Investigation into thermophoresis and Brownian motion
effects of nanoparticles on radiative heat transfer in
Hiemenz flow using spectral method

M.S. Iqbala, A. Ghafarib,*, and I. Mustafac

a Department of Mathematics Islamabad College for Boys G-6/3, Islamabad 44000, Pakistan.
b Department of Mathematics, University of Education, Lahore (Aitook Campus 54600), Pakistan.
c Department of Mathematics, Allama Iqbal Open University, B-8, Islamabad 44000, Pakistan.

Received 2 December 2018; received in revised form 13 March 2019; accepted 13 July 2019

KEYWORDS
Buongiorno nanofluid model;
Hiemenz flow;
Non-linear stretching;
Spectral method.

Abstract. This study presents a theoretical investigation into thermophoresis and
Brownian motion effects on radiative heat transfer in the neighborhood of stagnation
point. Thermophoresis and Brownian motion play an important role in thermal and
mass concentration analyses, which help to comprehend the major ideas in the disciplines
of science and technology. An electrically conducting nanofluid was described by
the Buongiorno transport model. The power-law form of the stretching wall velocity made
the similarity solution possible. The transformed system of the ordinary differential equations
was computed numerically with the efficient and rapid convergent spectral scheme. The
obtained results for velocity, temperature, concentration, shear strain, and mass and heat
transfer rates were pursued for various values of the pertinent parameters. The outcomes
divulged that with increase in power-law exponent, mass and heat transfer rates were
enhanced. The information on volume and high-temperature transfer rate is provided in
tables in this paper. The obtained results well matched the existing results.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, the need for the development of technology has underscored the importance of fluid flow
processes, especially those that include the interaction of numerous phenomena. Convective flow and
stretching sheet are a significant part of several engineering applications, e.g., wire drawing, extrusion of polymer
sheets from dye, and ground water flows in petroleum industries.

Stagnation point exists in the flows in which the fluid impinges on the solid surface. The stagnation

*. Corresponding author. Tel.: +93335556782
E-mail address: abuzar.ghaffari@ue.edu.pk (A. Ghafari)

point region possesses the highest pressure, mass, and heat transfer rates. Hiemenz [1], for the first
time, considered stagnation-point flow and obtained non-linear ordinary differential equations from Naiver-
Stokes equations by using similarity transformation. Homann [2] investigated an axisymmetric case of
stagnation-point flow and Howarth [3] analyzed the same problem numerically. Afterwards, several re-
searchers explored various features of convective heat transfer and stagnation-point flow problems [4-10]. Pop
et al. [11] considered the stagnation-point flow over a plate by applying thermal radiation and observed
that the boundary layer region was enhanced under the influence of radiation effect. Hayat et al. [12] inspected
the stagnation-point flow of a micropolar fluid along a stretching plate. Shateyi and Makinde [13] examined
the stagnation-point flow over a radially stretching disk.
and showed that the rise in Biot number enhanced the Nusselt number. Mlikavec and Wang [14] found dual solutions by studying the stagnation-point flow. Mahapatra and Gupta [15] discussed the axisymmetric stagnation-point flow over a stretching surface. They argued that inverted boundary layer existed when free stream velocity was less/higer than the stretching velocity. Mamood [16] analyzed the effects of the heat source and MHD on stagnation-point flow over a permeable stretching plate with variable heat flux and noticed that heat generation reduced the Nusselt number. Chen [17] considered unsteady mixed convective stagnation-point flow along a stretching surface and noticed that near the surface, reverse flow existed in slip. Makinde [18] analyzed the flow over a surface in the neighborhood of a stagnation point in porous media with heat generation and thermal radiation effects. Boutrous et al. [19] studied steady boundary layer flow in a porous medium near the stagnation point region. Nazar et al. [20] investigated the stagnation-point flow on a stretching surface. Hayat et al. [21] discussed the impact of thermal radiation and MHD on Maxwell fluid flow over a flat surface near the stagnation point. Mehmoond and Ali [22] discussed the three-dimensional stagnation-point flow over a moving surface for second-grade fluid and found that a uniformly valid analytic solution existed for all the values of the second-grade parameter.

Using nanoparticles having diameters less than 100 nm is an effective approach to improving the heat transfer phenomenon in fluids. The heat transfer rate of fluid is considerably altered by dispersing of nanoparticles in the cooling/heating fluid. Heat capacity, surface area, and effective thermal conductivity of base fluid also increase remarkably by introducing nanoparticles into the base fluid. Furthermore, due to the collision of nanoparticles and interaction between fluid particles, the convective phenomenon further increases.

Nanofluid is prepared by mixing the nano-size solid particles into the base liquid having low thermal conductivity, e.g., ethylene glycol or water.

Nanotechnology has many applications to manufacturing related industries, e.g., vehicles engine, drug delivery, making nanochips, currency making, cooling of electronics, etc. Boundary layer theory of fluids with nanoparticles has tremendous uses in polymer engineering, metallurgy, heat exchangers in high heat flux application, insulation of heated bodies, thermal energy storage, drying process, and petrochemical industries.

Forced convective nanofluid flow on a stretching surface is a significant feature of flows because of its applications to metallurgy, polymerization, etc. It is also utilized in petrochemical industry, processing of polymers characterization, and structure and properties of polymers. The nanofluid that encounters stagnation-point flow has maximum heat transfer, maximum pressure, and maximum rate of mass decay. Anwar et al. [23] theoretically studied stagnation-point flow with nanofluid along a non-linear stretching surface and found that thermophoresis and Brownian motion effect amplified the temperature profile and boundary layer region. Wakif et al. [24] investigated thermo-magneto hydrodynamic stability of alumina-water nanofluid by incorporating Chon and Corezione's nanofluid model and reported that the diameter of alumina nanoparticles increased the size of convection cells. Wakif et al. [25] discussed the effects of thermal radiation and magnetic field on the unsteady natural convection Couette flow in Cu-water nanofluid and proved that the rate of heat transfer could be enhanced by increasing either the initial volumetric fraction of nanoparticles or the value of the radiation parameter. Wakif et al. [26] investigated electro-thermo-hydrodynamics instability in the presence of Brownian motion and thermophoresis phenomenon, and showed that electro-thermo-stability in nanofluid could be controlled by the critical AC electric Rayleigh number. Wakif et al. [27] considered generalized Buongiorno’s model for nanofluid convection in the presence of a transverse magnetic field and found that thermal stability of nanofluid could be achieved through critical thermal Rayleigh number. Wakif et al. [28] performed linear stability analysis of Newtonian nanofluid in the presence of heat source and showed that at low values of heat source, Lewis number and Rayleigh number would ensure thermal stability of nanofluid. Wakif et al. [29] analyzed stability of conducting nanofluid in a Darcy Brickman porous medium and reported that size of convection cells increased by increasing the Darcy number and decreasing the modified magnetic Chandrasekhar number. Boulahia et al. [30] investigated mixed convection flow in a square cavity and proved that heat transfer could be improved by increasing the concentration of nanoparticles and Richardson number. Boulahia et al. [31] studied the heat transfer of Cu-nanofluid in a wavy wall cavity and reported that heat transfer rate increased by increasing undulation numbers and decreasing wavy surface amplitude. Boulahia et al. [32] analyzed the free and MC heat transfers of nanofluid in a square cavity with circular heating and cooling of the cylinder, and showed that heat transfer rate was enhanced by increasing the size of the circular heating body and Rayleigh number.

Tayebi et al. [33] analyzed free convection heat transfer in an annulus between confocal elliptical cylinders filled with CNT-water nanofluid and found that the average Nusselt number was an increasing function of modified Rayleigh numbers. Abbasi and Chayeni [34] studied saturated air water freezing in two-dimensional stagnation flow on a flat plate. According to their study, below the start temperature of
freezing. A 10°C drop in substrate temperature causes a large increase in the ultimate thickness of the ice at far-field air temperature of 5°C, while it slightly increases the ultimate thickness of the ice at the air temperature of 20°C. Rana et al. [35] considered hydrothermal characteristics of nano-fluid using KKL model with Brownian motion and recommended nano-fluids as a better coolant than the base fluid. Ramly et al. [36] investigated active and passive control of nanoparticles for heat transfer over a stretching sheet under the effect of thermic radiation. They stated that in the case of zero fluxes of nanoparticles, thermophoresis would enhance heat conductivity performance. Karbasi et al. [37] studied the effect of multi-walled carbon nanotubes (MWCNT) on structural and mechanical properties of poly-3-hydroxybutyrate scaffold and stated that low percentage of MWCNT would improve mechanical properties of pure P3HB scaffold. Hakeem et al. [38] numerically investigated the second law for MHD nano-fluid flow over the stretching surface and showed that nanoparticles generated more entropy than non-metallic particles. Wang and Dai [39] considered natural convection of nano-fluid in an inclined square cavity with non-uniformly heated walls and found that at a fixed Rayleigh number, average Nusselt number was higher for copper nanoparticles. Kasmani et al. [40] reported the effects of thermal radiation, Soret, and Dufour on convective heat transfer of nano-liquid over a wedge in the presence of wall suction and proved that temperature distribution enhanced by raising the values of wedge angle, radiation, Brownian motion, and thermophoresis parameters. Ganji et al. [41] examined magnetite ethylene glycol nano-fluid EHD forced convection flow in a lid-driven cavity in the presence of thermal radiation and proved that Nusselt number increased with the rise of Darcy number.

Ibrahim et al. [42] studied convective heat transfer features of MHD boundary layer stagnation-point flow on a stretching surface in nano-fluid and showed that Brownian motion and thermophoresis enhanced the temperature profile. Hamad and Ferdows [43] applied group-theoretical methods to investigating the stagnation-point flow over a stretching sheet with heat generation and suction in porous media. They pointed out that the boundary layer flow was smoothed by imposing suction. Aksaci et al. [44] discussed stagnation-point flow over a surface in nano-fluid with Brownian motion and heat generation effects. Khan et al. [45] considered viscous flow on a stretching flat plate in ferrofluid under the influence of viscous dissipation and MHD. They noticed that Nusselt number and the friction factor were larger for kerosene-based ferrofluid than for water-based ferrofluid. Hamad and Pop [46] inspected the impact of heat generation on stagnation-point nano-fluid flow on stretching sheet. Mustafa et al. [47] examined the stagnation-point nano-fluid flow over a stretching plate. Ibrahim et al. [48] analyzed MHD effects on nano-fluid flow over a stretching sheet. They noted that the thickness of temperature profile increased with a rise in both Brownian motion and thermophoresis parameters. Recently, Hakeem et al. [49] investigated the effects of metallic and non-metallic nano-size particles in the presence of magnetic field and radiation effects on the stretching/shrinking surface. In another study, Hakeem et al. [50] investigated the influence of thermal radiation and non-uniform heat source/sink on the entropy generation rate over a stretching sheet with nanoparticle concentration. They found that entropy generation increased in the case of metallic particles in comparison with non-metallic particles. Notable studies of nanotechnology performed recently can be seen in [51–53].

The objective of this paper is to study the effect of thermal radiation on convective phenomenon in nano-fluid over a non-linear stretching surface. The well-known Buongiorno transport model [54,55] for nano-fluid is utilized in the development of transport equations. Similarity transformation is used to transform the given ODEs into PDEs. Then, the PDEs are numerically solved by using Chebyshev Spectral method [56–58] scheme. The results of interest, e.g., Nusselt number, Sherwood number, velocity profile, and temperature, will be reported to illustrate the effects of thermophoresis and Brownian motion of nanoparticles as well as thermal radiation on these physical quantities. The feasible branches of the present nano-fluid model are micro- and nanoelectromechanical systems, advanced cooling systems, etc., which have applicability to glass fiber production, geothermal reservoirs, manufacturing of plastics, manufacturing processes of continuous casting, metal extrusion, processes involving polymer composites, paper production, textiles, and hot rolling.

2. Convective transport equations

We consider a steady, two-dimensional, incompressible, stagnation-point flow impinging on a non-linear continuously stretching horizontal plate. The non-linear stretching velocity of the flat plate is of the form \(u_0(\bar{x}) = u_0(\bar{x}/l)^m \) [59]. It is also supposed that the moving velocity of the ambient fluid has the form \(\bar{u}_c(\bar{x}) = u_\infty(\bar{x}/l)^m \) [59], where \(u_\infty \) and \(u_0 \) are the constants representing dimensions of velocity, \(m \) is the power-law velocity exponent, \(l \) is the characteristic length, and \(u_0 \leq 0 \) denotes the direction of motion of the plate. The \(x \)-axis is taken horizontally and the \(y \)-axis normal to it. The coordinate system and flow model are displayed in Figure 1.

With the above suppositions, the transport equations for Buongiorno nano-fluid model [47,54,59] are written as:
The appropriate boundary conditions [59] following the flow assumptions are:

\[\bar{y} = 0 : \]

\[\bar{u} = \bar{u}_w (\bar{x}) , \quad \bar{v} = 0 , \quad C = C_w , \quad T = T_w , \]

\[\bar{y} \to \infty : \]

\[\bar{u} = \bar{u}_e (\bar{x}) , \quad C = C_\infty , \quad T = T_\infty , \tag{5} \]

where \(C_w \) is plate concentration and \(T_w \) is plate temperature. Introducing the stream function, \(\psi(\eta) \), which satisfies the continuity equation identically, the following similarity variables [59] are presented:

\[x = \frac{T}{T_\infty} \quad \eta = \frac{\bar{y}}{T} \quad u = \frac{\bar{u}}{u_\infty} , \]

\[v = \frac{\bar{v}}{u_\infty} \quad \text{Re} = \frac{u_\infty}{\nu} \quad \phi(\eta) = \frac{C - C_\infty}{C_w - C_\infty} , \]

\[\theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty} , \quad \bar{u}_e = \frac{u_e}{u_\infty} , \quad \psi = \frac{\bar{y}}{T} f(\eta) . \tag{6} \]

which transform systems (2)-(4) to a system of ODEs, described as:

\[\frac{d^2 f}{d \eta^2} + \left(\frac{m + 1}{2} \right) \frac{d^2 f}{d \eta^2} - m \left(\frac{df}{d \eta} \right)^2 - 1 = 0 , \tag{7} \]

\[\frac{1}{Pr} \left(\frac{m + 1}{2} + \frac{1}{Pr} f \frac{d \theta}{d \eta} + 2 \frac{d \theta}{d \eta} \right) \frac{d \theta}{d \eta} + \frac{Nt}{d \theta}{d \phi}{d \eta} \]

\[+ \frac{Nt}{d \theta}{d \phi}{d \eta} + \frac{1}{Le} \left(\frac{d \phi}{d \eta} \right)^2 = 0 , \tag{8} \]

\[\frac{1}{Nb} \left(\frac{d \phi}{d \eta} \right)^2 + \frac{Nt}{d \theta}{d \phi}{d \eta} + \frac{1}{Le} \left(\frac{d \phi}{d \eta} \right)^2 \left(\frac{m + 1}{2} \right) f \frac{d \theta}{d \eta} + 2 \frac{d \theta}{d \eta} \]

\[+ \frac{1}{Nb} \frac{d \phi}{d \eta} + \frac{Nt}{d \theta}{d \phi}{d \eta} + \frac{Nt}{d \theta}{d \phi}{d \eta} = 0 , \tag{9} \]

where \(Rd = \frac{10^{7} T^3 \sigma^* \kappa^*}{2 \pi \kappa^*} \), \(Nb = \frac{10^{7} T^3 \sigma^* \kappa^*}{2 \pi \kappa^*} \), \(Pr = \nu/\alpha \), \(Le = \alpha/Db \), and \(Nt = \frac{10^{7} T^3 \sigma^* \kappa^*}{2 \pi \kappa^*} \) are the radiation parameter, Brownian motion parameter, Lewis number, thermophoresis parameter, and Prandtl number, respectively. The \(Nt/Nb \) ratio is within the wide range of 0.1 to 1.0 for the typical cases of alumin and copper nanoparticles with the dimension of 10 nm (see [60]). Also, we have \(Nt/Nb \approx 1/d_p \), where \(d_p \) is the diameter of the nanoparticle. This indicates that the relationship between the theoretical values and
the experimental results can be controlled in real experiments. Boundary conditions (5) in the non-
dimensional form are described as:
\[f(0) = 0, \quad \frac{df(0)}{d\eta} - V = 0, \quad \theta(0) - 1 = 0, \]
\[\phi(0) - 1 = 0, \quad \frac{df(\infty)}{d\eta} - 1 = 0, \quad \theta(\infty) - 1 = 0, \]
\[\phi(\infty) - 1 = 0, \quad (10) \]
where \(V = \frac{D_{w}}{a_w} = \text{const} \) is the velocity ratio parameter.
We can express the outcomes of velocity ratio parameter in 4 different ways: \(V > 0 \) shows that motion of the plate and free stream velocity are in the same direction; \(V > 1 \) and \(0 < V < 1 \) correspond to the situations in which the motion of the plate is higher than the free stream velocity and the free stream velocity is faster than the plate, respectively; \(V < 0 \) indicates that the free stream velocity and speed of the plate are in opposite directions; and \(V = 1 \) denotes that the motions of the plate and free stream velocity are equal and hence, in the same direction.

In terms of wall shear stress, \(\tau_w = \mu(\nabla u)_{y=0} \), surface heat flux, \(q_w = -k(\nabla T)_{y=0} \), and surface mass flux, \(q_m = -D \rho (\nabla C)_{y=0} \), the coefficient of skin friction, heat transfer rate, and mass transfer rate are respectively written as:
\[C_f = C_{f \infty} (Re_{\infty})^{1/2} = f'(0), \]
\[Nu = Nu_{\infty} (Re_{\infty})^{-1/2} = \theta'(0), \]
\[Sh = Sh_{\infty} (Re_{\infty})^{-1/2} = \phi'(0). \]
(11)
Primes numbers are used for derivatives with respect to \(\eta \).

3. Numerical procedure

Finding a solution to the nonlinear system of differential equations in the theoretical investigation is vital for the entire study. To highly nonlinear complicated differential equations, it is very difficult to find an exact or closed-form solution. In our case, it is quite impossible to find the exact solution. To cope with this situation, we use a numerical technique named Chebyshev Spectral Newton Iterative Scheme (CSNIS).

In this scheme, we first use a Newton iterative scheme for the system of nonlinear ODEs in linearized form. In the \((i+1)\)th iterate, for all dependent variables, we write:
\[f_{i+1} = f_i + \delta f_i; \quad \theta_{i+1} = \theta_i + \delta \theta_i; \]
\[\phi_{i+1} = \phi_i + \delta \phi_i, \]
where \(\delta f_i, \delta \theta_i, \) and \(\delta \phi_i \) represent minor changes in \(f_i, \)
\(\theta_i, \) and \(\phi_i, \) respectively. Eqs. (7)-(9) in linearized form can be written as:
\[a_{1,i} \delta \left(\frac{d^3 f}{d\eta^3} \right)_i + a_{2,i} \delta \left(\frac{d^2 f}{d\eta^2} \right)_i + a_{3,i} \delta \left(\frac{df}{d\eta} \right)_i \]
\[+ a_{4,i} \delta f_i = R_{1,i}, \]
\[b_{1,i} \delta \left(\frac{d^2 \theta}{d\eta^2} \right)_i + b_{2,i} \delta \left(\frac{d\theta}{d\eta} \right)_i + c_{1,i} \delta \left(\frac{d\phi}{d\eta} \right)_i \]
\[+ a_{5,i} \delta f_i = R_{2,i}, \]
\[c_{2,i} \delta \left(\frac{d^2 \phi}{d\eta^2} \right)_i + c_{3,i} \delta \left(\frac{d\phi}{d\eta} \right)_i \]
\[+ a_{6,i} \delta f_i = R_{3,i}. \]
(13)

Boundary conditions take the following form:
\[\delta f_i |_{\eta=0} = 0 - f_i |_{\eta=0}, \]
\[\delta \left(\frac{df}{d\eta} \right) |_{\eta=0} = V - \left(\frac{df}{d\eta} \right) |_{\eta=0}, \]
\[\delta \theta_i |_{\eta=0} = 1 - \theta_i |_{\eta=0}, \]
\[\delta \phi_i |_{\eta=0} = 1 - \phi_i |_{\eta=0}, \]
\[\delta \left(\frac{df}{d\eta} \right) |_{\eta=\infty} = 1 - \left(\frac{df}{d\eta} \right) |_{\eta=\infty}, \]
\[\delta \theta_i |_{\eta=\infty} = 0 - \theta_i |_{\eta=\infty}, \]
\[\delta \phi_i |_{\eta=\infty} = 0 - \phi_i |_{\eta=\infty}. \]
(14)
The coefficients \(a_{-i}'s, b_{-i}'s, c_{-i}'s, \) and \(R_{-i}'s \) are:
\[a_{1,i} = 1, \quad a_{2,i} = \left(\frac{m+1}{2} \right) f_i, \]
\[a_{3,i} = -2m \left(\frac{df}{d\eta} \right)_i, \]
\[a_{4,i} = \left(\frac{m+1}{2} \right) \left(\frac{d^2 f}{d\eta^2} \right)_i, \]
\[a_{5,i} = \left(\frac{m+1}{2} \right) \left(\frac{d\theta}{d\eta} \right)_i, \]
\[a_{6,i} = \left(\frac{m+1}{2} \right) \left(\frac{d\phi}{d\eta} \right)_i \]
\[- \frac{1}{Pr} \frac{Nt}{Le} N_{b} \frac{1 + Rd}{1 + Rd} \left(\frac{m+1}{2} \right) \left(\frac{d\theta}{d\eta} \right)_i, \]
\[b_{1,i} = \frac{1 + Rd}{Pr}, \]
\[b_{2,i} = \frac{1 + Rd}{Pr}, \]
\[b_{3,i} = \frac{1 + Rd}{Pr}. \]
\[b_{2,i} = \left(\frac{m+1}{2} \right) f_i + 2Nt \left(\frac{d\theta}{d\eta} \right)_i + Nb \left(\frac{d\phi}{d\eta} \right)_i, \]
\[b_{3,i} = -\frac{1}{Pr Le Nb} \frac{Nt}{1 + Rd} \left(\frac{m+1}{2} \right) f_i \]
\[- \frac{Nt}{Le Nb} \left(\frac{d\theta}{d\eta} \right)_i - \frac{Nt}{Le Nb} \left(\frac{d\phi}{d\eta} \right)_i + \frac{Nt}{Le Nb} \left(\frac{d\theta}{d\eta} \right)^2_i, \]
\[c_{1,i} = Nb \left(\frac{d\theta}{d\eta} \right)_i, \quad c_{2,i} = \frac{1}{Le}, \]
\[c_{3,i} = Nb \left(\frac{d\theta}{d\eta} \right)_i + \left(\frac{m+1}{2} \right) f_i, \]
\[R_{1,i} = -\frac{1}{Pr (1 + Rd)} \left(\frac{d^2 \theta}{d\eta^2} \right)_i + \left(\frac{m+1}{2} \right) f_i \left(\frac{d\theta}{d\eta} \right)_i \]
\[- Nb \left(\frac{d\theta}{d\eta} \right)_i \left(\frac{d\phi}{d\eta} \right)_i + Nb \left(\frac{d\theta}{d\eta} \right)^2_i, \]
\[R_{2,i} = -\frac{1}{Le} \left(\frac{d^2 \phi}{d\eta^2} \right)_i - \frac{Nt}{Le Nb} \left(\frac{Pr}{1 + Rd} \right) \]
\[\left(\left(\frac{m+1}{2} \right) f_i \left(\frac{d\theta}{d\eta} \right)_i + Nb \left(\frac{d\theta}{d\eta} \right)_i \left(\frac{d\phi}{d\eta} \right)_i \right) \]
\[+ Nb \left(\frac{d\theta}{d\eta} \right)^2_i - \left(\frac{m+1}{2} \right) f_i \left(\frac{d\phi}{d\eta} \right)_i, \quad (15) \]

The linearized system in Eqs. (13) with boundary conditions (14) is solved using the Chebyshev Spectral Collocation method [33-35]. The physical domain from 0 to \(\infty \) is first converted into the finite domain of 0 to L. The value of L is chosen sufficiently large. This finite domain is then transformed into \(-1 \) to \(1 \) by using relation \(\xi = \frac{2x}{L} - 1 \). The Gauss-Lobatto node points are used form \(-1 \) to 1, which are calculated by the relation \(\xi_j = \cos(\pi j/N), \quad j = 0, 1, 2, \ldots, N \). The differential matrix D is commonly known as the Chebyshev differentiation matrix. Applying collocation method to Eqs. (13) and (14), the following matrix is obtained:
\[\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} \delta f_i \\ \delta \theta_i \\ \delta \phi_i \end{bmatrix} = \begin{bmatrix} R_{1,i} \\ R_{2,i} \\ R_{3,i} \end{bmatrix}, \quad (16) \]

where:
\[A_{11} = a_{1,i} D^2 + a_{2,i} D^2 + a_{3,i} D + a_{4,i} I, \]
\[A_{12} = 0, \quad A_{13} = 0, \]
\[A_{21} = a_{5,i} I, \quad A_{22} = b_{1,i} D^2 + b_{2,i} D, \]
\[A_{23} = c_{1,i} D, \]
\[A_{31} = a_{6,i} I, \quad A_{32} = b_{3,i} I, \]
\[A_{33} = c_{2,i} D^2 + c_{3,i} D. \quad (17) \]

I is the identity matrix and \(a_{m,i} \)'s, \(b_{m,i} \)'s, \(c_{m,i} \)'s, and \(R_{m,i} \)'s as given in Eq. (15). The unknown \(\delta f_i, \delta \theta_i, \) and \(\delta \phi_i \) are calculated by the linearized system given in Eq. (16). After every iteration, the functions \(f_{i+1} = f_i + \delta f_i, \theta_{i+1} = \theta_i + \delta \theta_i, \) and \(\phi_{i+1} = \phi_i + \delta \phi_i \) are updated to a more refined form. Finally, after a few iterations, we obtain our required results.

4. Validation of results

The associated boundary conditions and transformed system of Eqs. (7)-(9) and (10) are solved by using CSNIS [56-58]. In this study, we utilize various ranges of \(Nb, \) \(Nt, \) and \(m, \) and fixed values of \(Pr, \) \(Le, \) and \(Rd. \) The numerical procedure is coded in Matlab software. \(\eta_{max} = 15 \) is proven enough to attain the boundary conditions for all parameters, asymptotically. To examine validity of the results, a comparison with the published data in the literature is made. The present results in the form of skin friction obtained by CSNIS for various values of power-law index \(m \) are compared with Yih [61], Ud din et al. [59], and Cebeci and Bradshaw [62] in Table 1. The table illustrates the accuracy and validity of the current numerical procedure. The outcomes are displayed in tables and figures, and discussed in the following section.

5. Results and discussion

Graphical representations of velocity, concentration of nanoparticles, and temperature are given for different pertinent parameters, such as \(m, \) \(Nb, \) and \(Nt \) with fixed values of \(Le, \) \(Pr, \) and \(Rd \) in Figures 2-10. Table 2 represents \(Nu \) and \(Sh \) against different values of \(Nt, \) \(Nb, \) and \(V \) with \(Pr = 7.0, \) \(Le = 10, \) \(m = 2.0, \) and \(Rd = 0.1. \)

Figure 2 depicts the influence of \(m \) on velocity distribution for various values of velocity ratio \(V. \) The figure illustrates that the velocity increases when the plate is stationary, velocity profile remains unchanged when free stream velocity and movement speed of the plate are equal, and velocity decreases when speed of
Table 1. Comparison of the values of $f''(0)$ with $V = 0$.

<table>
<thead>
<tr>
<th>m</th>
<th>Present study (CSNIS)</th>
<th>Cebeci and Bradshaw [62]</th>
<th>Uddin et al. [59]</th>
<th>Yih [61]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.05</td>
<td>0.23582164</td>
<td>0.2134838</td>
<td>0.21351</td>
<td>0.21384</td>
</tr>
<tr>
<td>0.0</td>
<td>0.33205766</td>
<td>0.3320574</td>
<td>0.33206</td>
<td>0.332057</td>
</tr>
<tr>
<td>1/3</td>
<td>0.75748444</td>
<td>0.7574476</td>
<td>0.75745</td>
<td>0.757448</td>
</tr>
<tr>
<td>1</td>
<td>1.23250013</td>
<td>1.2325876</td>
<td>1.23259</td>
<td>1.232588</td>
</tr>
</tbody>
</table>

Table 2. Numerical data for Nu and Sh with variations of Nt and Nb and $Pr = 7.0$, $Le = 10$, $Rd = 0.1$, and $m = 2.0$.

<table>
<thead>
<tr>
<th>Nt/Nb</th>
<th>$Nt = 0.1$</th>
<th>$Nt = 0.3$</th>
<th>$Nt = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nu</td>
<td>Sh</td>
<td>Nu</td>
<td>Sh</td>
</tr>
<tr>
<td>0.1</td>
<td>0.76295</td>
<td>1.7652</td>
<td>0.46732</td>
</tr>
<tr>
<td>0.3</td>
<td>0.32290</td>
<td>1.8180</td>
<td>0.19174</td>
</tr>
<tr>
<td>0.5</td>
<td>0.12977</td>
<td>1.7878</td>
<td>0.07393</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$V = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nu</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$V = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nu</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 2. Velocity distribution for different values of m.

The plate is higher than the free stream velocity. Variation of Nt with temperature distribution is displayed in Figure 3. Temperature distribution is enhanced by increasing Nt. This is due to the fact that increase in Nt enhances temperature within the boundary layer and, consequently, increases thermal layer thickness. The effect of Nb on nanoparticle concentration distribution is plotted in Figure 4. Increase in Nb results in a decrease in the concentration profile. Physically, Sherwood number increases with an increase in Nb, leading to a reduction in the concentration profile.

Variation of Nu for various values of Nt, Nb, and V is presented in Figure 5. It is observed that Nu is reduced as Nb increases, and this decrease becomes linear as Nt increases. Furthermore, Nu is maximum when the plate is moving with a speed higher than the free stream velocity and the increase in Nu is minimum when the plate is stationary. Also, when plate speed is equal to the free stream velocity, Nu lies between maximum and minimum levels, as shown in Figure 5. The influence of change in Nb and Nt at different values of velocity ratio parameter V on Sh is depicted in Figure 6. It is noticed that the increase in Sh is maximum when the plate is moving with a speed higher...
than the free stream velocity and the increase in Sh is minimum when the plate is stationary. In addition, moderate increase in Sh is observed when plate speed is equal to the free stream velocity. Figure 7 depicts the influence of Nt and m on Nu. It is shown that Nu is reduced with an increase in Nt and enhanced with increase in m. Figure 8 illustrates the variation in Sh by varying Nb and m. The figure reveals that Sh rises with the increase in Nb. Furthermore, an increasing trend is observed in Sh as m increases. In both plots, enhancement of Nu and Sh is observed when plate speed is faster than free stream velocity. Also, increase in both values is minimum when the plate is stationary and moderate when plate speed is equal to free stream velocity. Figures 9 and 10 display the effects of Nt, Nb, and Rd on Nu and Sh. It is shown that Nu decreases...
with increase in \(Nt \) and this decrease becomes linear as radiation parameter is reinforced. On the other hand, \(Sh \) increases with increase in \(Nb \), but this increase is minor and becomes linear as radiation parameter is enhanced. The effects of various values of velocity ratio parameter are similar to those discussed in Figures 5-8.

Numerical data for \(Nu \) and \(Sh \) with various values of \(Nt \) and \(Nb \) at three different positions of the plate are presented in Table 2 for fixed values of the \(Pr, Rd, Le, \) and \(m \). \(Nu \) decreases with increase in both \(Nt \) and \(Nb \), but this decrease is faster with increase in \(Nb \) than with increase in \(Nt \). \(Sh \) rises with increase in \(Nt \) and \(Nb \), although the rate of increase is slightly attenuated at higher values of \(Nb \) (\(Nb = 0.5 \)). Table 2 shows that numerical values of \(Nu \) and \(Sh \) are higher when the plate is moving with a speed higher than the free stream velocity and lower when the plate is stationary.

6. Concluding remarks

In this study, a theoretical nonlinear Buongiorno nanofluid model for steady-state two-dimensional flow on a radiating horizontal stretching plate was examined. The Chebyshev spectral method was implemented to numerically evaluate the boundary value problem. The numerical results were compared with the results of earlier studies for regular fluids. The outcomes of the present study in brief are the following:

- Reduction in Nusselt number and enhancement of Sherwood number were seen with increase in Brownian motion and thermophoresis parameters;
- Thermal radiation reduced Nusselt number and enhanced Sherwood number;
- Power law index enhanced Sherwood number as well as Nusselt number.

Nomenclature

- \(C \): Solutal concentration
- \(C_\infty \): Ambient solutal concentration
- \(C_f \): Skin friction coefficient
- \(C_w \): Solutal concentration at the wall
- \(D_B \): Brownian diffusion coefficient
- \(D_T \): Thermophoretic diffusion coefficient
- \(f \): Dimensionless normal component of flow
- \(M \): Dimensionless magnetic parameter
- \(Nb \): Brownian motion parameter
- \(Nt \): Thermophoresis parameter
- \(Nu \): Nusselt number
- \(Pr \): Prandtl number
- \(Re_{tr} \): Local Reynolds number
- \(Sc \): Schmidt number
- \(Sh_{tr} \): Local nanoparticle Sherwood number
- \(T \): Temperature of the fluid
- \(T_\infty \): Ambient fluid temperature
- \(T_w \): Surface temperature
- \(\tilde{u}, \tilde{v} \): Dimensional velocity components in \(\hat{x} \) and \(\hat{y} \) directions
- \(u, v \): Dimensionless velocity components in \(x \) and \(y \) directions
- \(U_e \): Free stream velocity
- \(U_w \): Velocity at the wall
- \(\tilde{x}, \tilde{y} \): Coordinates along and normal to the surface in dimensional form
- \(x, y \): Coordinates along and normal to the surface in dimensionless form

Greek symbols

- \(\theta \): Dimensionless temperature
- \(\phi \): Dimensionless concentration
- \(\tau_w \): Wall shear stress
- \(\psi \): Stream function
- \(\nu \): Kinematic viscosity
- \(\mu \): Dynamic viscosity
- \(\rho \): Fluid density
- \(\lambda_1 \): Relaxation time of the material
- \((\rho C)_f \): Heat capacity of the fluid
- \((\rho C)_p \): Effective heat capacity of the nanoparticle material

References

Biographies

Muhammad Saleem Iqbal is an Assistant Professor in the Department of Mathematics at the Islamabad College for Boys G-6/3, Pakistan. He received a PhD degree from the Department of Mathematics and Statistics, International Islamic University Islamabad. His research interest is in the fields of heat and mass transfer, mathematical modelling, nanofluid dynamics, and entropy generation analysis of the similar and non-similar flows.

Abuzar Ghaffari obtained his PhD degree from the Department of Mathematics, International Islamic University, Islamabad, Pakistan. His research area is computational fluid dynamics. He is currently working as Assistant Professor at University of Education Attock Campus, Pakistan.

Irfan Mustafa received his PhD degree from the Department of Mathematics, International Islamic University Islamabad, Pakistan. His research area is computational fluid dynamics. He is currently working as a lecturer at Allama Iqbal University, Islamabad, Pakistan.