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Abstract. Weapon-Target Assignment (WTA) as an important part of the aerial defense
cycle has long been studied. Challenges are usually �nding fast-computing methods to
search for an optimal or near-optimal solution in case of a large number of weapons and
targets. This viewpoint gains signi�cance in terms of mathematics; yet, practically, it has
limited applicability in the mentioned context. In this paper, a real-time search algorithm
was proposed which decomposed the WTA problem and provided a real-time exhaustive
search algorithm by decreasing the size of solution space and deleting impossible solutions.
Implementation of the algorithm for three typical scenarios exhibited excellent real-time
performance and the possibility of �nding exact solutions to large-scale problems.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

In aerial defense cycle systems, Weapon-Target As-
signment (WTA) as an important subsystem has been
considered for decades. In a rough classi�cation, there
are large- and small-sized problem categories. Using
exhaustive search, a small-sized static WTA problem is
solved fast and the exact solution is obtained. In this
case, all possible pairs of weapon targets are checked,
the cost function is calculated, and the optimum solu-
tion is found. The nature of this problem can be char-
acterized in such a way that if the size increases, the
required computational burden signi�cantly increases
in �nding an exact solution [1]. The literature on the
WTA problem is classi�ed into two study categories;
mostly, some researchers have tried to use or propose
new algorithms to solve the problem more e�ectively.
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Exhaustive search [1], Genetic Algorithm (GA) [1{4],
Ant Colony together with GA [5], particle swarm op-
timization [6], large scale neighborhood [7,8] Fuzzy [9],
game theory [10{12], and Markov decision process [13]
are some examples of the research approaches to this
problem. Subsequently, some studies have compared
the e�ciency of di�erent algorithms such as Ant colony,
GA, PSO, and maximum marginal return [14] as
well as GA, tabu search, simulated annealing, and
variable neighborhood search [15]. In those research
interests, the target-based WTA problem or asset-
based problems are solved. Furthermore, two types
of static and dynamic WTAs have been studied in
the literature. The problem is often considered as a
single-objective case, while some studies have focused
on multi-objective methods (such as Lotter et al. [16],
Li et al. [17], Lotter and Van Vuuren [18], Zhou et
al. [19], and Lotter [20]). The proposed algorithms are
usually implemented for a static target-based form of
the WTA problem.

Exact algorithms are proposed to solve the WTA
problem for some special cases such as:
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1. When all the weapons are identical, or
2. When the targets can be reached by at most one

weapon [21].

WTA problems are mostly NP-complete, discrete,
stochastic, nonlinear, and usually large-sized; this is
the reason why obtaining an optimal solution to the
WTA problem is usually impossible [22]. In large-
sized problems, if real-time solutions are required,
heuristic algorithms are usually used. By using heuris-
tic methods, near-optimal solutions may be found in
a short time. The weapon assignment problem is
also the case of a general multi-robot task allocation
problem, wherein the objective is to optimally assign
a set of robots to a set of tasks such that the overall
system performance, subject to a set of constraints, is
optimized [23]. The scheduling problem is another sim-
ilar �eld of problems that contains two sub-problems:
resource allocation and scheduling. In the resource
allocation sub-problem, the computational burden is
a function of the number of resources allocated [24].
Another branch of allocation problems is exible job
shop problem which includes routing (�nding the best
route to accomplish a job) and scheduling [25]. In the
present study, a simple fast computing method is pre-
sented which tries to �nd the exact solution of a large-
sized problem at a higher level (multi-weapon systems
level) by simplifying the WTA problem. Concisely,
our proposed algorithm tries to be simultaneously real-
time and exact: two properties that generally are
not collected in the previously proposed algorithms.
The proposed algorithm decomposes the problem, dis-
tributes the targets to suitable defensive resources,
executes favorite constraints, and �nally generates
a small-sized solution space in comparison with the
common exhaustive search method which assumes all
weapons engaging all targets.

2. WTA general considerations

In the following, some considerations about viewpoints
involved in solving the WTA problem are presented.

2.1. The problem viewpoints
Traditional WTA problem equation: The tradi-
tional WTA problem in the static target-based form is
a function of the form:

min
xi;k2f0;1g

F =
jT jX
i=1

Vi
WY
k=1

(1� Pi;k)xi;k ; (1)

subject to:
jT jX
i=1

xi;k = 1; k = 1; � � � ; jW j; (2)

where the parameters are as follows:

T A set of targets, T = fT1; � � � ; TNg
W A set of weapons, W = fW1; � � � ;WMg
Vi The value of target i
Pi;k Kill probability for the pair, Ti;Wk

xi;k Decision variable. Its value is 1 if Wk
is assigned to Tk and otherwise equals
0 [1]

It is desired to �nd an optimal solution that can
minimize the probability of targets survival, in which
the solution is a set of fTi;Wkg for all targets. Through
Eq. (1), the formula considers all TW solutions. It
is assumed that all weapons can engage all targets
without weapon inventory limitation. Eq. (1) can be
modi�ed to consider special problems using further
constraints.

Problem sizes: In the WTA problem, challenges
are usually �nding fast-computing methods to examine
optimal or near-optimal solutions in case of a large
number of weapons and targets. This viewpoint is more
considerable mathematically, but it has limited usage
or practicality in the mentioned context. A usually
ignored point is that in practical cases, all weapons
rarely face a target. By removing never-occurring
cases, the problem is simpli�ed and consequently, its
size decreases signi�cantly.

Heuristic methods: In the process of solving large-
sized WTA problems, the optimal solution is attained
using the exhaustive search. While the computation
time becomes long, heuristic methods are often devel-
oped and improved to solve the problem faster and �nd
a solution more analogous to the optimal one. Heuristic
methods have a special search algorithm and search
only part of the possible solution space and the solution
will be near-optimal.

Upon removing impossible solutions and using cri-
teria in the possible solution space, based on decision-
maker preferences, highly unacceptable solutions are
removed. As the size of the search space signi�cantly
decreases, all the remaining solution space may be
searchable and the exact best solution is obtained.

According to [26], the WTA solution space is re-
duced when solutions are deleted with a kill probability
less than a minimum acceptable value. Through this
�ltering, the reduced problem is solved in less than a
second for large-sized problems.

2.2. Simpli�ed WTA
Usually, to �nd the WTA (near-optimal) solution in
real time, a decrease in solution accuracy can be
overlooked because of the large computation load
associated with the problem. It is argued that in a
real-world scenario, a very large-scale problem seldom
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occurs and the exact solution can be possibly attained
in real time upon decreasing the size of the WTA
problem. A realistic air defense scenario for a naval
task group practicably consists of less than ten targets
and ten weapon systems [1]. The WTA problem can
be decomposed and solved in multiple stages. This
causes the omission of some impossible solutions before
starting the search process for �nding the optimal
solution [27]. The use of this solution makes it
possible to �nd the exact solution to the WTA problem
under single/multiple objectives through exhaustive
search, even in large-sized WTA cases. Accordingly,
an algorithm is designed to be practical and fast, and
with some assumptions resulting in an exact solution.

The proposed algorithm can be compared with a
Rule-based Heuristic Search (RHS) algorithm [28] as
follows:

1. RHS uses some rules { which are extracted using
methods such as data mining in solution space {
to opt for a path to approach the proper solution
among all possible cases; however, proposed algo-
rithm �rst removes absolute impossible solutions
from the search space and limits the problem
and search space size while the required rules are
prede�ned;

2. The starting point of the search process in RHS
is estimated based on proper primary solution(s)
with some computational burden; however, in PA,
the starting point of search is selected based on the
priorities of the tasks and no estimation is required;

3. In RHS, the solution space is searched with a
prede�ned resolution which may be the reason
for neglecting some of the possible solutions { a
common way in heuristic methods. However, in
PA, no possible solution is neglected in the search
process.

3. The proposed WTA algorithm

The WTA is a part of the command-and-control pro-
cess in an air defense process. After receiving targets'
kinematic data and extracting their features, priorities
are assigned. In the following, the WTA process is
discussed in depth. Figure 1 presents the weapon as-
signment algorithm and, subsequently, Figure 2 depicts
Weapon Assignment Decision Maker (WADM), inputs,
geometric features, priorities, outputs pairs, and order
of engagement. According to Figure 2, the processes in
WADM are as follows:

Engageable targets: Based on the cross-parameter
(Figure 3), for each Weapon-Target Pair (WTP), it
can be calculated whether the predicted target path
is within Weapon System (WS) engagement radius or
not.

Figure 1. Weapon assignment algorithm.

Figure 2. Weapon assignment decision-maker.

Figure 3. Target parameters (C: Cross, D: Distance).

Crossing weapons: Subsequently, for each target,
Engageable Targets Matrix (ETM) is generated (Fig-
ure 4, 1O). ETM shows that each target could be
sequentially engaged by which WSs. Crossing WSs are
sorted in ETM in chronological order.

Engagement combinations: All possible engage-
ment pairs are generated with ETM at hand. If the
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Figure 4. Computational process for the proposed Weapon-Target Assignment (WTA) algorithm.

maximum of two shots against each target is allowable
and the predicted target path crosses m WSs, all
combinations containing one or two shots is calculated
as follows:

number of combinations =
�
m
1

�
+
�
m
2

�
+m

=
m(m+ 3)

2
: (3)

where
�
m
1

�
is one shot,

�
m
2

�
is two shots from

di�erent WSs, and m is two shots same WS.
For example, if a target's predicted path crosses

two WSs, there will be 9 possible combinations using
Eq. (3) for engaging the target, containing one-shot and
two-shot combinations.

Solution criteria: There are decision factors that
a�ect the WA problem solution. Some of them are
listed in [16,20]. Before generating possible solutions,
some criteria are de�ned. In this work, the probability
of kill, the number of weapons used against each target,
and engagement cost are applied to �nd the best
solution (Figure 4: 3O).

Furthermore, it is necessary to notice that among
the solutions satisfying minimum acceptable kill prob-
ability condition, the solution that temporally occurs
�rst is chosen.

Solution space: All possible solutions are generated
for all WTPs according to the criteria. For each WTP,
a vector is de�ned (Figure 4: 4O) which contains in-
formation of the solution cost, number of engagements,
probability of kill, and solution number (Eq. (4)):
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Solution vector = [cost; eng; Pk;#]: (4)

where cost is engagement cost, eng is number of
engagements, Pk is probability of kill, and # is solution
number.

For example, Vector [8, 2, 0.9, 22] o�ers a solution
that costs 8 units, and engagement is done by two shots
against the target with the total probability of kill of
0.9. This vector belongs to the 23th generated solution
for the target (counter starts from 0).

Solution �lters: Having all possible solutions, the
process of searching for the best solutions begins. Here,
the decision-maker can �lter the solutions based on
decision criteria. For example, it can select solutions
with the kill probability being greater than a margin,
maximum limit on cost, or the number of engagements
with each target.

Engagement strategy: In addition to criteria and
�lters, Engagement Strategy (ES) a�ects the solution
space, as well. Each ES de�nes the rules on engagement
and constraints for solution space and it resembles
optimization strategies. The optimal solution based
on each ES di�ers from others; some examples of ESs
include engaging with the target as soon as possible,
engaging with the highest probability of kill, and
engaging with minimum cost. It is worth pointing out
that each ES can be a combination of two or more
criteria.

Solution maker: Solution-maker searches the so-
lution space and applies the �lter. Solution-maker
attempts to �nd a set of the best weapon candidates
to engage with targets and begins weapon assignment
from the target with the highest priority (Figure 4:
5O). If the weapon inventory is capacious enough,

the �rst best solution is selected. Filters may omit all
solutions for a speci�c target. For example, if there is
no weapon or a combination of weapons (in case of mul-
tiple engagements with targets) to meet minimum ac-
ceptable Pk, another solution for the target will be cho-
sen based on other criteria or solution with smaller Pk.

In the following, the problem is solved with the
proposed algorithm through a limited or unlimited
inventory condition. If the inventory is limited, the
solution may not be optimal, while, the solution is
optimal in other cases.

4. Case studies and simulation results

The performance of the proposed algorithm was tested
in the context of a surface-based air defense system.

4.1. Engagement model
Test scenario: There are six long-range (L1{L6) and
six medium-range (M1{M6) weapons with a limited

Table 1. Weapon systems range and cost data.

Weapon Range Cost
Long-range 100 7
Medium-range 50 4

Table 2. Targets priority.

Priority 1 2 3 4 5 6
Target 1 2 3 6 5 4

inventory, positioned around a defended asset to pro-
tect it against six aerial targets approaching the asset.
Weapons range and cost data are considered, as shown
in Table 1. Six targets approach the defended asset.
The future path is predicted according to the current
position and velocity vector. Table 2 displays the
threat priorities based on the degree of their threat
to the defended asset. In the following, WSs inventory
is shown in Table 3. If a target crosses a WS, it can
be reached at a predictable distance and cross. Cross
parameter is the minimum distance of the predicted
target path to the center of the WS, as illustrated
in Figure 3. Subsequently, crossing weapons for each
target are shown in Table 4.

The probability of kill (Pk): It is assumed that
kill probability for a speci�c resource is a function of
the weapon-target distance and cross. For a particular
weapon-target pair, the corresponding e�ect depends
on the range of distances and crosses for the following
reasons:

1. The shooting range of a weapon is limited;
2. The accuracy of a weapon depends on the range of

targets [29].

While Pk increases, the target approaches WS, reaches
a maximum value, and then decreases. Similar behav-
ior was seen in [18,30]. Likewise, at a speci�c distance,
as cross increases, Pk decreases (Figure 5). According

Figure 5. Pk behavior as a function of distance and cross
(C1 < C2 < C3).
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Table 3. Weapons inventory.

L1 L2 L3 L4 L5 L6 M1 M2 M3 M4 M5 M6

9 7 8 7 8 7 9 9 7 7 7 9

Table 4. Crossing weapons.

Priority Target Crossing weapon systems

1 1 1 7 2 8 9 10 3 4

2 2 5 4

3 3 2 3 9 10 4

4 6 5 6 1

5 5 1 7 8 2 3

6 4 2 1 8 7 11 5

Table 5. The solution of the Weapon-Target Assignment
(WTA) problem depicted in Figure 6 with the �rst
Engagement Strategy (ES).

Priority Target # Weapon # Pk max

1 1 L1 0.83

2 2 L5 0.76

3 3 M3 0.85

4 6 L6 0.88

5 5 L1 0.88

6 4 M5 0.88

to this behavior, a matrix is de�ned for Pk; whenever
a target is processed, based on the distance and cross
wrt WS, possible kill probabilities are predicted.

Engagement strategies: The WTA problem is
solved for two di�erent ESs:

1. Engaging with all targets with maximum Pk and
one shot against each target;

2. Engaging with all targets with a minimum allowable
Pk,

wherein two shots are allowable at maximum against
each target with the aim of ensuring minimum cost.

4.2. Engagement scenario 1
To solve the problem based on the �rst ES, by consid-
ering target cross wrt each the crossing weapon, the
best distance for engagement and the maximum Pk
for each crossing weapon are calculated, respectively.
The best solution based on the �rst ES is shown in
Table 5. To solve the WAP for the second ES, all

possible solutions containing possible single shots and a
combination of all WSs for two shots are generated. In
the next step, by using the minimum allowable Pk �lter,
the outlier solutions are ignored. Finally, the solution
maker searches the remaining solution space for the
best one. In the following, Figure 6 demonstrates the
�rst simulation scenario, wherein the targets T1 to T6
are shown from their starting (detection) point and
their direct predicted path along the defended space.
For the illustrated problem in Figure 6, a number of
possible solutions and �nal allowable solutions for each
target are shown in Table 6. Furthermore, Table 7
contains outputs of the solution maker as the best
results.

In the simulation, it is assumed that all targets
move over a straight line with a random constant speed,
except Target 1 which is hand-controlled.

4.3. Scenario 2
In the following, Figure 7 shows another typical sce-
nario. The scenario contains �ve time-steps (shown
in Figure 7 by 1O to 5O). The result of target
prioritization and weapon assignment in the �ve time
steps is presented in Figure 8 and Table 8, wherein
Target 1 is not engageable in the time steps 1 and 3
because its predicted path is out of engagement zones
of all WSs. Priority of target pairs (T2,T3), (T4,T5),
and (T3,T4) vary in time-step transitions: 1O to 2O,
2O to 3O, and 4O to 5O, respectively.

4.4. Engagement scenarios 3 and 4
Simulation was performed for both 12*12 (the scenario
containing target starting point and predicted path,
shown in Figure 9) and 12*18 (weapons * targets)
problem instances, and the related results are presented
in Tables 9 and 10.

Table 11 shows the computation time of solving
the three problem instances in Sections 4.2 and 4.4 and
demonstrates that the proposed algorithm solves them
in real time.

4.5. Engagement scenario 5
The proposed algorithm was applied to 16 di�erent
scenarios based on four di�erent numbers of WSs
and targets. The results (Table 12) revealed that
adding new targets had a greater impact on algorithm
performance than adding new WSs. Figure 10 shows
the computational time for an equal number of weapons
and targets among the 16 scenarios. As a rough
estimation, a problem of size 45*45 (weapons * targets)
can be solved in less than one second (real-time) for a
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Figure 6. Weapon assignment test scenario (12 weapons * 6 targets).

Table 6. Possible solution combinations for the Weapon-Target Assignment (WTA) problem depicted in Figure 6 with
the second Engagement Strategy (ES).

Priority Target # Crossing
weapons #

Possible
solutions

Allowable
solutions

1 1 8 44 21

2 2 2 5 1

3 3 5 20 15

4 6 3 9 5

5 5 5 20 14

6 4 6 27 16

symmetric emplacement of defense system (similar to
Figure 9).

Performance of the proposed algorithm highly
depends on the defense system arrangement. In the
worst case, i.e., when all targets face all weapons,
the computational burden is similar to that of the
exhaustive search algorithm. This problem may occur

in particular cases. However, for many practical
applications, the proposed algorithm can �nd a proper
solution to a large-size problem in real time.

4.6. Discussion
In [1], the real-time condition assumes the solutions
that are obtained in about one second. Hence, to
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Figure 7. A typical scenario with �ve time steps.

Table 7. The solutions for the Weapon-Target
Assignment (WTA) problem depicted in Figure 6 with the
second Engagement Strategy (ES).

Priority Target # Weapon(s) Pk Cost

1 1 M1{ 0.94 8

2 2 L5{ 0.95 14

3 3 M3{ 0.98 8

4 6 L5{L6 0.94 14

5 5 M1{M2 0.93 8

6 4 M2{ 0.94 8

satisfy this condition, the size of a WTA problem
which is solved in the static form using an exhaustive
search algorithm should be smaller than 7*7 (weapons
* targets). The proposed algorithm, based on the
removal of impossible zones from the search space,
could solve the static WTA problem of the size 24*24
(weapons * targets) in about 0.25 second. Therefore,
the real-time condition is satis�ed. Furthermore, a
problem of size (12*6) in the form of Eq. (1) requires
612 iterations, assuming that all weapons are used.
Accordingly, the use of the exhaustive search is not
suitable for real-time applications.

The problem with the proposed algorithm is
decomposed and solved in multiple steps. First, 12*6
cases are checked to �nd crossing WSs. Next, the
related criteria are applied and all possible solutions
for each target are generated independently. In the
presented defense arrangement, the maximum number

of possible solutions for each target (with 12 weapons)
is 44, given that the maximum number of crossing
weapons for a target is 8. Given that each WS may
�re multiple shots, the solution would be optimal if
there was no weapon inventory limitation.

The computational burden of WTA problem can
be reduced using two steps. Firstly, according to the
arrangement of the defense system and linear predicted
path of targets, the maximum number of crossing
weapons for each target is limited. For the defensive
arrangement presented in Figure 6, the maximum num-
ber of WS that meets a target is 8. Secondly, decision-
makers' strategies for engagement (such as minimum
acceptable kill probability) reduce the computations
to a greater degree. Therefore, if there is no solution
to exclude, assuming that all weapons do not meet
all targets, the computational burden of the problem
is reduced. In the presented case study, the weapon
assignment problem was solved by reducing the large-
sized, time-consuming (using exhaustive search), or
imprecise (using heuristic search algorithm) problem
to a simple fast-computing one, based on this fact that
real-world problems are much simpler than basic WTA
problem formulation (Eq. (1)). Finally, in Table 13,
one can notice a general comparison between weapon
assignment algorithms in terms of being real-time and
optimality.

5. Conclusions

The Weapon-Target Assignment (WTA) problem was
studied at the level of multiple weapon systems.
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Figure 8. Targets priority and weapon assignment variations in the scenario shown in Figure 7.

Table 8. Prioritization and weapon assignment in �ve time steps.

Step 1: T = 0 1O
Priority Target # Weapon(s) Pk Cost

1 3 L2{ 0.98 14

2 2 L4{L5 0.93 14

3 1 | | |

4 5 L3 0.5 7

5 4 M5 0.9 4

6 6 L4 0.9 7

Step 2: T = 5 2O
Priority Target # Weapon(s) Pk Cost

1 3 L2{ 0.98 14

2 1 M6{ 0.94 8

3 2 L4{L5 0.93 14

4 5 L3 0.5 7

5 4 M5 0.9 4

6 6 L4 0.9 7

Step 3: T = 7 3O
Priority Target # Weapon(s) Pk Cost

1 3 L2{ 0.98 14

2 1

3 2 L4{L5 0.93 14

4 4 M5 0.9 4

5 5 L3 0.5 7

6 6 L4 0.9 7

Step 4: T = 10 4O
Priority Target # Weapon(s) Pk Cost

1 3 L2{ 0.98 14

2 1 M1{M 0.97 8

3 2 L4{L5 0.93 14

4 4 M5 0.9 4

5 5 L3 0.5 7

6 6 L4 0.9 7

Step 5: T = 12 5O
Priority Target # Weapon(s) Pk Cost

1 3 L2{ 0.98 14

2 1 M1{ 0.97 8

3 4 M5 0.9 4

4 2 L4{L5 0.93 14

5 5 L3 0.5 7

6 6 L4 0.9 7
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Figure 9. Weapon assignment test scenario (12 weapons * 12 targets).

Table 9. Solutions for the Weapon-Target Assignment (WTA) problem (12 weapons * 12 targets).

Priority Target # Crossing
weapons #

Possible
solutions

Allowable
solutions

Weapon(s) Pk Cost

1 4 2 5 2 M2{M2 0.969 14

2 9 6 27 21 M3 0.90 7

3 1 6 27 18 L1{L1 0.978 8

4 3 8 44 21 L1{L1 0.938 8

5 5 2 5 4 M6 0.90 7

6 18 5 20 15 L1{L1 0.949 8

7 7 6 27 21 M2 0.90 7

8 14 4 14 9 M1 0.90 7

9 6 5 20 14 L3{L4 0.934 8

10 13 7 35 22 L1 0.90 4

11 16 7 35 20 L1 0.90 4

12 12 3 9 5 M1{M1 0.978 14
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Table 10. Solutions to the Weapon-Target Assignment (WTA) problem (12 weapons * 18 targets).

Priority Target # Crossing
weapons #

Possible
solutions

Allowable
solutions

Weapon(s) Pk Cost

1 4 6 27 18 L3{L3 0.978 8

2 9 4 14 10 M1 0.90 7

3 1 8 44 21 L1{L1 0.938 8

4 3 2 5 4 M5 0.90 7

5 5 6 27 18 L2 0.90 4

6 18 4 14 7 M1 0.90 7

7 7 6 27 21 M6 0.90 7

8 14 2 5 4 M6 0.90 7

9 6 7 35 21 M3 0.90 7

10 13 2 5 2 M3{M3 0.969 14

11 16 3 9 5 M4{M4 0.984 14

12 12 2 5 4 M3 0.90 7

13 2 6 27 21 M2 0.90 7

14 11 7 35 21 L1 0.90 4

15 8 1 2 1 M6{M6 0.938 14

16 10 1 2 2 M2 0.375 7

17 15 0 0 0 | | |

18 17 0 0 0 | | |

Table 11. Approximate computation time for the
proposed algorithm.

Weapons Targets Time (milliseconds)

12 6 30

12 12 97

12 18 127

Table 12. Computational burden (in milliseconds) for 16
di�erent scenarios.

Targets

Weapons 6 12 18 24

6 39 67 99 127

12 51 90 131 169

18 65 114 166 212

24 73 131 193 249

Accordingly, the assignment problem was solved in
sequential steps. By removing the impossible/outlier
solutions from solution search space in primary steps,
the size of search space and required time for �nding

Figure 10. Computational time for an equal number of
weapons and targets.

the optimal solution considerably decreased. Hence,
instead of using imprecise heuristic search methods, an
exact exhaustive method was used for �nding a real-
time solution to the WTA problem. In brief, the pros
of the proposed algorithm are the possibility of o�ering
a real-time solution, low computational burden, and
providing an optimal solution (with some assumptions)
for the multi-criteria WTA problem. To prove that it is
as real-time and optimal as other algorithms, a general
comparison between the di�erent weapon assignment
algorithms was presented.
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Table 13. A general comparison of weapon assignment
algorithms.

Weapon assignment
algorithms

Real-time Optimal

Ant Co

� �

Genetic
PSO
VLSN
Tabu
Simulated annealing
MMR

Neural networks �
Markov

Game theory � �
Exhaustive search � �
Proposed algorithm � �
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