is considered.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Sustainable transportation is one of the most widely
debated concepts in transportation. Sustainable trans-
portation may be referred to a type of transporta-
tion that allows the movement of goods and people
by modalities that are sustainable from social, eco-
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nomic, and environmental perspectives [1]. Awasthi
et al. [2] classi�ed the commonly used approaches
to sustainability evaluation of transportation decision-
making in eight categories. One of them is the Multi-
Criteria Decision-Making (MCDM). It is the preferred
technique for solving problems with contradictory ob-
jectives and since three pillars of sustainability with
their own measurement units can be involved in the
process, it is reliable for sustainable transportation
decisions [3]. Despite considering MCDM methods
as the most common approaches of sustainable trans-
portation assessment [4], when addressing uncertainty
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and impreciseness, they seem inadequate. In fact, all
of the decisions that address transportation are mostly
made under vague and uncertain situations. Since
hard computing based MCDM methods are not able
to e�ectively handle the ambiguities and uncertainties
that transport decision-makers' face, sophisticated ap-
proaches are needed.

A variety of MCDM methods have been presented
to handle a sustainable transportation evaluation prob-
lem under uncertainty [5{11]. Despite all the e�orts to
model the uncertainty of a sustainable transportation
evaluation problem in MCDM methods, most of them
were based on classical (FSs). In fact, there are few
studies in the literature concerning sustainable trans-
portation evaluation using an extension of classical
Fuzzy Sets (FSs) [12{16]. No research has discussed the
problem by utilizing the Interval-Valued Pythagorean
Fuzzy Set (IVPFS). Therefore, there is a need to
investigate more e�ective mathematical methods using
these advanced uncertainty modeling tools to better
handle sustainable transportation evaluation problems
with high uncertainty.

A comparison between di�erent types of FSs is
conducted by reviewing their de�nitions and basic
properties. Figure 1 illustrates the development logic of
FSs. As shown in this �gure, IVPFSs have an enormous
ability and exibility in expressing ambiguous data
in real-world problems [17]. Consequently, this paper
applies IVPFSs to solve the sustainable transport in-
vestment selection problem as an Multi-Criteria Group
Decision Making (MCGDM) problem with unknown
expert and attribute weights.

Generally, expert and attribute weighting meth-
ods can be mentioned as two important parts of the
MCGDM process [18]. According to the information
gathered about weighting approaches to MCGDM,
they can be classi�ed as objective and subjective
approaches [19]. Most current related researches
have investigated MCGDM in a fuzzy environment
by integrating subjective weighting approaches [20{23].
Comparatively, there are still only a few studies on
the development of objective weighting approaches in
traditional MCGDM to fuzzy environments such as
deviation functions [24] and fuzzy entropies [25,26].
On the other hand, the existing objective weighting
approaches in fuzzy environments are only focused
on the divergence of attribute assessments from the
fuzziest number in a relevant environment while the
deviation of attribute assessments or vice versa is
neglected. Hence, it is necessary to investigate suitable
methods to derive objective attribute weights in fuzzy
environments that simultaneously consider the diver-
gence of attribute evaluation from the fuzziest num-
ber and the deviation between attribute evaluations,
particularly in the Interval-Valued Pythagorean Fuzzy
(IVPF) environment. Therefore, �rstly, the generalized
entropy measure for IVPFSs is introduced so that one
can consider the divergence of attribute assessments
from the fuzziest number in the IVPF environment.
In order to better distinguish the fuzziness of Interval-
Valued Pythagorean Fuzzy Numbers (IVPFNs) in
cases, whose non-membership and membership degrees
of IVPFNs are identical, a generalized knowledge
measure of IVPFNs is proposed. Moreover, based on

Figure 1. Development logic of Fuzzy Sets (FSs).
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the generalized knowledge measure and the deviation
between attribute assessments, a new optimization
method is introduced. The proposed model utilizes
all the available information of decision preferences to
objectively compute the weights of unknown criteria as
a very crucial component of MCGDM problems. The
method is then developed to be applied to situations
where the information about attribute weights is in-
complete.

In the case of the MCGDM process, there is
another strong need for revealing di�erent inuential
saliencies of Decision-Makers (DMs) [27]; therefore, an
expert weighting is also essential to MCGDM under
IVPF uncertainty. Qi et al. [28] reviewed the methods
that address the weights of DMs in MCGDM problems.
Despite the fact that the existing methods have had a
role in considering di�erent inuential saliencies of the
DMs e�ectively, to the best of our knowledge, no study
has investigated the methods that could calculate the
weights of experts objectively through the extension of
VIKOR method, as proposed by Opricovic [29].

In sum, the novelties of this study are explained
as follows:

1. For the �rst time in the literature, an IVPFS as
one of the most powerful tools in dealing with
uncertainty is applied to increase the exibility and
ability of expressing and calculating the uncertainty
in a transportation project evaluation problem;

2. A new MCGDM method with unknown attributes
and expert weights is proposed under the IVPF
environment to evaluate and rank a sustainable
transport project;

3. A novel ranking index is de�ned to derive the ranks
of the alternatives by applying a new weight of the
strategy of the majority of criteria. The index is
transparent and simple to use;

4. The concepts of entropy and knowledge measure are
introduced under an IVPF environment to address
the weights of unknown criteria. To utilize all the
available information in decision preferences and
create a more comprehensive weighting approach,
a new optimization method is proposed that si-
multaneously considers the deviation between at-
tribute assessments and knowledge measure. This
optimization model is then extended so that it can
be applied to decision makings with incomplete
attribute weighting data;

5. A novel algorithm is proposed to objectively de-
termine the weights of each DM in the IVPS
environment based on the extension of the VIKOR
method.

The rest of this paper is structured as follows. In
Section 2, preliminary knowledge of IVPSs is described.

In Section 3, generalized measures for IVPFSs are
introduced. An MCGDM problem under the IVPF
environment is initially developed in Section 4. In
Subsection 4.1, a novel programming model is estab-
lished to objectively obtain unknown and incomplete
attribute weights. In Subsection 4.2, a new algorithm
is proposed to objectively determine the weights of
each expert in the IVPS environment based on the
extension of the VIKOR method. A hybrid method
composed of the aforementioned methods for MCGDM
in IVPF environments is presented in Subsection 4.3.
In Section 5, a method is applied to a real case study,
and the results are presented and discussed. In the
end, the conclusions of this paper are presented in
Section 6.

2. Preliminaries

De�nition 1. Let D([0; 1]) be a set of all closed
subintervals of [0; 1]. Let X denote a universe of
discourse [30]. An IVPFS ~P in X is given by:

~P =
�
x;
�
~�l~p(x); ~�u~p(x)

�
;
�
~�l~p(x); ~�u~p (x)

� jx 2 X	 ; (1)

where
�
~�l~p(x); ~�u~p(x)

� � [0; 1],
h
~�l~P (x); ~�u~P (x)

i � [0; 1]
are interval values that denote the membership and
non-membership degrees of element x 2 X in ~P ,
respectively. For every x 2 X, ~�l~P (x); ~�u~P (x); ~�l~P (x);
~�u~P (x) 2 [0; 1], and (~�u~P (x))2 + (~�u~P (x))2 � 1.

The degree of indeterminacy of the membership
function is denoted by:

~� ~P (x)=
�
~�l~P (x); ~�u~P (x)

�
=

"r
1��~�u~P (x)

�2��~�u~P (x)
�2
;

r
1� �~�l~P (x)

�2 � �~�l~P (x)
�2
#
: (2)

For convenience, Peng and Yang [30] named ~P =�h
~�l~P ; ~�u~P

i
;
h
~�l~P ; ~�

u
~P

i�
an IVPFN.

De�nition 2. The improved accuracy function of any
IVPFN ~P =

�h
�l~P ; �

u
~P

i
;
h
�l~P ; �

u
~P

i�
, based on hesitancy

degree, is de�ned by Eq. (3) shown in Box I [31].

De�nition 3. Let ~P =
�h

~�l~P ; ~�u~P
i
;
h
~�l~P ; ~�

u
~P

i�
, ~P1 =��

~�l~P1
; ~�u~P1

�
;
h
~�l~P1

; ~�u~P1

i�
, and ~P2 =

�h
~�l~P2

; ~�u~P2

i
;
�

~�l~P2
; ~�u~P2

��
be IVPFNs and � > 0; then, their oper-

ations are de�ned by [30]:�
~P
�{

=
��

~�l~P ; ~�
u
~P

�
;
�
~�l~P ; ~�u~P

��
; (4)
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A
�

~P
�

=

�
~�l~P
�2 �

r
1� �~�l~P

�2 � �~�l~P
�2

+
�

~�u~P
�2 �

r
1� �~�u~P

�2 � �~�u~P
�2

2
; A

�
~P
� 2 [�1; 1]: (3)

Box I

~P1� ~P2 =

*"r�
~�l~P1

�2
+
�

~�l~P2

�2��~�l~P1

�2�
~�l~P2

�2
;

r�
~�u~P1

�2
+
�

~�u~P2

�2��~�u~P1

�2�
~�u~P2

�2
#
;

h
~�l~P1

~�l~P2
; ~�u~P1

~�u~P2

i+
; (5)

~P1 
 ~P2 =

*h
~�l~P1

~�l~P2
; ~�u~P1

~�u~P2

i
;

"r�
~�l~P1

�2
+
�

~�l~P2

�2��~�l~P1

�2�
~�l~P2

�2
;

r�
~�u~P1

�2
+
�

~�u~P2

�2��~�u~P1

�2�
~�u~P2

�2
#+

; (6)

� ~P =

24s1�
�

1��~�l~P
�2
��
;

s
1�
�

1��~�u~P
�2
�� 35 ;

h�
~�l~P
��
;
�
~�u~P
��i ; (7)�

~P
��

=
h�

~�l~P
��
;
�
~�u~P
��i ;24s1�

�
1��~�l~P

�2
��
;

s
1�
�

1��~�u~P
�2
��35 :

(8)

De�nition 4. Assume ~Pj =
�h

~�l~Pj ; ~�u~Pj

i
;
h
~�l~Pj ; ~�

u
~Pj

i�
(j = 1; 2; � � � ; n) as a collection of IVPFNs. Then, it
is possible to call the function IPFWAw : 
n ! 
 an
IVPF weighted averaging operator [32]. This is de�ned
by:

IPFWAw

�
~P1; ~P2; � � � ; ~Pn

�
= w1 ~P1 � w2 ~P2 � � � � � wn ~Pn

=

24vuut1�
nY
j=1

�
1� �~�l~Pj

�2
�wj

;

vuut1�
nY
j=1

�
1� �~�u~Pj

�2
�wj 35 ;

24 nY
j=1

�
~�l~Pj
�wj

;
nY
j=1

�
~�u~Pj
�wj35 ; (9)

where wj is the weight of ~Pj(j = 1; 2; � � � ; n), wj 2
[0; 1], and

Pn
j=1 wj = 1.

De�nition 5. Let ~Pj =
�h

~�l~Pj ; ~�u~Pj

i
;
h
~�l~Pj ; ~�

u
~Pj

i�
(j = 1; 2) be two IVPFNs so that the distance between
~P1 and ~P2 can be determined, as de�ned by [17]:

d
�

~P1; ~P2

�
=

1
4

������~�l~P1

�2 � �~�l~P2

�2
����

+
�����~�u~P1

�2 � �~�u~P2

�2
����+
�����~�l~P1

�2 � �~�l~P2

�2
����

+
�����~�u~P1

�2 � �~�u~P2

�2
����+
�����~�l~P1

�2 � �~�l~P2

�2
����

+
�����~�u~P1

�2 � �~�u~P2

�2
����� : (10)

3. Generalized entropy and knowledge
measures for IVPFSs

Fuzziness is known as a feature of imperfect knowledge
and the lack of a clear distinction between the elements
that are and are not members of a set. The fuzziness
measure is mostly applied and cited in the literature
as entropy [33]. Herein, we propose the measure of
fuzziness for IVPFSs. To this end, the entropy measure
proposed by Szmidt and Kacprzyk [33] is generalized
to the IVPF environment. The proposed entropy is the
result of the division of distances to the nearest and to
the farthest crisp elements.

De�nition 6. Let ~P =
�
x;
�
~�l~p(x); ~�u~p(x)

�
;
�
~�l~p(x);

~�u~p (x)
� jx 2 X	 and fP 0 =

n
x;
h
~�lfP 0(x); ~�ufP 0(x)

i
;h

~�lfP 0(x); ~�ufP 0(x)
i jx 2 Xo be IVPFSs. Suppose that

EIVPFS

�
~P
�

is a real-valued function. It is referred to
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as an entropy measure of ~P if it satis�es the following
axioms:

1. EIVPFS

�
~P
�

= 0 i� ~P is a crisp set;

2. EIVPFS

�
~P
�

= 1 i�
h
~�l~P (x); ~�u~P (x)

i
=
�

~�l~P (x); ~�u~P

(x)
�
8 x 2 X;

3. EIVPFS

�
~P
�

= EIVPFS

��
~P
�{�

;

4. EIVPFS

�
~P
� � EIVPFS

�fP 0� if ~P � fP 0 for ~�lfP 0(x) �
~�lfP 0(x) and ~�ufP 0(x) � ~�ufP 0(x) or fP 0 � ~P for ~�lfP 0(x) �
~�lfP 0(x) and ~�ufP 0(x) � ~�ufP 0(x).

So, the de�nition of the generalized entropy measure
for IVPFSs is presented by:

EIVPFS

�
~P
�

=
1
n

nX
i=1

EIVPFS

�
~P (xi)

�
=

1
n

nX
i=1

d
�

~P (xi); ~P near
�

d
�

~P (xi); ~P far
� ; (11)

where d
�

~P (xi); ~P near
�

denotes the distance from ~P (xi)

to the nearest non-fuzzy value ( ~P near = ([1; 1]; [0; 0];
[0; 0]) or ([0; 0]; [1; 1]; [0; 0])), and d

�
~P (xi); ~P far

�
is the

distance from ~P (xi) to the farthest non-fuzzy number
( ~P far = ([1; 1]; [0; 0]; [0; 0]) or ([0; 0]; [1; 1]; [0; 0])).

It should be noted that in some situations, the
entropy measure de�ned above is not able to dis-
criminate the fuzziness and the credibility of IVPFs.
For instances, the IVPF values ~P1 = ([:7; :7]; [:7; :7];�p
:02;
p
:02
�
) and ~P2 = ([0; 0]; [0; 0]; [1; 1]) have equal

entropy values, although the latter value has no infor-
mation and in the former value, positive information is
the same as negative one. The properly de�ned entropy
measure should correctly di�erentiate these cases based
on the scope of knowledge, which is useful in terms
of decision-making. In this regard, an interesting
measure of knowledge, introduced by Szmidt et al. [34],
is employed considering both entropy measure and
hesitation margin to capture the set of knowledge
involved in IVPFSs as follows:

De�nition 7. Let:

~P =
�
x;
��

~�l~P (x); ~�u~P (x)
�
;
�
~�l~P (x); ~�u~P (x)

�� jx 2 X	
be an IVPFS. The measure of knowledge for ~P with
n elements is denoted by KIVPFS

�
~P
�

and de�ned as
follows:

KIVPFS

�
~P
�

=
1
n

nX
i=1

 
1

�
h
EIVPFS

�
~P (xi)

�
+
�
�~�l~P (xi)

+(1��)~�u~P (xi)

�i
2

!
;
(12)

where EIVPFS

�
~P (xi)

�
is the entropy of IVPFNs ~P (xi)

and ~�l~P (xi)
and ~�u~P (xi)

are the lower and upper hes-
itation margins. The parameter � 2 [0; 1] is an
attitudinal character of the decision-maker. Suppose
that KIVPFS

�
~P
�

is a real-valued function. It is

referred to as a measure of knowledge for ~P if it satis�es
the following axioms:

1. 0 � KIVPFS

�
~P
� � 1;

2. KIVPFS

�
~P
�

= KIVPFS

��
~P
�{�

;

3. KIVPFS

�
~P
�

= 0 i�
h
~�l~P (x); ~�u~P (x)

i
=
h
~�l~P (x);

~�u~P (x)
i

= [0; 0];

4. KIVPFS

�
~P
�

= 1 i�
h
~�l~P (x); ~�u~P (x)

i
= [0; 0],h

~�l~P (x); ~�u~P (x)
i

= [1; 1] or
h
~�l~P (x); ~�u~P (x)

i
= [1; 1],h

~�l~P (x); ~�u~P (x)
i

= [0; 0].

The proofs are straightforward.

4. New IVPF-MCGDM approach with
unknown expert and attribute weights for
selecting the best sustainable transport
project to fund

This part initially develops an MCGDM problem under
IVPF uncertainty. In the following, an extended form
of VIKOR method is proposed for determining the
weights of the DMs. Then, the maximizing devia-
tion model aggregated with knowledge measure, as
a measure of credibility of IVPFNs, is proposed to
distinguish the weights of criteria. With regard to
the weights of criteria and the weights of the DMs,
an aggregated method is developed to select the best
sustainable transport project to fund among a number
of candidates.

4.1. Problem formulation
Assume an MCGDM problem under IVPF uncer-
tainty; let A = fA1; A2; � � � ; Amg denote a discrete
set of m(m � 2) feasible candidates and let C =
fC1; C2; � � � ; Cng be a �nite set of criteria. Let E =
fe1; e2; � � � ; etg be a team of experts and let � =
(�1; �2; � � � ; �t) be the weight vector of experts, in
which 0 � �k � 1 and

Pt
k=1 �k = 1. The weight
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vector of criteria for the expert ek is shown by wk =
(wk1 ; wk2 ; � � � ; wkn), (k = 1; 2; � � � ; t). As a matter of
fact, in real-world problems for MCGDM, attribute
and expert weighting data can be computed in advance.
Because of such factors as time pressure, lack of enough
knowledge, and vagueness of real-world problems in
group settings, the data about attribute and expert
weights are often totally unknown or at least not totally
known. In this paper, it is assumed that the criteria
weights are totally unknown or partially known in
advance, and the experts' weights are totally unknown.

The expert ek uses the IVPFN ~�kij to show the
criterion value of alternative Ai while addressing the
criterion Cj . Therefore, it is possible to address the
MCGDM problem with IVPFNs exactly by applying
the IVPF decision matrix as follows:

Pk=
�

~�kij
�
m�n=

�
~P
�h

~�l~�kij ; ~�u~�kij

i
;
h
~�l~�kij ; ~�

u
~�kij

i��
m�n

;

(k = 1; 2; � � � ; t): (13)

We use ~P
��

~�l~�kij
; ~�u~�kij

�
;
�

~�l~�kij
; ~�u~�kij

��
form to show the

IVPF nature of values in the decision matrix.
Element ~�kij in the matrix Pk shows that the

candidate Ai is a very good alternative for the expert ek
on the criterion Cj . This result comes with a margin of�

~�l~�kij
; ~�u~�kij

�
, and the alternative Ai is not a very good

decision with a chance of
�

~�l~�kij
; ~�u~�kij

�
.

4.2. Developed IVPF method for computing
the weights of DMs

In this section, a new method is developed to compute
the DMs' weights.

Step A: Apply IVPFNs form to express each DM's
preference for alternatives with respect to attributes
and present the information concerning the decision
is presented as a matrix, 	k;
Step B: Determine the Positive Ideal Decision (PID)
and the Negative Ideal Decision (NID) matrices.
Consider a PID as the best group decision. 	+ =�

~ +
ij

�
m�n is de�ned as the PID where ~ +

ij =

(1=t)
Pt
k=1

~ kij ; therefore, we have:

	+=
�

~ +
ij

�
m�n=

�
~P
�h

~�l~ +
ij
; ~�u~ +

ij

i
;
h
~�l~ +

ij
; ~�u~ +

ij

i��
m�n

;

(k = 1; 2; � � � ; t): (14)

By De�nition 4 we have:

~�l~ +
ij

=

vuut1�
tY

k=1

 
1�

�
~�l~ kij

�2
!1=t

;

~�u~ +
ij

=

vuut1�
tY

k=1

 
1�

�
~�u~ kij

�2
!1=t

;

~�l~ +
ij

=
tY

k=1

�
~�l~ kij

�1=t
; ~�u~ +

ij
=

tY
k=1

�
~�u~ kij

�1=t
;

and:

(i 2M; j 2 N; k 2 T ):

An NID of all individual decisions needs to have
maximum separation from the PID. As a result,
the minimum decision of all individual decisions is
computed as an NID as follows:

	�min =
�

~ �minij

�
m�n =

�
~P
��

~�l~ �minij
; ~�u~ �minij

�
;�

~�l~ �minij
; ~�u~ �minij

���
m�n

; (15)

where:

~�l~ �minij
= min

k2T
n

~�l~ kij

o
; ~�u~ �minij

= min
k2T

n
~�u~ kij

o
;

~�l~ �minij
= max

k2T
n

~�l~ kij

o
; ~�u~ �minij

= max
k2T

n
~�u~ kij

o
;

and:

i 2M; j 2 N; k 2 T:
We can de�ne the maximum decision of all

individual decisions as an NID as follows:

	�max =
�

~ �maxij

�
m�n =

�
~P
��

~�l~ �maxij
; ~�u~ �maxij

�
;�

~�l~ �maxij
; ~�u~ �maxij

���
m�n

; (16)

where:

~�l~ �maxij
= max

k2T
n

~�l~ kij

o
; ~�u~ �maxij

= max
k2T

n
~�u~ kij

o
;

~�l~ �maxij
= min

k2T
n

~�l~ kij

o
; ~�u~ �maxij

= min
k2T

n
~�u~ kij

o
;

and:

i 2M; j 2 N; k 2 T:
Similarly, the complement (	+)C of 	+ needs to
have maximum separation from the PID, 	+. Con-
sequently, another NID has to be assumed.

	�C =
�

~ �Cij
�
m�n =

�
	+�C

=
�

~P
�h

~�l~ +
ij
; ~�u~ +

ij

i
;
h
~�l~ +

ij
; ~�u~ +

ij

i��
m�n

; (17)

where:
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~�l~ �Cij
=

tY
k=1

�
~�l~ kij

�1=t
; ~�u~ �Cij

=
tY

k=1

�
~�u~ kij

�1=t
;

~�l~ �Cij
=

vuut1�
tY

k=1

 
1�

�
~�l~ kij

�2
!1=t

;

~�u~ �Cij
=

vuut1�
tY

k=1

 
1�

�
~�u~ kij

�2
!1=t

;

and:
i 2M; j 2 N; k 2 T:

Step C: Compute the values Sk and Rk:

Sk =
mX
i=1

nX
j=1

d
�

~ +
ij ; ~ kij

�
d
�

~ +
ij ; ~ �minij

�
+d
�

~ +
ij ; ~ �maxij

�
+d
�

~ +
ij ; ~ �Cij

� ;
(18)

Rk = max
i;j

d
�

~ +
ij ; ~ kij

�
d
�

~ +
ij ; ~ �minij

�
+d
�

~ +
ij ; ~ �maxij

�
+d
�

~ +
ij ; ~ �Cij

� ;
(19)

where d
�

~ +
ij ; ~ kij

�
, d
�

~ +
ij ; ~ �minij

�
, d
�

~ +
ij ; ~ �maxij

�
,

and d
�

~ +
ij ; ~ �Cij

�
are calculated orderly in De�ni-

tion 5;
Step D: compute the values Qk:

Qk = #
(Sk � S+)
(S� � S+)

+ (1� #)
(Rk �R+)
(R� �R+)

; (20)

where:
S+ = min

k
Sk; S� = max

k
Sk;

R+ = min
k
Rk; R� = max

k
Rk:

# denotes the weight of the strategy set by the
majority and 1 � # shows the weight of the strategy
of a minimum of the individual regret;
Step E: Calculate the weight of all DMs based onQk.
The weight of the kth (k 2 T ) DM can be obtained
as follows:

�k =
(1�Qk)Pt
k=1(1�Qk)

; (21)

such that �k � 0,
Pt
k=1 �k = 1.

4.3. Developed IVPF method for computing
the criteria weights

In the decision-making process, if one attribute is

known to have a similar assessment value among
candidates, it should be assigned a smaller weight
value; otherwise, the attribute that causes signi�cant
deviations must be evaluated with a larger weight,
contrary to its amount of importance [24]. To do so,
an optimal model (M 1) is applied which maximizes
all deviation values for all the criteria to choose the
weight vector wk. This is carried out as follows:

(M 1)

8>>>>>>><>>>>>>>:
max DV =

nP
j=1

wkj
mP
i=1

mP
l=1

d
�

~�kij ; ~�klj
�

s.t.
nP
j=1

(wkj )2 = 1; wkj � 0;

j = 1; 2; � � � ; n
It should be noted that this deviation-based model
for evaluating weights of attributes only considers
the discrimination of assessments. The credibility of
fuzzy assessments in the decision matrix is neglected.
A knowledge measure of IVPFNs can be applied to
comprehensively consider the credibility of the deci-
sion preference in the process of allocating attribute
weights more reasonably. Hence, the following model
is constructed by integrating the knowledge measure
in (M 1) to determine the weights of attributes if the
information concerning them is totally unknown:

(M 2)

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

max F (wk) =
nX
j=1

Fj(wk)

=
nX
j=1

wkj

 
mX
i=1

 
mX
l=1

d
�

~�kij ; ~�klj
�!

+KIVPFS

�
~�kij
�1A

s.t.
nP
j=1

(wkj )2 = 1; wkj � 0;

j = 1; 2; � � � ; n
By solving the proposed model, we can construct the
linguistic function:

L(wkj ; �) =
nX
j=1

wkj

 
mX
i=1

 
mX
l=1

d
�

~�kij ; ~�klj
�!

+KIVPFS

�
~�kij
�1A+

�
2

0@ nX
j=1

(wkj )2 � 1

1A ; (22)

where � is a linguistic multiplier.
Then, di�erentiating Eq. (22) while considering

wkj (j = 1; 2; � � � ; n) and � and determining these partial
derivatives as zero result in obtaining the following set
of equations:
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8>>>>>>>><>>>>>>>>:

dl
dwkj

=
nX
j=1

 
mX
i=1

 
mX
l=1

d
�

~�kij ; ~�klj
�!

+KIVPFS

�
~�kij
�!

+ �wkj = 0

dl
d� =

nP
j=1

(wkj )2 � 1 = 0

(23)

By solving Eq. (23), an exact relation used to com-
pute the normalized attribute weights is obtained and
presented by:

wkj =

mP
i=1

�
mP
l=1

d
�

~�kij ; ~�klj
��

+KIVPFS

�
~�kij
�

nP
j=1

mP
i=1

�
mP
l=1

d
�

~�kij ; ~�klj
��

+KIVPFS

�
~�kij
� :

(24)

We can construct another model for calculating an opti-
mal attribute weighting vector in situations where DMs
can provide incomplete attribute weighting information
as follows:

(M 3)

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

max F (wk) =
nX
j=1

Fj(wk)

=
nX
j=1

wkj

 
mX
i=1

 
mX
l=1

d
�

~�kij ; ~�klj
�!

+KIVPFS

�
~�kij
�!

s.t. wk 2 H; nP
j=1

(wkj )2 = 1; wkj � 0;

j = 1; 2; � � � ; n
where H indicates the incomplete attribute weighting
information. The known weight information on the
criteria is categorized into �ve basic ranking forms as
presented in [35].

Model (M 3) can also be solved by the linguis-
tic method and the corresponding optimal solution
wk = (wk1 ; wk2 ; � � � ; wkn), (k = 1; 2; � � � ; t) can also be
normalized as an attribute weighting vector similar to
Eq. (24).

4.4. Integrated approach to the
IVPF-MCGDM method

In this subsection, an e�ective approach to solving
MCGDM problems under IVPF environment is struc-
tured based on the extension of the VIKOR method.

Step 1: If the expert ek has totally unknown
information about the attribute weights, then the at-
tribute weights are gathered by solving Model (M 2)
and applying Eq. (24), whereas if the information
concerning the attribute weights for the expert ek
is not completely unknown and, in fact, is partially

known, Model (M 3) is solved to compute the weight
vector of attributes wk = (wk1 ; wk2 ; � � � ; wkn), (k =
1; 2; � � � ; t).
Step 2: Create the weighted IVPF decision matrix
for each expert by applying the multiplication oper-
ator on Pk =

�
~�kij
�
m�n and wk = (wk1 ; wk2 ; � � � ; wkn)

	k =
�

~ kij
�
m�n

=
�

~P
�h

~�l~ kij ; ~�u~ kij

i
;
h
~�l~ kij ; ~�

u
~ kij

i��
m�n

; (25)

where ~ kij = wkj ~�kij ; thus, by De�nition 5 we have:

~�l~ kij =

vuut1�
 

1�
�

~�l~�kij

�2
!wkj

;

~�u~ kij =

vuut1�
 

1�
�

~�u~�kij

�2
!wkj

;

~�l~ kij =
�

~�l~�kij

�wkj
; ~�u~ kij =

�
~�u~�kij

�wkj
;

and:

(i = f1; 2; � � � ;mg; j = f1; 2; � � � ; ng;
k = f1; 2; � � � ; tg):

Step 3: Compute the weighting vector of the experts
� = (�1; �2; � � � ; �t) by using the new approach
proposed in Subsection 4.2, Steps A{E.
Step 4: Aggregate all the weighted IVPF decision
matrices 	k into the overall group IVPF decision
matrix by applying IPFWAw operator to 	k =�

~ kij
�
m�n and � = (�1; �2; � � � ; �t):

	=
�

~ ij
�
m�n=

�
~P
�h

~�l~ ij ; ~�u~ ij
i
;
h
~�l~ ij ; ~�

u
~ ij

i��
m�n ;(26)

where:

~ ij =
tX

k=1

�k ~ kij :

Thus, by De�nition 6, ~ ij is computed by:

~ ij =IPFWAw

�
~ 1
ij ; ~ 2

ij ; � � � ; ~ tij
�

=�1 ~ 1
ij � �2 ~ 2

ij � � � � � �t ~ tij

=

264vuut1�
tY

k=1

 
1�

�
~�l~ kij

�2
!�k

;
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vuut1�
tY

k=1

 
1�

�
~�u~ kij

�2
!�k 375 ;

"
tY

k=1

�
~�l~ kij

��k
;
tY

k=1

�
~�u~ kij

��k#
;

(i = f1; 2; � � � ;mg; j = f1; 2; � � � ; ng;
k = f1; 2; � � � ; tg): (27)

Step 5: Form the normalized decision matrix of the
IVPF overall performance by the following presented
approach. Categorize the set of attributes into two
main groups, the groups of bene�t and cost, which
are presented by B and C, respectively.

~ ij =

8<: ~ ij ; j 2 B�
~ ij
�{

; j 2 C (28)

where is the complement of ~ ij . Thus, we can obtain
the normalized decision matrix:

�	 =
�

~ ij
�
m�n

=
�

~P
��

~�l~ ij
; ~�u~ ij

�
;
�

~�l~ ij
; ~�u~ ij

���
m�n

:

Step 6: Compute the values Si and Ri by:

~Si =
nX
j=1

~ ij ; (29)

~Ri = max
j

~ ij ; (30)

where ~Si and ~Ri are used for formulating the measure
of the group utility and individual regret, respec-
tively.
Step 7: Defuzzify the values of ~Si and ~Ri using
the improved accuracy function introduced in De�-
nition 2.
Step 8: Calculate the values of Qi by:

Qi =
�

S� � S+

S� � S+ +R� �R+

�
(Si � S+)
(S� � S+)

+
�

R��R+

S��S+ +R��R+

�
(Ri�R+)
(R��R+)

; (31)

where:
S+ = min

i
Si; S� = max

i
Si;

R+ = min
i
Ri; R� = max

i
Ri:

S��S+

S��S++R��R+ is used to present the weight of the
strategy of the majority, while R��R+

S��S++R��R+ is used

to show the weight of the strategy of the least value
of the individual regret.

In the developed ranking index, the values of
S��S+

S��S++R��R+ and R��R+

S��S++R��R+ are determined
by the distances R� � R+ and S� � S+. The main
advantage of the proposed method is its simplicity
and there is no need to calculate the # value of the
traditional VIKOR method for all cases.
Step 9: Rank the alternatives by sorting the values
of Qi in descending order.

The structure of the proposed IVPF-MCGDM
method is given in Figure 2.

5. Case study

In this section, the proposed approach is applied to
a real case study of an Iranian transport complex to
prove its applicability to solving sustainable transport
investment decision problems. To address the issue, a
group of three decision-makers is asked to evaluate four
alternative transport investments based on ten main
criteria. The criteria used for evaluation are based on
a comprehensive review of some of the recent studies on
this subject [36,37]. Therefore, Table 1 displays them.
Due to the con�dentiality of the information, only
limited project details are presented.

Assuming that the experts' weight vectors and
the criteria weights are totally unknown, the eval-
uated value of candidates while considering criteria

Table 1. Criteria evaluation of three factors in
sustainability.

Perspective of
sustainability

Criteria

Economic

Return on investment

Financial risk

Reduction in costs

Social

Safety

A�ordability

Employment

Basic accessibility

Environmental

Greenhouse gas emissions

Climate and global warming

Resource e�ciency
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Figure 2. Comprehensive structure of the proposed IVPF-MCGDM method.
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Table 2. Linguistic terms used to assess the
alternatives [30].

Linguistic variables IVF-numbers

Very Poor (VP) ([0.1,0.2],[0.8,0.9])

Poor (P) ([0.2,0.3],[0.7,0.8])

Moderately Poor (MP) ([0.3,0.4],[0.6,0.7])

Fair (F) ([0.5,0.6],[0.4,0.5])

Good (G) ([0.7,0.8],[0.2,0.3])

Very Good (VG) ([0.8,0.9],[0.1,0.2])

Table 3. Obtained judgments of E1.

Criteria A1 A2 A3 A4

C1 G F VG VG

C2 F MG MG F

C3 G MP MP VG

C4 VG G G MP

C5 MP MP MG G

C6 MP P F VG

C7 G G G VG

C8 VG MP F VP

C9 G MP F P

C10 VG F G VP

are directly provided by judgments of experts. This
judgment is in the form of linguistic assessments
presented in Table 2. Then, the linguistic variables
presented in this table are converted into IVPFSs.
This is done to address the uncertainty of criteria
values with more exibility. It should be noted
that the aforementioned converted values are given in
Table 2.

Tables 3 to 5 provide the decision matrices of
the evaluation problem. It should be noted that the
evaluation criteria are stated as bene�t or cost criteria.
The bene�t criteria consist of C1, C3, C4, C5, C6, C7,
C8, C9, and C10. The cost criteria include C2. Projects
are denoted by A1, A2, A3, and A4 and experts are
referred to as E1, E2, and E3.

In situations with completely unknown informa-
tion about attributes' weights and weight vector of
experts, the decision steps can be detailed as follows:

Table 4. Obtained judgments of E2.

Criteria A1 A2 A3 A4

C1 VG G G G

C2 MG F MG MG

C3 MG F F G

C4 VG F MG P

C5 F MP F G

C6 MP P MP G

C7 G MG VG G

C8 VG F MG VP

C9 VG MP G MP

C10 VG MG MG VP

Table 5. Obtained judgments of E3.

Criteria A1 A2 A3 A4

C1 G F G VG

C2 F F F MG

C3 F MP G VG

C4 VG MG MG MP

C5 F F MP MG

C6 F MP F VG

C7 MG MG G VG

C8 VG MP F P

C9 VG F G P

C10 G F G P

Step 1: Determine the weights of attributes in
each DM's individual IVPF decision matrices. We
utilize Model (M 2) and Eq. (24) to obtain the
attribute weighting vector wk = (wk1 ; wk2 ; � � � ; wk10),
(k = 1; 2; 3) when � = 0:5.

w1 = (0:090226; 0:039244; 0:11848; 0:104194;

0:089678; 0:122216; 0:056471; 0:138709;

0:101163; 0:13962);

w2 = (0:06314; 0:041402; 0:06444; 0:132402;

0:085681; 0:104687; 0:078265; 0:150843;

0:132474; 0:146667);
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Table 6. Weighted individual Interval-Valued Pythagorean Fuzzy (IVPF) decision matrix for E1.

Criteria A1 A2 A3 A4

C1
([0.242785, 0.296747],
[0.864838, 0.897063])

([0.160070, 0.198663],
[0.920652, 0.939376])

([0.296747, 0.373035],
[0.812408, 0.864838])

([0.296747, 0.373035],
[0.812408, 0.864838])

C2
([0.105954, 0.131763],
[0.964680, 0.973165])

([0.131763, 0.161489],
[0.953850, 0.964680])

([0.131763, 0.161489],
[0.953850, 0.964680])

([0.105954, 0.131763],
[0.964680, 0.973165])

C3
([0.276909, 0.337649],
[0.826391, 0.867060])

([0.105412, 0.142988],
[0.941272, 0.958621])

([0.105412, 0.142988],
[0.941272, 0.958621])

([0.337649, 0.422630],
[0.761236, 0.826391])

C4
([0.317773, 0.398615],
[0.786695, 0.845613])

([0.260295, 0.317773],
[0.845613, 0.882103])

([0.260295, 0.317773],
[0.845613, 0.882103])

([0.098886, 0.134173],
[0.948167, 0.963519])

C5
([0.091771, 0.124555],
[0.955224, 0.968520])

([0.091771, 0.124555],
[0.955224, 0.968520])

([0.198070, 0.242068],
[0.897655, 0.921115])

([0.242068, 0.295884],
[0.865602, 0.897655])

C6
([0.107052, 0.145201],
[0.939478, 0.957345])

([0.070545, 0.107052],
[0.957345, 0.973097])

([0.185872, 0.230396],
[0.894058, 0.918775])

([0.342609, 0.428597],
[0.754717, 0.821438])

C7
([0.193159, 0.236771],
[0.913122, 0.934271])

([0.193159, 0.236771],
[0.913122, 0.934271])

([0.193159, 0.236771],
[0.913122, 0.934271])

([0.236771, 0.299198],
[0.878070, 0.913122])

C8
([0.363495, 0.453598],
[0.726593, 0.799920])

([0.114002, 0.154578],
[0.931596, 0.951730])

([0.197784, 0.245004],
[0.880648, 0.908332])

([0.037324, 0.075142],
[0.969522, 0.985492])

C9
([0.256612, 0.313356],
[0.849748, 0.885327])

([0.097444, 0.132225],
[0.949636, 0.964561])

([0.169362, 0.210104],
[0.911472, 0.932281])

([0.064196, 0.097444],
[0.964561, 0.977679])

C10
([0.364604, 0.454920],
[0.725070, 0.798748])

([0.198419, 0.245782],
[0.879913, 0.907758])

([0.299547, 0.364604],
[0.798748, 0.845270])

([0.037447, 0.075388],
[0.969325, 0.985397])

w3 = (0:090811; 0:043818; 0:132289; 0:110908;

0:043818; 0:109068; 0:081381; 0:13646;

0:137477; 0:113971):

Step 2: Calculate the weighted individual IVPF
decision matrices Pk, as depicted in Tables 6{8.

Step 3: Obtain weights of the decision-makers. In
this step, the algorithm proposed in Subsection 4.1 is
applied to compute the weighting vector of experts.

When v = 0:5, they are computed by:

� = (0:378939; 0:188696; 0:432365):

Step 4: Construct the overall group IVPF decision
matrix. We aggregate the weighted IVPF decision
matrices 	k to determine the overall group decision
matrix 	, as shown in Table 9.
Step 5: Compute the normalized IVPF overallper-
formance decision matrix. Since all the attributes,
except for C2, are of bene�t type, their rating
values do not require normalization. The results of
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Table 7. Weighted individual Interval-Valued Pythagorean Fuzzy (IVPF) decision matrix for E2.

Criteria A1 A2 A3 A4

C1
([0.249941, 0.315513],
[0.864689, 0.903373])

([0.204020, 0.249941],
[0.903373, 0.926799])

([0.204020, 0.249941],
[0.903373, 0.926799])

([0.204020, 0.249941],
[0.903373, 0.926799])

C2
([0.135305, 0.165809],
[0.951375, 0.962774])

([0.108811, 0.135305],
[0.962774, 0.971710])

([0.135305, 0.165809],
[0.951375, 0.962774])

([0.135305, 0.165809],
[0.951375, 0.962774])

C3
([0.168372, 0.206064],
[0.925349, 0.942664])

([0.135526, 0.168372],
[0.942664, 0.956317])

([0.135526, 0.168372],
[0.942664, 0.956317])

([0.206064, 0.252418],
[0.901485, 0.925349])

C4
([0.355695, 0.444284],
[0.737222, 0.808081])

([0.193322, 0.239536],
[0.885752, 0.912311])

([0.239536, 0.292051],
[0.852648, 0.885752])

([0.073419, 0.111397],
[0.953873, 0.970888])

C5
([0.156037, 0.193692],
[0.924494, 0.942339])

([0.089711, 0.121769],
[0.957176, 0.969902])

([0.156037, 0.193692],
[0.924494, 0.942339])

([0.236771, 0.289507],
[0.871187, 0.901985])

C6
([0.099119, 0.134488],
[0.947928, 0.963349])

([0.065302, 0.099119],
[0.963349, 0.976911])

([0.099119, 0.134488],
[0.947928, 0.963349])

([0.260889, 0.318484],
[0.844943, 0.881580])

C7
([0.226572, 0.277211],
[0.881648, 0.910075])

([0.185272, 0.226572],
[0.910075, 0.930798])

([0.277211, 0.349119],
[0.835094, 0.881648])

([0.226572, 0.277211],
[0.881648, 0.910075])

C8
([0.377917, 0.470740],
[0.706573, 0.784450])

([0.206075, 0.255154],
[0.870910, 0.900724])

([0.255154, 0.310776],
[0.833926, 0.870910])

([0.038921, 0.078350],
[0.966901, 0.984233])

C9
([0.355785, 0.444392],
[0.737100, 0.807988])

([0.111427, 0.151104],
[0.934568, 0.953849])

([0.292126, 0.355785],
[0.807988, 0.852574])

([0.111427, 0.151104],
[0.934568, 0.953849])

C10
([0.373036, 0.464950],
[0.713401, 0.789741])

([0.251713, 0.306655],
[0.838130, 0.874250])

([0.251713, 0.306655],
[0.838130, 0.874250])

([0.038379, 0.077261],
[0.967802, 0.984666])

normalizing the IVPF overall performance decision
matrix for C2 are shown in Table 10.
Step 6: Compute values Si and Ri, as presented in
Table 11.
Step 7: Defuzzify the values of ~Si and ~Ri, as given
in Table 12.
Step 8: Compute the values Qi, as displayed in
Table 13.
Step 9: Rank the alternatives by sorting the values
Qi in descending order.

A1 � A4 � A2 � A3:

To test the robustness of the model, parameters � and
v may vary. As shown in Table 14, the ranking remains
intact. The results show that project A1 has the best
ranking. Then, projects A4, A2, and A3 have the best
outcomes, respectively.

Another sensitivity analysis is done to represent
the impact of the weights of the experts and attributes
on the ranking of the alternatives. In this case, the
weights of the DMs and attributes are changed to
represent if di�erent weights can a�ect the �nal results
or not. The analysis indicates that changing the
weights leads to di�erent ranking results. On the other
hand, it is shown that the proposed method is more
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Table 8. Weighted individual Interval-Valued Pythagorean Fuzzy (IVPF) decision matrix for E3.

Criteria A1 A2 A3 A4

C1
([0.243547, 0.297663],
[0.864024, 0.896431])

([0.160581, 0.199293],
[0.920159, 0.938995])

([0.243547, 0.297663],
[0.864024, 0.896431])

([0.297663, 0.374154],
[0.811314, 0.864024])

C2
([0.111922, 0.139159],
[0.960646, 0.970084])

([0.111922, 0.139159],
[0.960646, 0.970084])

([0.139159, 0.170509],
[0.948612, 0.960646])

([0.139159, 0.170509],
[0.948612, 0.960646])

C3
([0.111350, 0.151000],
[0.934656, 0.953912])

([0.111350, 0.151000],
[0.934656, 0.953912])

([0.291932, 0.355553],
[0.808228, 0.852764])

([0.355553, 0.444114],
[0.737413, 0.808228])

C4
([0.327301, 0.410148],
[0.774625, 0.836524])

([0.219754, 0.268252],
[0.875001, 0.903369])

([0.219754, 0.268252],
[0.875001, 0.903369])

([0.102006, 0.138389],
[0.944920, 0.961214])

C5
([0.111922, 0.139159],
[0.960646, 0.970084])

([0.111922, 0.139159],
[0.960646, 0.970084])

([0.139159, 0.170509],
[0.948612, 0.960646])

([0.139159, 0.170509],
[0.948612, 0.960646])

C6
([0.175755, 0.217968],
[0.904894, 0.927187])

([0.101161, 0.137247],
[0.945809, 0.961845])

([0.175755, 0.217968],
[0.904894, 0.927187])

([0.324724, 0.407032],
[0.777915, 0.839006])

C7
([0.188858, 0.230918],
[0.906667, 0.928144])

([0.188858, 0.230918],
[0.906667, 0.928144])

([0.230918, 0.282454],
[0.877238, 0.906667])

([0.282454, 0.355551],
[0.829124, 0.877238])

C8
([0.360739, 0.450309],
[0.730366, 0.802821])

([0.113080, 0.153334],
[0.932667, 0.952494])

([0.196205, 0.243070],
[0.882464, 0.909749])

([0.074532, 0.113080],
[0.952494, 0.970009])

C9
([0.361989, 0.451801],
[0.728657, 0.801508])

([0.196921, 0.243947],
[0.881642, 0.909108])

([0.297345, 0.361989],
[0.801508, 0.847454])

([0.074809, 0.113498],
[0.952148, 0.969789])

C10
([0.271792, 0.331535],
[0.832411, 0.871780])

([0.179599, 0.222692],
[0.900837, 0.924041])

([0.271792, 0.331535],
[0.832411, 0.871780])

([0.068130, 0.103398],
[0.960165, 0.974889])

sensitive to the experts' weights than the weights of
attributes. The computational results of the second
sensitivity analysis are reported in Table 15.

In order to validate the obtained results, the
decision method of Ashtiani et al. [38] is utilized to
evaluate the alternatives. The results are presented
in Table 16. It can be observed that the best and

worst alternatives remain the same. However, the
presented method enjoys several more advantages than
the method proposed by Ashtiani et al. [38], for
instance:

1. The developed method applies IVPFS, one of the
most powerful tools in dealing with uncertainty, to
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Table 9. Interval-Valued Pythagorean Fuzzy (IVPF) overall performance decision matrix.

Criteria A1 A2 A3 A4

C1
([0.244481, 0.300787],
[0.864458, 0.897976])

([0.169508, 0.209662],
[0.917154, 0.936825])

([0.258917, 0.321449],
[0.851213, 0.889902])

([0.282330, 0.354329],
[0.828359, 0.875847])

C2
([0.114577, 0.141938],
[0.960413, 0.969865])

([0.119299, 0.147362],
[0.958465, 0.968339])

([0.135672, 0.166256],
[0.951116, 0.962574])

([0.126842, 0.156053],
[0.955193, 0.965774])

C3
([0.200551, 0.249043],
[0.890372, 0.917964])

([0.114197, 0.151524],
[0.938668, 0.956148])

([0.212586, 0.263022],
[0.881499, 0.910915])

([0.326183, 0.407893],
[0.775188, 0.836145])

C4
([0.329398, 0.412682],
[0.771934, 0.834492])

([0.231688, 0.283484],
[0.865739, 0.896916])

([0.239628, 0.292516],
[0.859539, 0.891930])

([0.096038, 0.132087],
[0.947834, 0.963906])

C5
([0.114970, 0.146164],
[0.951674, 0.964198])

([0.100639, 0.130583],
[0.957933, 0.969457])

([0.166962, 0.204814],
[0.924467, 0.942044])

([0.203333, 0.248974],
[0.901655, 0.925206])

C6
([0.140008, 0.178997],
[0.925929, 0.945302])

([0.084374, 0.119787],
[0.953464, 0.968931])

([0.168354, 0.210128],
[0.908704, 0.930686])

([0.321069, 0.401107],
[0.781130, 0.840115])

C7
([0.198153, 0.242571],
[0.904320, 0.927015])

([0.189835, 0.232351],
[0.909751, 0.930962])

([0.227595, 0.281137],
[0.882430, 0.912200])

([0.255949, 0.321440],
[0.857220, 0.896864])

C8
([0.365097, 0.455507],
[0.724393, 0.798226])

([0.136147, 0.177884],
[0.920287, 0.942216])

([0.209306, 0.258130],
[0.872412, 0.901757])

([0.056724, 0.093983],
[0.961631, 0.978531])

C9
([0.325616, 0.405244],
[0.774048, 0.833559])

([0.151025, 0.192022],
[0.916846, 0.938202])

([0.256185, 0.313385],
[0.842802, 0.879649])

([0.079554, 0.116137],
[0.953474, 0.969734])

C10
([0.330283, 0.410129],
[0.767316, 0.827769])

([0.202209, 0.249437],
[0.880777, 0.908294])

([0.279196, 0.340242],
[0.820550, 0.862098])

([0.053080, 0.088913],
[0.965067, 0.980703])

Table 10. Normalized Interval-Valued Pythagorean Fuzzy (IVPF) overall performance decision matrix for C2.

Criteria A1 A2 A3 A4

C2
([0.960413, 0.969865],
[0.114577, 0.141938])

([0.958465, 0.968339],
[0.119299, 0.147362])

([0.951116, 0.962574],
[0.135672, 0.166256])

([0.955193, 0.965774],
[0.126842, 0.156053])

Table 11. Values of Si and Ri.

i = 1 i = 2 i = 3 i = 4

Si
([0.979767, 0.989627],
[0.023340, 0.045437])

([0.967312, 0.978307],
[0.054907, 0.083128])

([0.970006, 0.982249],
[0.039135, 0.065743])

([0.971263, 0.983365],
[0.041243, 0.071463])

Ri
([0.960413, 0.969865],
[0.114577, 0.141938])

([0.958465, 0.968339],
[0.119299, 0.147362])

([0.951116, 0.962574],
[0.135672, 0.166256])

([0.955193, 0.965774],
[0.126842, 0.156053])
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Table 12. Crisp values of Si and Ri.

i = 1 i = 2 i = 3 i = 4

Si 0.80212 0.727728 0.745064 0.75448

Ri 0.70554 0.697885 0.66985 0.685247

Table 13. Values of Qi.

i = 1 i = 2 i = 3 i = 4

Qi 1 0.254676 0.157481 0.382896

Table 14. Final results of the proposed method with
di�erent values of � and v.

� and v values Alternatives Ranking

� = :1 and v = :1

A1 1

A2 3

A3 4

A4 2

� = :3 and v = :3

A1 1

A2 3

A3 4

A4 2

� = :5 and v = :5

A1 1

A2 3

A3 4

A4 2

� = :7. and v = :7

A1 1

A2 3

A3 4

A4 2

� = :9 and v = :9

A1 1

A2 3

A3 4

A4 2

increase the exibility and ability of expressing and
calculating the uncertainty in the decision problem;

2. DMs are given a weight objectively based on the
compromise solution method;

3. The method uses an optimization model that simul-
taneously considers the deviation between attribute
assessments and knowledge measure to address the
weights of unknown criteria.

This model utilizes all the available information on de-
cision preferences and creates a comprehensive weight-
ing approach.

6. Conclusion

In this paper, a new decision-making approach was in-
troduced that used Interval-Valued Pythagorean Fuzzy
Sets (IVPFSs) to model uncertainty in the sustainable
transport investment selection problem. The model
functions based on the notion of maximizing the
divergence of attribute evaluation from the fuzziest
number in IVPFSs and the deviation between attribute
evaluations to handle the weight of criteria used in
the selection process. Moreover, an extended form
of the VIKOR method was introduced to determine
the weight of the DMs based on positive and negative
ideal solutions. To illustrate the applicability of the
proposed approach, real data from an Iranian transport
complex �rm was applied. The results were presented,
and the sensitivity analysis of the parameters of the
model was carried out. For further research, extending
the developed method to support a higher degree of
uncertainty in modeling will be an interesting idea.
For instance, the application of the interval-valued
Pythagorean hesitant fuzzy set will allow incorporating
additional knowledge about uncertainty in the decision-
making process. The presented method can be im-
proved by applying other weighting methods, which
will rely upon not only the available information of
decision preferences but also the judgments of the
DMs. In other words, developing new approaches to
aggregating the subjective and objective weights of the
criteria and DMs, compared to the recent studies [39{
44], is another interesting research direction.
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Table 15. Computational results of the sensitivity analysis.

Scenario Experts Weight of
each DM

Attribute weighting vector Alternatives
A1 A2 A3 A4

Scenario 1
(weights of
DMs are
changed)

E1 0.378939
w1=(0.090226, 0.039244, 0.11848, 0.104194, 0.089678,

0.122216, 0.056471, 0.138709, 0.101163, 0.13962)

1 2 4 3E2 0.432365
w2=(0.06314, 0.041402, 0.06444, 0.132402, 0.085681,

0.104687, 0.078265, 0.150843, 0.132474, 0.146667)

E3 0.188696
w3=(0.090811, 0.043818, 0.132289, 0.110908, 0.043818,

0.109068, 0.081381, 0.13646, 0.137477, 0.113971)

Scenario 2
(weights of
DMs are
changed)

E1 0.188696
w1=(0.090226, 0.039244, 0.11848, 0.104194, 0.089678,

0.122216, 0.056471, 0.138709, 0.101163, 0.13962)

1 2 4 3E2 0.378939
w2=(0.06314, 0.041402, 0.06444, 0.132402, 0.085681,

0.104687, 0.078265, 0.150843, 0.132474, 0.146667)

E3 0.432365
w3=(0.090811, 0.043818, 0.132289, 0.110908, 0.043818,

0.109068, 0.081381, 0.13646, 0.137477, 0.113971)

Scenario 3
(weights of
criteria are
changed)

E1 0.378939
w1=(0.11848, 0.104194, 0.090226, 0.039244, 0.089678,

0.122216, 0.056471, 0.138709, 0.101163, 0.13962)

1 3 4 2E2 0.188696
w2=(0.06444, 0.132402, 0.06314, 0.041402, 0.085681,

0.104687, 0.078265, 0.150843, 0.132474, 0.146667)

E3 0.432365
w3=(0.132289, 0.110908, 0.090811, 0.043818, 0.043818,

0.109068, 0.081381, 0.13646, 0.137477, 0.113971)

Scenario 4
(weights of
criteria are
changed)

E1 0.378939
w1= (0.090226, 0.039244, 0.11848, 0.104194, 0.089678,

0.122216, 0.056471, 0.138709, 0.101163, 0.13962)

1 3 4 2E2 0.188696
w2=(0.06314, 0.041402, 0.06444, 0.132402, 0.085681,

0.104687, 0.078265, 0.150843, 0.132474, 0.146667)

E3 0.432365
w3=(0.090811, 0.043818, 0.132289, 0.110908, 0.043818,

0.109068, 0.081381, 0.13646, 0.137477, 0.113971)

Table 16. Results of the ranking method of Ashtiani et
al. [38].

Alternatives RC1 RC2 RC�i Ranking

A1 0.44 0.44 0.44 1
A2 0.39 0.4 0.4 2
A3 0.32 0.33 0.33 4
A4 0.31 0.33 0.32 3
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